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ABSTRACT
Side-channel attacks are a security exploit that take advantage
of information leakage. They use measurement and analy-
sis of physical parameters to reverse engineer and extract
secrets from a system. Power analysis attacks in particular,
collect a set of power traces from a computing device and use
statistical techniques to correlate this information with the
attacked application data and source code. Countermeasures
like just-in-time compilation, random code injection and in-
struction descheduling obfuscate the execution of instructions
to reduce the security risk. Unfortunately, due to the random-
ness and excess instructions executed by these solutions, they
introduce large overheads in performance, power and area.

In this work we propose a scheduling algorithm that dynam-
ically reorders instructions in an out-of-order processor to pro-
vide obfuscated execution and mitigate power analysis attacks
with little-to-no effect on the performance, power or area of
the processor. We exploit the time between operand availabil-
ity of critical instructions (slack) to create high-performance
random schedules without requiring additional instructions
or static prescheduling. Further, we perform an extended
security analysis using different attacks. We highlight the
dangers of using incorrect adversarial assumptions, which
can often lead to a false sense of security. In that regard,
our advanced security metric demonstrates improvements of
34×, while our basic security evaluation shows results up to
261×. Moreover, our system achieves performance within
96% on average, of the baseline unprotected processor.

1. INTRODUCTION
Timing, electromagnetic (EM) and power analysis attacks,

also called side-channel attacks, exploit physical parameters
of the processor to extract secret information from a running
program in the system. Power analysis attacks are the most
common as they are relatively easy and cheap to execute as
they do not require any special equipment or knowledge of
the internal design of the system. Power analysis attacks
take advantage of the synchronization and high correlation
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of the power consumption with the instructions and data
being processed to identify patterns in the victim’s program
behavior. These patterns are then analyzed to reverse engineer
the program execution and extract secret information [18].

Many countermeasures have been proposed to combat
power analysis attacks in all levels of the design stack [2,
3, 14, 17, 23, 25, 29, 40, 50]. We categorize these counter-
measures into two generic mitigation techniques: (1) hiding
and (2) masking. Hiding countermeasures limit or hide the
information available to an adversary. In other words, hid-
ing lowers the available signal-to-noise ratio (SNR) to an
adversary. SNR suppression can be achieved by balancing
or suppression techniques where relations between power
consumed are weakened for executed data or instruction (e.g.
power balancing, physical signal suppression, noise amplifi-
cation) or by randomizing the execution sequence (e.g. jitter,
randomization of execution order). Thus, hiding is a system-
wide solution that alters the power consumption of the system
in a way that hides the actual power consumed by the instruc-
tions and the data being processed.

Masking, on the other hand, splits any sensitive interme-
diate variable into several statistically independent shares,
similar to the principles of Shamir’s secret sharing [43]. An
adversary can learn nothing about the sensitive intermediate
variable, unless all the shares are available. As the shares
are processed independently, masking effectively removes
all leakage dependencies for the lowest statistical moments,
which increases the attack complexity. Often, design con-
straints must be put in place to guarantee independence of
shares in data processing. The processing of independent
shares requires additional computation, leading to a non-
negligible overheads. While the masking technique can pro-
vide strong guarantees from a cryptographic point of view, it
is effective only in the presence of noise. Thus masking and
hiding are complementary countermeasures, where hiding
provides the ideal low SNR environment for masking to be
effective.

In this work, we focus on solutions and methodologies
to improve secret hiding. In fact, the current solutions that
implement the hiding technique make significant sacrifices
in a number of important areas. Some significantly increase
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the performance, power or area of the system to mitigate an
attack [1, 3, 7, 17, 20, 24, 25]. The overheads in performance
and power reach up to 300%, while the area can be twice
the size of the original baseline core. Other solutions either
lack generality [50] or require compiler support [10]. In
general, we observe that no one single solution offers a com-
petitive package that provides high-levels of security with
minimal impact on the performance, power, design cost or
compatibility of the system.

With this work, we aim to overcome these limitations of
previous hiding techniques. We introduce a new countermea-
sure that leverages the scheduling information of dynamic
instructions in an out-of-order processor to break the correla-
tion to physical parameters with minimal overhead (3.7% on
performance, 1.1% on power and 0.7% on area). To imple-
ment our proposed hiding technique in an efficient way, we
propose an instruction scheduling technique that monitors the
execution of an application and intelligently randomizes the
issue of instructions to produce different instruction sched-
ules in every loop without affecting the performance. More
specifically, we add a low-cost structure (Slack Unit) in the
processor pipeline that records the time difference between
an instruction’s operand production (slack) and uses it to
inject a random artificial delay (that is no larger than this
original slack) to randomize the issue of non-critical instruc-
tions. The result is a low-overhead (both in energy and area,
as well as performance), general-purpose and hardware-only
technique that obfuscates instruction execution to break the
power consumption correlation that is normally observed by
the adversary.

In this paper we make the following contributions:

• A general-purpose out-of-order core design that pro-
vides a significant security improvement (34× with an
advanced adversary, and 261× when the attacker is us-
ing basic methods) against power analysis attacks to
all executing applications with minimal power and area
overheads (1.1% and 0.7% respectively);

• A dynamic instruction scheduling technique that intel-
ligently combines instruction slack with randomness
to avoid significant performance degradation (less than
3.7%), while strengthening the security of the system;

• An advanced, comprehensive security evaluation of the
proposed solution. We present three different security
evaluation techniques in an attempt to raise the bar for
architectural security evaluation.

This paper is structured with an overview in Section 2 and
describe the proposed architecture in Section 3. In Section 4
we outline our proposed evaluation methodology and in Sec-
tion 6 we present our findings. In Section 7 we outline the
state-of-the-art and conclude with Section 8.

2. MOTIVATION AND OVERVIEW
Power analysis attacks exploit the synchronization of in-

struction execution and its correlation with power consump-
tion to uncover secret information from a running application.
A power analysis attack is performed by collecting a set of
power traces from a processor during victim application ex-
ecution. The number of power traces required to reveal this

INST 2

INST 0

INST 1

t0

t1

Slack = abs(t0 - t1)

Figure 1: Computing slack for instructions. The slack
for INST 2 is the absolute difference between the time
that INST 0 and INST 1 produce their result.

secret information depends on how secure the processor is,
where regular patterns can more easily be used to extract this
data. Using statistical analysis, the adversary correlates the
power consumption with the executed instructions and the
data being processed to uncover the secret information of the
application. Such attacks are effective due to the determinis-
tic behavior of the processing units, and are possible because
the adversary can reason about the processor’s behavior with
a relatively small set of power measurements. As we show
later, and as demonstrated by previous works [33], even mod-
ern general-purpose out-of-order processors demonstrate a
high level of regularity, making them relatively easy to attack.

A common countermeasure for these types of attacks is to
execute instructions in an unpredictable way that makes it dif-
ficult for the adversary to correlate the observed power with
the code being executed. Many solutions have been proposed
in this direction [1, 3, 7, 10, 17, 20, 24, 25, 50], however, most
of them are application-specific, target simple dedicated-to-
encryption hardware, or do not apply generically to processor
platforms. Such solutions also tend to result in large per-
formance and/or power overheads or require significantly
more hardware to implement. One of the biggest challenges
in designing secure processors is finding efficient generic
solutions that can protect all applications without affecting
application performance.

In this work, we focus on the general case and target high
performance out-of-order general-purpose processors. To
this end, we identify three major requirements needed to suc-
cessfully design both a secure and efficient general-purpose
processor: (1) desynchronize the instruction execution (cre-
ate non-deterministic behavior) to increase the noise in the
collected power traces without affecting the performance, (2)
design a generic solution that allows for secure execution
of all running applications, and (3) implement an efficient
design that demonstrates minimal power and area overheads.

The key insight of this paper is that to efficiently offer
security in a general-purpose processor without affecting its
performance we must randomize the ordering of instructions
that are off the critical path of the execution. As explained
earlier, increase in security can result from randomizing the
instruction execution order. In this work, we introduce ran-
domization by delaying instruction issue time. Doing so
desynchronizes the execution, enables non-deterministic be-
havior, and therefore increases the noise as seen in the power
measurements. Consequently, the added noise makes it harder
for the adversary to find the highly distinguishable statisti-
cal dependencies that will uncover secret information. To
maintain baseline performance however, reordering must be
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Figure 2: The microarchitecture of PARADISE.

done only on non-critical instructions. In this work, we define
criticality by the time the input operands of an instruction are
produced. In the example of Figure 1, instruction INST 2
has two input operands that are produced at different times.
Assuming that INST 0 produces its output earlier than INST
1 then, in this pair of instructions, INST 0 is non-critical be-
cause delaying its execution until INST 1 produces its output
will not change the starting time of INST 2. Delaying INST
1 however, will delay the execution of INST 2 therefore, we
consider INST 1 a critical instruction.

Our proposed solution injects a delay only to non-critical
instructions and within certain timing boundaries that will
minimize performance overheads. We call this time margin
slack. The slack is defined as the time difference between the
generation of an instruction’s operands. In the example of
Figure 1, INST 0 and INST 1 produce their data for INST 2
at time t0 and t1 respectively. The absolute difference of the
two times (abs(t0− t1)) is the slack for these two instructions.
If we assume that t1 > t0, then INST 0 is considered to be
non-critical for the execution of INST 2 and this information
will be saved for the next time we execute this instruction.
At that point, a random delay, not larger than the slack, will
be introduced to increase the issue time of INST 0. This in
turn increases instruction desynchronization, making it more
difficult for an adversary to extract secret information.

Note that, although throughout this paper we refer to power
analysis attacks only, the proposed technique is also applica-
ble to other side channels that use similar attack methodolo-
gies like EM and timing attacks.

3. PARADISE MICROARCHITECTURE
In this section, we present an efficient general-purpose pro-

cessor that detects the slack and randomly delays non-critical
instructions to desynchronize the execution without affecting
the critical path and successfully maintaining high perfor-
mance. Non-critical instructions are delayed before being
issued to the execution units to randomize their execution
and their access to the register file or memory. To achieve
this, we propose PARADISE, an out-of-order processor that
implements a novel secure instruction scheduling policy.

Figure 2 shows the microarchitecture of PARADISE. It
is built on top of SonicBoom [51], a RISC-V out-of-order
core with a 7-stage pipeline. PARADISE implements a new
structure called the Slack Unit that dynamically records the
slack of instructions and communicates the appropriate delay
to be injected to selected non-critical instructions. The Issue
Queues (IQs) and the out-of-order scheduler are updated to
communicate instruction information to the Slack Unit and

PC (12 bits) Slack (5 bits) Stable (1 bit)

0x1210 10 0

0x1220 5 1

0x1230 0 1

… … …

PC (12 bits)

0x1400

0x1410

0x1420

…

PC (12 bits) Non-critical PC offset (8 bits)

0x1310 192

0x1320 4

0x1330 8

… …

Non-Critical Table (NCT)Critical Table (CT)Destination Table (DT)

Figure 3: The Non-Critical Table (NCT) stores non-
critical instructions and their slack, the Critical Table
(CT) stores critical instructions and the Destination Ta-
ble (DT) stores the currently dispatched instructions.

delay the issuing of instructions that were previously injected
with a delay respectively. These additions don’t affect the
pipeline stages of the processor as they are parallel opera-
tions that execute seamlessly with the rest of the processor
operations. Hence, PARADISE retains the frequency of the
baseline SonicBoom core.

A dispatched instruction queries the Slack Unit, using its
PC, and in case of a hit a delay, is injected to the instruction
and the scheduler is notified that the current instruction will
be issued with a delay (step 1 ). The delay is applied only
after all its operands are produced. When an instruction is
issued for execution, the Slack Unit stores its producers and
the new slack between them (step 2 ).

3.1 Slack Unit
The Slack Unit is built using three set-associative mem-

ory structures to store different runtime information of the
program, as shown in Figure 3. All structures use a Least
Recently Used (LRU) replacement policy. The structures are:

• Destination Table (DT): Holds the instructions that
are being issued and their non-critical producer. The
DT is queried by issued instructions to check whether
their non-critical producers are the same in different
appearances;

• Non-Critical Table (NCT): Holds the non-critical in-
structions and their corresponding slack. For perfor-
mance reasons, we also use these entries to indicate
whether the instruction has been consistently a non-
critical instruction (stable). If so, we use the stored
slack as an upper bound for selecting a random delay
for the corresponding instruction;

• Critical Table (CT): Holds a list of instructions that
were marked as critical. This is necessary in order to
handle criticality conflicts in cases where an instruction
is a critical producer for an instruction but a non-critical
producer for another.

In our experiments with several encryption applications
(AES-128 engine, SHA3, RSA, etc.), we found that an 8-
bit offset is sufficient to represent the PCs of non-critical
instructions in the DT because the PCs of instructions are not
far from their dependent instruction PCs.

3.2 Criticality and Slack Detection
As explained in Section 2, slack is defined as the time dif-

ference between the production of an instruction’s operands.



Assuming the same example of Figure 1, the slack of
instruction INST 2 will be the absolute difference of the
times that its producers (INST 0 and INST 1) will return their
result, represented by the Equation 1.

slack(INST 2) = abs(t0− t1) (1)

When a new instruction is issued, an entry is allocated for
it in the Destination Table (DT). When the same instruction
completes its execution, the Slack Unit detects the criticality
it produces and calculates the slack. The critical instruction
is stored immediately in the Critical Table (CT). At the same
time the Non-Critical Table (NCT) is checked and if the
current critical instruction matches with a previous NCT entry,
the entry is dropped as the critical status supersedes. Before
storing the non-critical instruction we must first query the CT
for possible criticality conflicts. A criticality conflict occurs
when an instruction is a producer for two or more instructions
and its criticality status is different for each one of them. In
this case the producing instruction is not stored in the NCT.
In the absence of a conflict with the CT, the producer will be
stored in the NCT table coupled with the calculated slack and
marked as not stable. If the instruction was already stored
in the NCT and the new slack is smaller than the previously
stored one, we update the entry and add the new (smaller)
slack. When an issued instruction hits the DT (indicating that
it appeared before), we verify that the criticality status of its
producers is the same and update the non-critical status in the
NCT to stable. If their criticality status changed, we make
the appropriate changes in all Slack Unit structures.

Although false hits in the Slack Unit can happen when
context-switching processes with the same PCs, solutions
exist (flushing the Slack Unit on context switches, or tagging
tables with process-specific information), but the evaluation
of these solutions fall outside the scope of this work.

3.3 Delay Injection
To find whether a newly dispatched instruction is to be

reordered, the Slack Unit is queried (specifically the NCT)
with its PC and in case of a hit, the appropriate delay is
returned and injected to its issue slot. This delay is only
applied just before the instruction is marked by the out-of-
order scheduler as ready to execute. That is, after all its input
operands have been produced. As soon as its operands are
produced, the instruction will be marked to wait for another
delay number of cycles. If the delay is marked in NCT as
stable, it will be used as an upper bound to select a random
value between 0 and the stable delay. If the delay is not
stable, we label this delay as being in the the unstable phase,
and we don’t randomize this delay. This is done to add an
additional layer of randomization in the desynchronization
of the execution. However, the delay will still be used as
is, without randomization, if the slack is unstable to avoid
adding unnecessary performance overheads in the execution.
Note that the Slack Unit is constantly learning to determine
the stable delay.

3.4 Example
Figure 4 shows an example of how we detect the criticality

and slack of instructions and how we inject a delay on non-
critical instructions to desynchronize the execution. When
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INST 1 0
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Figure 4: Slack detection and delay injection example.

INST 2 is issued in the first round, we detect the completion
time for each of its input operands and using Equation 1 we
calculate the slack (8 cycles). INST 0 is the critical instruction
that we can’t delay as it finished last and INST 1 is marked
as non-critical with a slack of 8 cycles. Because INST 1 is
still unstable, in its next appearance (second round) we inject
it with the slack time as is. We expect that the new slack of
INST 2 should now be 0 as INST 1 still needs 8 cycles to
complete. However, practically we can find that INST 1 took
10 cycles to finish in this round (instead of the 8 cycles that we
injected as a delay). The reason this happens is the backward
dependencies of INST 1 to previous instructions that might
have also been delayed. This is a common occurrence for all
instructions that appear for the first time. This unstable delay
slack injection occurs during the unstable phase.

During this unstable phase, the instruction is detected as
unstable and the Slack Unit records the slack of INST 1 using
Formula 2.

slacki
update = slacki

old− slacki
new (2)

The new slack of instruction i (slacki
update) will be the differ-

ence between the old slack (slacki
old) and the new (slacki

new).
When the unstable phase is over in the third round, i.e., the
injected delay will not change the criticality of the consumer
(INST 2 in Figure 4) anymore, the instruction will be marked
as stable and the injected delay thereafter (fourth round) will
be randomized with the updated slack being the upper bound
of the random delay. This randomization introduces more
noise into the power measurements, thus increasing the secu-
rity of the system.

4. SECURITY EVALUATION
METHODOLOGY

In this section, we provide a detailed description of the se-
curity evaluation used in this work. First, we briefly introduce
the power analysis attack for the AES algorithm. Next, we
discuss the dangers of using simple pass-fail security evalua-
tion methods that many previous studies base their work upon.
Finally, we describe the security framework and metrics used
for analysis of our proposed design.

4.1 Power Analysis Attacks



One of the goals of a power analysis attack is to reveal the
secret keys used in encryption algorithms by observing the
power consumption of a processor. To accomplish this, the
adversary collects a large set of power traces from the core
during encryption processing to examine and detect data and
power dependencies. In this section, we take a look at the
AES-128 algorithm as an example of how to recover secret
keys from a power trace.

In the first round of the AES-128 algorithm, a plaintext
(in this example, a 16-byte input to the algorithm that will
be encrypted) is loaded byte by byte and XOR-ed with the
secret key to form the initial state of the ciphertext (the 16-
byte encrypted output of the algorithm). Equation 3 shows
the SubByte step that is applied to the initial state of the
ciphertext, which is also called an Sbox operation.

In = Sbox[Xn⊕Kn] (3)

In Equation 3, In is the nth byte of the intermediate value after
the Sbox operation, Xn is the nth byte of the plaintext, and Kn
is the nth byte of the secret key. The Sbox is a look-up table
that takes a byte as input and substitutes it with another byte.
For this attack, the Sbox is public and the plaintext (Xn) is
known to the adversary.

The overall modus operandi of a typical power analysis
attack targeting a small part of the key or subkey1 is shown in
Figure 5. First, the adversary needs to get a power model re-
flecting the power consumption behavior of the device. This
can be done using a priori assumptions on leakage behav-
ior like Hamming weight/distance model [12] (better known
as unprofiled attack), or by trying to characterize the actual
model (i.e. profiled attack), using, for example, Gaussian tem-
plate or supervised machine learning. Using this model, the
adversary only needs to try all 28 possible values for the secret
key byte and examine if the computed intermediate value has
a high statistical dependency with the collected power mea-
surements. The attack outputs a probability for each of the 28

guesses to be correct, and is successful if the most likely one
corresponds to the actual key. This effectively reduces the
brute force attack complexity from 2128 to 212(16 bytes×28)
when using a divide and conquer methodology. Many dif-
ferent statistical distinguishers, or attack tools, have been
introduced in literature, with Kocher’s Differential Power
Analysis (DPA [28]), Correlation Power Analysis (CPA [12]),
Mutual Information Analysis (MIA [9]) and the maximum
likelihood template [15, 42] being some examples. In the rest
of Section 4, and independently of which statistical distin-
guisher is used, we will refer to DPA as any attack taking
advantage of varying plaintext. This includes, for example,
the aforementioned DPA and CPA.

4.2 Limitations of Simple Pass-Fail Tests
T-test: The order of leakage is defined by the statistical mo-
ment in which the meaningful information depends. For
example, first-order (respectively second-order) leakages ex-
tract information in the mean (respectively variance/co-variance).
A first-order secure masking countermeasure ensures that no

1Typically, for AES, the subkey is one byte, where each byte of the
key is attacked independently.

Device under 
Attack Adversary

Collecting Power 
Traces

Computing Power 
Model

Comparing with Statistical 
Distinguisher

Key Recovery

Figure 5: Flow of Differential Power Analysis (DPA) at-
tacks. Power traces are collected from the device un-
der attack and the adversary tries to compute the power
model. A statistical distinguisher (like correlation, differ-
ence of means, etc.) is used to recover the secret key.

information lies in the mean of side-channel traces, forc-
ing an adversary to extract information in (at least) the vari-
ance and co-variance. The Test Vector Leakage Assessment
(TVLA [21]) methodology was introduced to detect the pres-
ence of this first-order leakage for masked implementations,
and can be extended for higher orders [16]. That is, a T-test
failure shows the existence of such leakage, while a success
can only state that no such leakage was found for a given
number of measurements. However, it has since often been
used as a pass-fail method to evaluate the resilience of an
implementation, where the hidden assumption is that a T-test
failure with a total of Q measurements roughly translates to
security up to Q measurements. However, such an assump-
tion has been shown to be incorrect [45]. That is, the standard
T-test should only be used to show the presence of first-order
leakage when the null hypothesis is rejected. However, no
conclusion should be made when it is not the case. As a
direct consequence, using the T-test for the hiding style of
countermeasure, where leakages would exist at first-order,
should be avoided.

Fail/success unprofiled CPA: The strengths and weaknesses
of unprofiled CPA lies in its assumptions. On one hand, it is
designed to process one time sample at a time (also known
as univariate leakage [45]). While one can combine time
samples together before performing CPA (i.e. multivariate
attack [45]), doing so is sub-optimal. On the other hand, CPA
assumes some leakage model. For these reasons, CPA is of-
ten a good security estimate for unprotected implementations
where the side-channel traces are well aligned and where the
power model is well known (e.g. Hamming weight/distance).
However, this no longer holds when the type of leakage di-
verge from these assumptions. That is, an implementation
that changes the underlying leakage model (such as power
balancing [24]), or that introduces jitter or misalignement
from one measurement to another, will drastically drift apart
from these hypotheses and subsequently makes CPA sub-
optimal. In other words, a failed CPA under sub-optimal
assumptions does not provide a sound security evaluation. A
direct result of the use of this method will be a false sense
of security (a higher-than expected security result), while a
more appropriate attack (which exploits a well characterized
leakage model or apply measurement alignment/processing
techniques) might achieve key recovery with significantly
fewer observations. In the next subsection, we propose an
evaluation framework which also considers powerful adver-



sary capable of applying the right leakage model and process-
ing techniques to exploit the available leakage in an optimal
manner.

4.3 Proposed Evaluation Framework
The limitations of the previously discussed methods can

be summarized as using weak or incorrect adversarial as-
sumptions. As previously shown in Figure 5, the two main
ingredients for a power attack are the leakage model and the
statistical distinguisher used. The further the model is from
the actual leakages from the device, the worse the attack will
be. This issue typically happens when using a Hamming
model for power balancing, for example, which inherently
changes the leakage model. On the other hand, as methods
such as CPA are not meant to combine leakages together, they
are less optimal for multivariate attacks compared to template
attacks [15]. As a result, evaluating the security of a device
with the wrong model and method can lead to a false sense
of security, while another method could succeed using fewer
measurements. This can be mitigated by considering stronger
adversarial capabilities, eventually up to a potentially non-
existent (extremely strong) adversary in order to approach a
lower-bound (conservative) estimate of security guarantees.

In this work, we will illustrate this by providing different
levels of security analysis for three types of adversaries, that
we call basic, educated, and advanced. First, in order to
compare our work to existing literature, the basic evaluation
considers an adversary that simply applies standard CPA with
a Hamming weight model on the Sbox output [12]. Sec-
ond, as a part of the security brought by our countermeasure
comes from desynchronization, an educated evaluation will
be performed with a CPA analysis with the same model, addi-
tionally pre-processing traces to defeat countermeasures with
alignment techniques such as integrating the leakage over
different time samples. This simple method aims to show
how basic knowledge of the implementation and a simple
attack twist can greatly change the evaluation outcome (ef-
fectively demonstrating a lower security guarantee). Finally,
the advanced evaluation aims to approach the lower security
bound (a conservative security estimate) by assuming an ad-
versary adopting profiled attacks. That is, we will first take
advantage of a profiling (or training) set in order to mount
a multivariate template attack [15] augmented with profiled
Principal Component Analysis (PCA) for dimensionality re-
duction [6]. PCA applies a linear transformation that projects
high-dimensional data into a low-dimensional space while
preserving the data variance, by computing the eigenvectors
of the co-variance matrix. The training or profiling phase
with PCA allows an adversary to learn the precise leakage
model and better characterize the underlying countermeasure,
leading to a confident lower-bound on security.

4.4 Security Metrics
As the divide-and-conquer approach allows one to attack

each byte of the key independently, we target an attack with
only one key byte without loss of generality. For all three
attack methodologies, the resulting vector of 256 probabili-
ties/scores for each key guess is denoted by p. In our eval-
uation, we will compute the security using the following
metrics:

Table 1: System configuration.
Parameter Value Parameter Value
RF/Fetch Buffer/ROB 128/24/96 entries L2 Cache 4 MB, 8-way set assoc.
Issue Queue 3×8 entries Bus Protocol AXI
Execution Units 5 (1 MEM, 3 ALUs, 1 FPU) *(PARADISE) DT 208 B, 4-way set assoc.
Branch Predictor Next-line, backing predictor *(PARADISE) CT 144 B, 4-way set assoc.
Cache line size 64 B *(PARADISE) NCT 192 B, 4-way set assoc.
L1-I and L1-D Caches 32 KB, 8-way set assoc.

Key rank (byte): Given the probability/score vector p result-
ing from an attack, the rank of the key (byte) is given by the
number of key candidates having a higher probability than
the correct key.

Guessing entropy [46]: For a given key byte k, the guessing
entropy (GE) is the average key byte rank within its vector
of probability p. We define by rank(p,k) the function that
returns the rank of the subkey k within the vector p. From
a set of na independent attack result vectors pi, Equation 4
allows one to compute the guessing entropy.

GE =
∑

na−1
i=0 rank(pi,k)

na
· (4)

The use of guessing entropy provides more information
than the commonly used measurement to disclosure (MtD)
metric [30]. First, it provides averaged information over
several independent attacks. This minimizes the over- and
under-estimation of the actual security, as a single experiment
could be an outlying result. Second, it additionally shows
the global key recovery progression instead of only reporting
the overall number of traces. Indeed, as these attacks belong
to the class of divide-and-conquer methodologies, one can
trade-off side-channel complexity for a computational one
and recover the key through enumeration before the rank
reaches one [38]. As a result, only looking at the number of
measurements required to recover the key can be misleading,
as the implementation might be broken with fewer traces with
some brute-force or key enumeration.

5. EXPERIMENTAL SETUP
We implement PARADISE on top of SonicBOOM [51],

an open-source RISC-V out-of-order processor. The config-
uration of the processor is shown in Table 1. We leverage
Galois Linear Feedback Shift Register (GaloisLFSR) func-
tion [31, 39] provided by Chisel [8] to randomize the stable
delay. The system time when we generated the core and the
runtime clock cycles are used together to generate a random
seed. This random seed is more secure than the default seed
(only runtime clock cycles) as it is almost impossible for the
adversary to know when the core was generated.

Apart from the baseline (SonicBoom) and PARADISE,
in this paper, we also implement three generic processors
to compare with the PARADISE implementation. For each
of these processors, we naively inject random delays (up to
8 cycles) by a given probability to match either the perfor-
mance of our PARADISE implementation (in the random-iso-
performance configuration), or the level of security protection
of our implementation (in the random-iso-security design).
The detailed configuration parameters of these processors and
all other processors that are used in security and performance



Table 2: Implementation of different processors.
Processor Name Platform Description

ooo-baseline SonicBoom Unprotected baseline out-of-order processor
io-baseline Rocket chip Unprotected in-order processor

PARADISE SonicBoom +
Slack Unit Secure instruction scheduling processor

random-iso-perf SonicBoom +
random delay

Delay injection probability is 5%
Try to match the performance of PARADISE

random-iso-security SonicBoom +
random delay

Delay injection probability is 20%
Try to match the advanced security evaluation of PARADISE

random-aggressive SonicBoom +
random delay

Inject random delay for all instructions
Naive and aggressive implementation

evaluation are described in Table 1 and Table 2.
Benchmarks. To determine the exact performance degra-

dation for the encryption application used in this study, we
run the AES-128 encryption engine with 2,000 plaintexts
both on SonicBoom and PARADISE. We then run the micro-
benchmarks provided by Chipyard [5] on the out-of-order
cores from Table 2 to evaluate the overheads as introduced
by our protection scheme and the random-delay injection
schemes for a set of general-purpose applications. The micro-
benchmarks consist of a basic set of applications designed to
test the functionality of the processor in different scenarios,
e.g., complex matrix computation, multi-threaded applica-
tions, sorting, Dhrystone, etc. Finally, we boot a full Linux
system on each core using FireSim [27] to run the the SPEC
CPU2017 benchmark suite. This allows us to observe the
performance of different processors in a more general envi-
ronment. However, because of limitations in FireSim, we
support only 10 SPEC CPU2017 benchmarks.

Area and Power. We leverage the Synopsys Design Com-
piler (DC) to synthesize the PARADISE and the SonicBoom,
both of which are generated by the default synthesizable Son-
icBoom configuration. Next, we use VCS to perform the
gate-level simulation on synthesized processors to generate
realistic gate activity. PrimePower is then used to generate
the power consumption of the processor by analyzing the
gate-level waveform and gate-level code.

Power traces simulation framework. We use a Ham-
ming weight leakage model to generate power traces. Equa-
tion 5 shows the estimated power at any given time of the
execution.

power(T ) =

0 @ inst : inst.WB= T

∑
inst

HW(inst) ∀ inst : inst.WB= T (5)

The write-back time of the instruction inst to the register
file is denoted by inst.WB. Also, HW(inst) is the Hamming
weight of the data that instruction inst writes to the register
file. We use the behavioral simulation of the SonicBoom core
to gather this information and generate the power traces. We
only use the updates to the register file to generate the power
traces since the register file in SonicBoom consumes much
more power than system and memory bus (33× more power
consumption for integer register file compared to system
and memory bus, and 61× more power consumption for
integer+floating-point RF).

To perform security evaluations, each implementation con-
sists of two sets of one million traces each. The first set
(attack set), is composed of a fixed key and randomly vary-
ing plaintext. The second set (profiling set), is composed of
randomly varying keys and plaintext that are known by the

adversary to perform advanced profiling methods.

6. EXPERIMENTAL RESULTS

6.1 Security Evaluation
To compare our work to the literature, we perform a ba-

sic evaluation, which performs a regular CPA without any
modifications. Next, we assume an adversary that knows the
desynchronization aspect of our countermeasure in order to
perform the educated evaluation. The adversary will now use
integration over the time samples to reduce the signal reduc-
tion coming from the desynchronization. This will show that
basic insight and twist from the adversary can greatly change
the security evaluation outcome and give a false sense of se-
curity. Finally, we present results of our advanced evaluation
that aims to approach the lower security bound by assuming
a strong profiled adversary. For each method we compare
the security benefits of all cores with their corresponding
ooo-baseline with respect to the same attack.

6.1.1 Basic evaluation
As a first analysis, we divided our 10 million attack traces

into 20 subsets, and performed a standard CPA on each of
them and average them to compute the guessing entropy. The
results are shown in Figure 6, and will be the main point
of comparison with other works. The x-axis corresponds to
the number of traces and the y-axis corresponds to guessing
entropy. A guessing entropy of 0 indicates that the correct
key is highest ranked (on average) and thus the attack is
successful.

As a first observation, we can observe the gap between io-
baseline and ooo-baseline sets, which respectively recovers
the key with 500 and 1,800 traces. This shows the simple
security benefit of using an out-of-order core instead of in-
order ones. Indeed, out-of-order core still provides some
randomness in the computation timings with a small secu-
rity benefit. As ooo-baseline corresponds to the unprotected
implementation on our out-of-order case study, we will use
it as a reference for our security benefits. First, we can see
that the PARADISE version of our countermeasure increases
the number of traces needed to 470,000 when using standard
CPA. When considering basic evaluation, this shows a secu-
rity of 261× ooo-baseline. However, using random delays
with the same performance as PARADISE, shown by the
random-iso-perf performances, only requires 22,000 traces
for key recovery, only corresponding to a benefit of 12×.
This shows that, when considering standard CPA, our method
shows greater security benefits than random delays with over-
heads. Finally, random-aggressive only requires 220,000
traces, which corresponds to a security benefit of 122×, and
is less than the PARADISE implementation. While this can
look surprising at first, it can be explained when looking at
the two security benefits brought by our countermeasure. As
explained in Section 2, the security mainly comes from (1)
desynchronization and (2) more randomness in the register’s
content. The random-aggressive implementation focuses on
increasing the desynchronization, without much change in
the register content randomization, which is higher in the
case of the PARADISE one.
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Figure 6: Results of the basic security evaluation. The x-
axis corresponds to the number of traces, and the y-axis
corresponds to guessing entropy.

6.1.2 Educated evaluation
As a second evaluation, we illustrate how some basic

knowledge on the type of implemented countermeasure, and a
simple optimization of the attack itself can drastically change
the outcome. As a big part of security brought by our coun-
termeasure is brought by desynchronization, standard CPA
being a univariate attack is inherently suboptimal. Instead,
we now assume an adversary with some insight that simply
combines sets of N consecutive time samples on the trace
together (time integration) prior to performing the CPA to
reduce the effect of desynchronization. For each implementa-
tion, we tested values of N = 20,50,100,150,200, for which
the best corresponding results are shown in Figure 7. Again,
the x-axis corresponds to the number of traces and the y-axis
represents guessing entropy.

We do not report any results for io-baseline and ooo-
baseline implementations, as basic evaluation was better (in
term of number of traces required) for non-existent and lim-
ited desyncronization in io-baseline and ooo-baseline respec-
tively. For that reason, we will still use the numbers from
the basic evaluation for these two implementations. However,
we can see that the educated evaluation drastically reduces
the required nu ()mber of traces for both PARADISE and
random-aggressive implementations, which now respectively
broken with 22,250 (12×) and 20,000 (11×) traces instead of
470,000 (261×) and 220,000 (122×) respectively. This sim-
ple attack optimization shows the danger of using sub-optimal
attack strategies for security evaluations. Interestingly, minor
benefits are seen for random-iso-perf implementation where
21,000 traces are now required instead of 22,000.

6.1.3 Advanced evaluation
Our last evaluation considers a powerful adversary being

able to profile the leakages using, for example, a copy or clone
of the device under attack for which she has complete control.
First, we use profiled CPA [19] in order to identify leaking
features in the trace. The results are shown in Figure 8, where
the left part shows the results for the ooo-baseline and the
right part shows results for random-aggressive implementa-
tions. The x-axis corresponds to the time samples, while the
y-axis shows the correlation coefficient.

As we can see, leakages are clearly identified with several
peaks for the ooo-baseline implementation. We observed
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Figure 7: Results of the educated security evaluation.
The x-axis corresponds to the number of traces, and the
y-axis corresponds to guessing entropy.
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Figure 8: Leaking regions using profiled CPA for ooo-
baseline (left) and random-aggressive (right). The x-axis
corresponds to the time samples, and the y-axis corre-
sponds to correlation coefficient.

similar behavior for the io-baseline and random-iso-perf one.
For these two implementations, we thus selected all time sam-
ples having a correlation above 0.005 as valid attack samples.
However, the leaking samples for the random-aggressive
implementation are less clearly identified, as shown by the
Gaussian shape correlation trace covering around 200 time
samples. This was similarly observed for PARADISE and
random-iso-perf implementations, which is the result of the
desynchronization brought by the countermeasures. In that
case, we selected all time samples happening before and after
the peak regions as valid.

Once the points of interest are selected, we perform a pro-
filed Principal Component Analysis (PCA) [6] in order to
further reduce the dimensionality and to project the sample
into a more informative space. The result of the projection
is then fed into a multivariate template attack [15]. For each
implementation, we use a different number of principal com-
ponents, and show the best results for each of them in Figure 9.
We additionally show the results for the random-iso-security
implementation, having similar security performances as the
PARADISE one (tailored specifically in the case of the ad-
vanced evaluation).

We can see that the advanced method produces better re-
sults in term of attack power than the basic and educated
ones. First, io-baseline implementation now only requires
125 traces instead of 500 when using standard CPA. Second,
ooo-baseline implementation is now broken with only 400
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Figure 9: Results of the advanced security evaluation.
The x-axis corresponds to the number of traces, and the
y-axis corresponds to guessing entropy.
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Figure 10: Performance degradation compared to ooo-
baseline core and area/power efficiency using different
parameters. W and S represent number of ways and sets
respectively, the #entries are equal to W×S, which denote
the total number of entries of each table in the Slack Unit.

traces, which we will now use as comparison reference as
opposed to 1,800 for basic evaluation. Next, PARADISE
implementation now only requires 13,500 traces, showing
a security gain of 34×. However, random-iso-perf is now
broken with 2,200 traces, hinting that our countermeasure is
5.5× more secure than random delays when considering a
strong adversary. Interestingly, as opposed to previous results,
the random-aggressive implementation now requires 15,000
traces, which is more than the PARADISE one with a benefit
of 38×. Indeed, as we now profile the leakage model, the
effect of the vertical noise is now reduced, which has more im-
pact on the PARADISE implementation. Overall, this shows
that using the wrong or too sub-optimal attack against a given
countermeasure can lead to a false sense of security. Indeed,
from standard CPA to multivariate templates, the number of
required traces has been divided by 35 for the PARADISE
implementations, and by 15 for the random-aggressive one
due to wrong model assumptions. However, the number of
traces unprotected ooo-baseline implementation was only di-
vided by 4.5, as the model was already fitting more. From
these observations, we highlight as a cautionary note when
presenting results from two different implementations, that
it can only reflect the adversary’s assumptions. On that mat-
ter, it is more conservative to apply powerful attacks, thus
assuming a strong adversary.

6.2 Performance Evaluation
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Figure 11: Performance of different cores normalized to
ooo-baseline core. *We run all SPEC CPU2017 bench-
marks compatible with FireSim.

We evaluated several configurations of PARADISE by
running an AES-128 encryption engine with 2,000 plain-
texts to find the best combination of performance, power and
area. Figure 10 shows the best combination of power and
area efficiency to be a 4-way and 16-set Slack Unit. Power-
performance and area-performance efficiency shown in Fig-
ure 10 are calculated as overheadper f

overheadpower
and overheadper f

overheadarea
. We use

the highest number for overheadper f because in this scenario
PARADISE is going through a longer unstable phase and
although it injects more unstable delays, it collects more run-
time information to improve in later iterations. Therefore,
more instructions will be reordered and the desynchronization
of the execution increases with the overall security improved.
The rest of our performance results were taken with all struc-
tures in the Slack Unit being 4-way with 16 sets.

Figure 11 shows the performance of PARADISE (nor-
malized IPC to the ooo-baseline) on two different sets of
benchmarks. At the bottom, the RISC-V bare-metal mi-
crobenchmarks show an average overhead on PARADISE of
2.6% (maximum is 4.8 %). For the random-iso-perf, random-
iso-security, and random-aggressive implementations we get
2.7%, 11%, and 28% overheads respectively. However, these
applications don’t have a real software stack and some of
them cannot generate a stable result due to the limited num-
ber of instructions. For this reason we evaluated a subset of
SPEC CPU2017 benchmarks (top of Figure 11). We could
only evaluate those applications that were compatible with
FireSim. The average overhead of PARADISE in this case
is 4%, while for random-iso-perf, random-iso-security, and
random-aggressive it is 4.2%, 12%, and 29% respectively.
For all the applications evaluated, the average performance
overhead of PARADISE is 3.7%. An in-depth analysis of
the performance results showed that the overhead produced
comes mostly from the unstable phase were we inject an
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Figure 12: Power and area overheads of PARADISE.

unstable delay. As soon as the criticality of the instructions
and the slack become stable, after a few iterations of the algo-
rithm, the performance of the processor returns to its baseline
levels.

6.3 Power and Area Overheads
Figure 12 shows the power and area of PARADISE com-

pared to the ooo-baseline. The Slack Unit and the GaloisLF-
SRs (for randomizing the delay) introduces a negligible over-
head of 1.1% on PARADISE over the baseline core. In mat-
ters of area, the total overhead of PARADISE compared to
the ooo-baseline is 0.7% that comes from the Slack Unit, the
and GaloisLFSRs, the delay controller on every issue slot and
the wire connections for all the new components.

7. RELATED WORK
Table 3 summarizes state-of-the-art countermeasures, and

compares their reported performance, power, area, security
evaluation and other implementation-based features.

7.1 Power Analysis Attack Countermeasures
Obfuscated execution. One solution to overcome power

analysis attacks is to obfuscate the execution and operate on
the data in an obfuscated form [32]. A solution for encryption
engines implemented on a CGRA is proposed in ARDPE [20].
To make power and data correlation more difficult between
different encryption rounds, the register usage of instructions
and the data going to the encryption engine is randomized.
Although ARDPE is one of the lowest overhead techniques
(less than 10% performance and area overhead), it specifically
targets encryption engines that take plaintexts as input. Com-
piler support and more hardware structures will be required
to apply this technique for general-purpose processors. More
generic solutions have been proposed with [1, 7] aiming to
secure general-purpose RISC-V in-order cores. In [1], the
authors propose a hardware-software co-operative technique
to detect the leakiest moments during encryption, and using
a software controller to electrically disconnect the core from
the system. During the disconnection, the power traces will
show no correlation with the data that is being processed,
however this technique can increase execution time by as
much as 2.7×. PARAM [7] is another solution that investi-
gates the leakiest modules of a RISC-V design and addresses
them separately with appropriate countermeasures. A part
of the leakages they work on are the translations in EDA
tools (like Bluespec compiler [35]), hence they modify the
RTL code to prevent these leakages. They also address the
leakages of the data in the register file and buffers by ob-

fuscating and de-obfuscating the data upon each access. In
other words, they always keep the data in the obfuscated
form and de-obfuscate it when they need to process the data.
The authors do not report the performance impacts of their
countermeasures for the leakage they address.

Random code injection. In RIJID [3], the authors pro-
pose a hardware-software co-design that inserts random (ir-
relevant) instructions in the execution at random intervals.
They use the compiler to detect the regions of the code that
need protection, and the hardware injects random instructions
during the execution of the specified regions. Inserting real
instructions in the processor during normal execution results
in increased execution times. Specifically in RIJID, the per-
formance overhead is 30% over their non-secure baseline.
Others have adopted similar approaches with code injection
with similar outcomes [2, 4].

Random instruction shuffling. In Block Shuffler [10],
the authors propose shuffling independent blocks of instruc-
tions in a random order. In their hardware-software co-
operative design, the compiler detects the independent blocks
of the code and inserts shuffle instructions that allow the
shuffler unit in an in-order processor to generate a random
permutation of the order of instruction blocks and start fetch-
ing instructions based on that order. The reported overhead in
performance, power and area is negligible. The performance
overhead is low because different rounds of an encryption
algorithm can execute independently in any order without
any impact on the control flow and data flow. The proces-
sor only requires the knowledge from the compiler. The
granularity of the shuffling in this technique is an instruc-
tion block. In PARADISE, we shuffle the instructions in a
finer grained way and take advantage of the slack for each
instruction. These two techniques are orthogonal and can be
combined. However, the block shuffling technique requires
re-compilation and modifications in the code in order to in-
form the processor which instruction blocks are independent
and can be re-ordered. Also, this technique might not be as
effective in out-of-order cores, since these cores re-order the
execution of instructions for performance reasons and could
undo parts of the effects of block shuffling, especially when
the instruction blocks are much smaller than the instruction
window. There are also hardware- and algorithm-specific
shuffling techniques to overcome power analysis attacks [36].

Circuit-level protection. Power balancing techniques
try to minimize the side-channel leakage by balancing the
power consumption of the core at all times of the execu-
tion [13, 24, 34, 44, 47]. Previous work implements gate-level
masking that uses complex logic gates [37, 41]. However,
existing power balancing and masking techniques are not
generic for all encryption algorithms, and they have high over-
heads for performance, power, and area. Other works [50]
use a lightweight technique that combines power balancing
and hardware masking is proposed. However, it is specific
for AES engines that use a fixed key. Noise injection and
power isolation are other techniques that hide the interme-
diate values of encryption operations [17, 22, 25, 26, 48, 49].
The authors of ANSI [17] combine these two techniques to
implement a generic solution for encryption algorithms with
negligible performance overhead. In summary, each of the
generic solutions evaluated in this work demonstrate high



Table 3: Comparison of existing power attack countermeasures. *For each method we compare the security benefits
of each core to their corresponding unprotected baseline with respect to the same attack. Values of other works are
presented as reported; ’-’ for imprecise reporting or absence of reporting of the information. ‡ Evaluation reported as
negative and/or inconclusive tests that did not recover the key.

Paper Hardware Algorithm No Design Overheads* Security Evaluation* TechniqueAgnostic Agnostic Re-compile Area Power Performance Basic Educated Advanced

WDDL [24] VLSI 200% 300% 300% 128× - - Power Balancing
IVR [25] VLSI 100% 100% 0% ‡ - - Voltage Regulation
False-Key [50] VLSI 3% 0% 2% 187× - - Gate-Level Masking
ASNI [17] VLSI 60% 68% 0% 1000× 1000× - Noise Injection
Blinking [1] VLSI/SW - - 270% 10−100× 10−100× - Power Hiding
PARAM [7] µarch ∼20% - - ‡ - - Data Obfuscation
ARDPE [20] µarch 7.23% - 3.4% 4000× - - Data Randomization
RIJID [3] µarch/SW 2% 27% 30% ‡ - - Random Code Injection
Block Shuffler [10] µarch/SW 2% 1.5% 0.7% ‡ - - Coarse Instr. Shuffling

random-iso-perf µarch ∼0% 0.8% 3.8% 12× 12× 5.5× Fine Instr. Re-ordering
random-iso-security µarch ∼0% 0.4% 11% - - 34× Fine Instr. Re-ordering
random-aggressive µarch ∼0% 0% 29% 122× 11× 38× Fine Instr. Re-ordering
PARADISE (this work) µarch 0.7% 1.1% 3.7% 261× 12× 34× Fine Instr. Re-ordering

power and/or area overheads. In addition they are designed
for encryption-specific hardware only.

7.2 Security Evaluation
As discussed in Section 4, we consider three types of ad-

versaries for security evaluation: (1) a basic evaluation where
the adversary is given a completely wrong model which
gives a false sense of security, (2) an educated evaluation
where the given security model fits the type of countermea-
sure, and (3) an advanced evaluation where the adversary
extracts the actual leakage model. Our investigations show
that none of the papers in Table 3 perform the advanced
(profiling/multivariate/worst-case) analysis and most of the
reported analyses fall into the basic category.

WDDL [24] evaluates the effect of their technique using
basic CPA with Hamming model (HW for the unprotected
and HD model for protected devices) and claim 128× security
increase. However, using the Hamming model is inherently
flawed for power-balancing-like countermeasures, as now
the leakage does not correspond to the bit switch value any-
more [11]. For this countermeasure, the adversary has to
model the function f (x) that shows the consumption differ-
ence of x− x̄. This can be done using non-profiled linear
regression [42], or profiled attacks [15]. As a result, the
evaluation of this paper falls into the basic evaluation. The
False-Key [50] paper also suffers from the same issue as
the WDDL paper, since they use a Hamming model. Their
analysis is performed using basic CPA in two stages: (1)
targeting the false key at the Sbox output, and (2) targeting
the actual key during the re-computation phase which uses
power balancing. The security benefits are only brought by
the second phase. Moreover, they claim their countermeasure
is a masking technique, but all the leakages are first-order
from a statistical point of view. They do not take into ac-
count that an advanced adversary can reverse-engineer the
fixed pre-computed Sboxes and recover the secret key this
way. Hence, the security evaluation in this paper falls into
the basic category.

The security evaluation of the IVR [25] paper also falls into
the basic category. They use standard CPA and T-tests [16]
and report a 20× security increase. Since their countermea-

sure adds jitter, using basic univariate methods cannot be very
effective in recovering the secret key and it can be improved
by using methods like simple averaging. Moreover, the tests
on the protected implementation are negative (inconclusive)
which do not allow one to properly quantify the security im-
provement. For example, rank estimation methods [38] could
have been used to provide an improved security trend.

In PARAM [7], basic CPA is used for security evaluation.
They report that they break the secret key within 60K mea-
surements, while the protected implementation is resistant
with up to 1 million measurements. Due to the nature of
their countermeasure, evaluating the security with basic CPA
is good to see the effect of the presence of non-obfuscated
leakage. However, as explained for IVR, negative (inconclu-
sive) results are not sufficient to conclude security. More-
over, the security of the obfuscation itself is not investigated.
Therefore, we classify the evaluation of PARAM as basic.
ARDPE [20] paper also uses basic CPA for evaluation and it
falls into the basic evaluation category. They show 4000× se-
curity increase compared to the unprotected implementation.
However, their countermeasure adds desynchronization and
using basic CPA is a weak evaluation method which provides
a false sense of security, since an advanced adversary can
reveal the key with fewer measurements.

The security evaluations of ANSI [17] and Blinking [1]
papers fall into the educated category. ANSI uses basic CPA
and reports 1000× security increase. Since the effect of their
countermeasure is basically an SNR reduction, without any
changes on the power model, evaluating the security using
basic CPA is fairly adequate. The Blinking paper uses the
T-test and the sum of mutual information over all samples,
which shows a security increase of 10×-100× for different
implementations. They are also reducing SNR without any
changes in the power model. Hence, their security evaluation
is considered to be the educated model, just as the ANSI
paper. The authors of the RIJID [3] and Block Shuffler [10]
papers do not mount actual attacks to recover the secret keys.
For example in Block Shuffler [10], 100K traces are used to
attack the protected core with basic DPA attack and they are
not able to recover the key. But the authors do not provide
the actual number of traces required for a successful attack.



8. CONCLUSION
In this work we take on the challenge of designing an

efficient, secure and general-purpose processor that can pro-
tect all executing applications against side channel attacks,
without affecting their performance. We propose a secure,
fine-grained scheduling algorithm that dynamically reorders
non-critical instructions in a random but calculated manner
to desynchronize the execution and create non-deterministic
behavior that increases the measurement noise. To achieve
this, we exploit the time between operand availability of criti-
cal instructions (slack) to create high-performance random
schedules. In addition, we provide a comprehensive secu-
rity evaluation model that includes three security evaluation
standards to demonstrate more robust attacks. Our proposed
solution, PARADISE, offers a stronger security guarantee
than demonstrated in previous works, even when tested on a
more advanced and realistic security evaluation that complies
with the highest security standards. PARADISE improves
security against power analysis attacks by 34× to 261× with
power and area overheads of 1.1% and 0.7% respectively.
Moreover, our system achieves performance within 96%, on
average, of the baseline unprotected processor.
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Chisel: constructing hardware in a scala embedded language. In DAC
Design Automation Conference 2012, pages 1212–1221. IEEE, 2012.

[9] Lejla Batina, Benedikt Gierlichs, Emmanuel Prouff, Matthieu Rivain,
François-Xavier Standaert, and Nicolas Veyrat-Charvillon. Mutual
information analysis: a comprehensive study. Journal of Cryptology,
24(2):269–291, 2011.

[10] Ali Galip Bayrak, Nikola Velickovic, Paolo Ienne, and Wayne
Burleson. An architecture-independent instruction shuffler to protect

against side-channel attacks. ACM Transactions on Architecture and
Code Optimization (TACO), 8(4):1–19, 2012.

[11] Shivam Bhasin, Sylvain Guilley, Florent Flament, Nidhal Selmane,
and Jean-Luc Danger. Countering early evaluation: an approach
towards robust dual-rail precharge logic. In Proceedings of the 5th
Workshop on Embedded Systems Security, pages 1–8, 2010.

[12] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power
analysis with a leakage model. In International workshop on
cryptographic hardware and embedded systems, pages 16–29.
Springer, 2004.

[13] Marco Bucci, Luca Giancane, Raimondo Luzzi, and Alessandro
Trifiletti. Three-phase dual-rail pre-charge logic. In International
Workshop on Cryptographic Hardware and Embedded Systems, pages
232–241. Springer, 2006.
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FireSim: FPGA-accelerated cycle-exact scale-out system simulation in
the public cloud. In Proceedings of the 45th Annual International
Symposium on Computer Architecture, ISCA ’18, pages 29–42,
Piscataway, NJ, USA, 2018. IEEE Press.

[28] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power
analysis. In Annual international cryptology conference, pages
388–397. Springer, 1999.

[29] Chang Liu, Austin Harris, Martin Maas, Michael Hicks, Mohit Tiwari,
and Elaine Shi. Ghostrider: A hardware-software system for memory
trace oblivious computation. In Proceedings of the Twentieth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’15, page 87–101, New
York, NY, USA, 2015. Association for Computing Machinery.

[30] Stefan Mangard. Hardware countermeasures against dpa–a statistical
analysis of their effectiveness. In Cryptographers’ Track at the RSA
Conference, pages 222–235. Springer, 2004.

[31] George Marsaglia et al. Xorshift rngs. Journal of Statistical Software,
8(14):1–6, 2003.

[32] David May, Henk L. Muller, and Nigel P. Smart. Non-deterministic
processors. In Vijay Varadharajan and Yi Mu, editors, Information
Security and Privacy, pages 115–129, Berlin, Heidelberg, 2001.
Springer Berlin Heidelberg.

[33] Daniel S. McFarlin, Charles Tucker, and Craig Zilles. Discerning the
dominant out-of-order performance advantage: Is it speculation or
dynamism? In Proceedings of the Eighteenth International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’13, page 241–252, New York, NY,
USA, 2013. Association for Computing Machinery.

[34] Maxime Nassar, Shivam Bhasin, Jean-Luc Danger, Guillaume Duc,
and Sylvain Guilley. Bcdl: A high speed balanced dpl for fpga with
global precharge and no early evaluation. In 2010 Design, Automation
& Test in Europe Conference & Exhibition (DATE 2010), pages
849–854. IEEE, 2010.

[35] Rishiyur Nikhil. Bluespec system verilog: efficient, correct rtl from
high level specifications. In Proceedings. Second ACM and IEEE
International Conference on Formal Methods and Models for
Co-Design, 2004. MEMOCODE’04., pages 69–70. IEEE, 2004.

[36] S. Patranabis, D. B. Roy, P. K. Vadnala, D. Mukhopadhyay, and
S. Ghosh. Shuffling across rounds: A lightweight strategy to counter
side-channel attacks. In 2016 IEEE 34th International Conference on
Computer Design (ICCD), pages 440–443, 2016.

[37] Thomas Popp, Mario Kirschbaum, Thomas Zefferer, and Stefan
Mangard. Evaluation of the masked logic style mdpl on a prototype
chip. In International Workshop on Cryptographic Hardware and
Embedded Systems, pages 81–94. Springer, 2007.

[38] Romain Poussier, François-Xavier Standaert, and Vincent Grosso.
Simple key enumeration (and rank estimation) using histograms: an
integrated approach. In International Conference on Cryptographic

Hardware and Embedded Systems, pages 61–81. Springer, 2016.

[39] William H Press, H William, Saul A Teukolsky, A Saul, William T
Vetterling, and Brian P Flannery. Numerical recipes 3rd edition: The
art of scientific computing. Cambridge university press, 2007.

[40] Ashay Rane, Calvin Lin, and Mohit Tiwari. Raccoon: Closing digital
side-channels through obfuscated execution. In 24th USENIX Security
Symposium (USENIX Security 15), pages 431–446, Washington, D.C.,
August 2015. USENIX Association.

[41] Oscar Reparaz, Begül Bilgin, Svetla Nikova, Benedikt Gierlichs, and
Ingrid Verbauwhede. Consolidating masking schemes. In Annual
Cryptology Conference, pages 764–783. Springer, 2015.

[42] Werner Schindler, Kerstin Lemke, and Christof Paar. A stochastic
model for differential side channel cryptanalysis. In International
Workshop on Cryptographic Hardware and Embedded Systems, pages
30–46. Springer, 2005.

[43] Adi Shamir. How to share a secret. Communications of the ACM,
22(11):612–613, 1979.

[44] Danil Sokolov, Julian Murphy, Alexander Bystrov, and Alexandre
Yakovlev. Design and analysis of dual-rail circuits for security
applications. IEEE Transactions on Computers, 54(4):449–460, 2005.

[45] François-Xavier Standaert. How (not) to use welch’s t-test in
side-channel security evaluations. In International Conference on
Smart Card Research and Advanced Applications, pages 65–79.
Springer, 2018.

[46] François-Xavier Standaert, Tal G Malkin, and Moti Yung. A unified
framework for the analysis of side-channel key recovery attacks. In
Annual international conference on the theory and applications of
cryptographic techniques, pages 443–461. Springer, 2009.

[47] Kris Tiri, Moonmoon Akmal, and Ingrid Verbauwhede. A dynamic
and differential cmos logic with signal independent power
consumption to withstand differential power analysis on smart cards.
In Proceedings of the 28th European solid-state circuits conference,
pages 403–406. IEEE, 2002.

[48] Carlos Tokunaga and David Blaauw. Secure aes engine with a local
switched-capacitor current equalizer. In 2009 IEEE International
Solid-State Circuits Conference-Digest of Technical Papers, pages
64–65. IEEE, 2009.

[49] C. Wang, M. Yan, Y. Cai, Q. Zhou, and J. Yang. Power profile
equalizer: A lightweight countermeasure against side-channel attack.
In 2017 IEEE International Conference on Computer Design (ICCD),
pages 305–312, 2017.

[50] W. Yu and S. Köse. A lightweight masked aes implementation for
securing iot against cpa attacks. IEEE Transactions on Circuits and
Systems I: Regular Papers, 64(11):2934–2944, 2017.

[51] Jerry Zhao, Ben Korpan, Abraham Gonzalez, and Krste Asanovic.
SonicBOOM: The 3rd generation berkeley out-of-order machine.
Fourth Workshop on Computer Architecture Research with RISC-V,
May 2020.


	1 Introduction
	2 Motivation and Overview
	3 PARADISE Microarchitecture
	3.1 Slack Unit
	3.2 Criticality and Slack Detection
	3.3 Delay Injection
	3.4 Example

	4 Security Evaluation Methodology
	4.1 Power Analysis Attacks
	4.2 Limitations of Simple Pass-Fail Tests
	4.3 Proposed Evaluation Framework
	4.4 Security Metrics

	5 Experimental Setup
	6 Experimental Results
	6.1 Security Evaluation
	6.1.1 Basic evaluation
	6.1.2 Educated evaluation
	6.1.3 Advanced evaluation

	6.2 Performance Evaluation
	6.3 Power and Area Overheads

	7 Related Work
	7.1 Power Analysis Attack Countermeasures
	7.2 Security Evaluation

	8 Conclusion

