2024 1EEE International Symposium on High-Performance Computer Architecture (HPCA) ~/, O «

PREFETCHX: Cross-Core Cache-Agnostic
Prefetcher-Based Side-Channel Attacks

Yun Chen, Ali Hajiabadi, Lingfeng Pei, and Trevor E. Carlson
School of Computing, National University of Singapore
{yun.chen, ali.hajiabadi}@u.nus.edu, Ifpei@nus.edu.sg, tcarlson@comp.nus.edu.sg

Abstract—In this paper, we reveal the existence of a new class
of prefetcher, the XPT prefetcher, in modern Intel processors
which has never been officially detailed. It speculatively issues a
load, bypassing last-level cache (LLC) lookups, when it predicts
that a load request will result in an LLC miss. We demonstrate
that XPT prefetcher is shared among different cores, which
enables an attacker to build cross-core side-channel and covert-
channel attacks. We propose PREFETCHX, a cross-core attack
mechanism, to leak users’ sensitive data and activities.

We empirically demonstrate that PREFETCHX can be used
to extract private keys of real-world RSA applications. Fur-
thermore, we show that PREFETCHX can enable side-channel
attacks that can monitor keystrokes and network traffic patterns
of users. Qur two cross-core covert-channel attacks also see
a low error rate and a 122 KiB/s maximum channel capacity.
Due to the cache-independent feature of PREFETCHX, current
cache-based mitigations are not effective against our attacks.
Overall, our work uncovers a significant vulnerability in the
XPT prefetcher, which can be exploited to compromise the
confidentiality of sensitive information in both cryptography and
non-cryptography-related applications among processor cores.

I. INTRODUCTION

Decades of research in designing efficient and modern
processors has resulted in various performance enhancements
at the microarchitectural level, like out-of-order execution,
speculative execution, multi-core processing, caching, and
prefetching. However, in recent years there has been rapid
discovery of security vulnerabilities arising from these perfor-
mance enhancement techniques [7], [9], [10], [13], [16], [27],
[30], [35], [44], [46]. These vulnerabilities are exploited to
either infer a user’s private data and secret keys (in case of
side-channel attacks) or to stealthily transfer data in the system
(in the case of covert-channel attacks).

One of the prominent sources of information leakage in
modern processors are prefetchers since they can leave a
footprint of the data accessed by the victims, similar to caches.
The goal of prefetching is to bring the data closer to the core
if it has high confidence to be needed in the near future.
This technique can be implemented on either hardware [4],
[22] or software [20]. Recent attacks [7], [8], [12], [15], [18],
[19], [37], [42] exploit a variety of prefetching mechanisms
to leave persistent malicious and secret-dependent changes
in the system that can be later inferred by the attacker. In
this paper, we explore a prefetcher in Intel processors, called
eXtended Prediction Table (XPT), that is located in parallel
to the LLC. The XPT prefetcher is not documented in the

latest Intel official architecture manual [26] but only has a brief
functionality description in the HPC optimization manual [25].

In this paper, we first reverse-engineer the XPT prefetcher
and reveal its prefetching mechanism. We investigate the inter-
action of different cores through the prefetcher. Our analysis
has resulted in the first side-channel using the XPT prefetcher,
called PREFETCHX, which can be exploited in 3"¢ generation
Xeon processors! to effectively monitor the victim’s page
activities. This is achieved by deliberately mistraining the XPT
prefetcher on specific pages and subsequently examining the
prefetcher’s status. Consequently, the attacker can reconstruct
the victim’s sensitive information, like cryptographic keys.

Unlike many standard threat models that necessitate the vic-
tim and attacker to share the same physical core [7]-[9], [13],
[27], [35], [37], [42], [48], PREFETCHX enables cross-core
side-channel attacks. This substantially broadens the scope of
potential targets and amplifies the potential security impact.
In addition, the PREFETCHX attacks do not rely on the cache
subsystem; we do not rely on the caches as a source of leakage
nor as a primitive to check the prefetcher’s status. To the best
of our knowledge, we are the first to identify, explore, and
reverse-engineer the XPT prefetcher. This discovery highlights
the existence of hidden channels that could expose security
risks in processor architectures.

Our key contributions in this work are as follows:

o We uncover a briefly-mentioned prefetcher, named the
XPT prefetcher, in the 3"¢ generation of Intel server pro-
cessors. We reverse-engineer this prefetcher, and provide
a detailed characterization of its features and behaviors,
which might be helpful for future security and perfor-
mance research (Section IV).

e« We construct four end-to-end cross-core side-channel
attacks using the XPT prefetcher as the leaky source.
These attacks include an RSA attack (the square-and-
multiply RSA used in the latest MbedTLS [3] and GnuPG
1.4 [14]), a keystroke attack, and a network traffic mon-
itoring attack. Our results demonstrate the practicality
and effectiveness of PREFETCHX in real-world scenarios”
(Section VI).

o We develop two cross-core covert-channel attacks with
low error rates, further demonstrating the high applica-

IThe latest Xeon processors at the time of paper submission.
2We have responsibly disclosed our findings to the Intel PSIRT team and
have received approval to distribute these details.

L1 L2 LLC
Memory L1 |miss| |2 |miss LLC miss| DRAM
Access —>| —>
. Lookup Lookup Lookup Access
Instructions } L
e] }
Prefetcher | if predicted as

LLC miss

Normal Memory Access - - = = Optimized Memory Access

Figure 1. Overview of the XPT prefetcher operation.

bility and potential security implications of PREFETCHX
(Section VII).

II. PREFETCHX MOTIVATION AND OVERVIEW
A. The XPT Prefetcher as a Leakage Source

PREFETCHX exploits the XPT prefetcher in Intel proces-
sors, and the root cause of the attack is the special mechanism
of this component. The XPT prefetcher resides in parallel
with the LLC and its main goal is to predict LLC misses
and to send speculative requests to the DRAM to bypass LLC
lookups. This can reduce memory access latency in the case of
a correct prediction. Hence, the memory accesses sent to the
LLC subsystem exhibit three levels of access latency (we use
the RDTSC to compute the latency): (1) an LLC hit (less than
160 cycles in our setup and experiments), (2) LLC miss (350+
cycles), and finally (3) optimized LLC miss (170-330 cycles).
The optimized LLC misses occur in cases when the XPT
prefetcher has a correct prediction and is enabled. Figure 1
shows an overview of the XPT prefetcher alongside the cache
hierarchy. This timing variation is tightly coupled with the
memory activities of the executing program that enables easy
status monitoring of the prefetcher.

In addition, our detailed experiments in Section IV reveal
that (1) XPT prefetching can be trained and triggered across
different cores, that (2) the LLC miss prediction is based on a
miss counter in the prefetcher for a 4 KiB page granularity, and
that (3) different entries in the prefetcher are indexed based
on the physical address of the data and distinct by Address
Space ID (ASID) and CorelD?.

In this work, we make two key observations from the
XPT prefetcher behavior that enables us to build side-channel
and covert-channel attacks. First, we observe that the XPT
prefetcher entries are shared across different cores and are
evicted based on the Least Recently Used (LRU) policy if an
XPT-uncached page in different ASIDs is accessed. If Process
1 primes all entries in the XPT, Process 2 will evict the oldest
entry touched by Process 1 when it accesses the physical page
(i.e., LLC or memory access) that is not presented in the XPT.
Second, we observe that flushing the TLB often resets the
XPT prefetcher’s entry status. We demonstrate that if Process
1 trains the XPT prefetcher with a shared page A and Process

3Note, each process has a unique ASID, whereas different threads in the
same process share an ASID but can run on different cores that have different
CorelDs

Table 1
INTEL HARDWARE PREFETCHERS [11].

Intel Prefetcher Attacks

Data Cache Unit
(DCU)
Instruction pointer
(IP)-stride

‘ Location ‘ Pattern ‘

L1-D Next cache line [22]

Load instructions with [7], [8]
regular stride [7] [37]
Data prefetch logic 128-bytes-aligned [22]

pair cache line

(DPL)
Streamer L2 Several cache lines 36]

backward or forward [36]
XPT prefetcher LLC LLC miss predictor This work

L1-D

L2

1 then flushes that page mapping from its TLB, then the XPT
prefetcher will not be triggered for the previously trained page
A for any process. In Section IV-F, we provide the details of
our observations.

B. PREFETCHX Threat Model and Attack Surface

In this paper, we assume that a victim process contains
secret information (e.g., crypto key, user private information).
The attacker process runs on another physical core and tries to
infer the secret information without accessing the victim’s ad-
dress space directly (e.g., running on the unprivileged level).*

Based on our key observations, we develop two at-
tack primitives: (1) PREFETCHX-Evict and (2) PREFETCHX-
Flush. Launching side-channel or covert-channel attacks via
PREFETCHX-Evict primitive does not require any shared re-
sources (e.g., shared memory). Regarding the PREFETCHX-
Flush primitive, which is tailored for higher-throughput
and lower-noise cross-core covert-channel compared to
PREFETCHX-Evict based channel, we assume that the two
parties hold shared memory, similar to prevalent hardware
attacking scenarios [16], [19], [42], [46]. We will introduce
the workflow of these two attack primitives in Section V.

As we leverage RDTSC to check the XPT prefetcher state
variation, which is running with a constant frequency and
does not change with the CPU frequency [23], we make no
assumptions on the CPU frequency of the targeted cores.

III. BACKGROUND
A. Prefetching

The main goal of a prefetcher is to predict the data and
instructions that will be required by the processor in the near
future and to fetch them from the main memory into the
cache in advance, improving system performance. There exist
a variety of prefetching styles. Software prefetching allows
programmers to insert prefetching instructions in desired lo-
cations of the code [15], [18], [19], [23]. Hardware prefetchers,
such as the next-line prefetcher [22], the stride prefetcher [7],
spatial and temporal prefetchers [5], [6], [36], [40], each have
different strategies for predicting and fetching data and can be
beneficial based on the application running in the hardware.

According to Intel’s whitepaper [11], their processor designs
feature four hardware prefetchers, which are listed in Table I.

4The interplay with Intel Software Guard Extension (SGX) is considered to
be outside the scope of this work as SGX was not designed to be secure against
side-channel attacks [24] and is not supported in AWS (our test platform).

Virtual Address

TLB miss PT miss

Page Table

(PT) DRAM

TLB write PT write

TLB hit J
Physical Address

Figure 2. Process of a page walking.

In this work, we focus on the eXtension Prediction Table
(XPT) prefetcher, which is not documented by Intel in any
of their hardware reference manuals [23], [26], but instead
was briefly described in the HPC optimization reference
manual [25] for the 3"¢ generation of Xeon processors. The
key difference of the XPT prefetcher with others is that it is
placed at the last-level cache (LLC) (see Table I) which makes
it a potential channel for cross-core attacks.

B. Translation Lookaside Buffer and Page Tables

Translation and page walking. Figure 2 shows the virtual
address to physical address translation process in x86 pro-
cessors. The memory management unit (MMU) has a cache,
called translation lookaside buffer (TLB), that keeps the most
recently accessed page mappings for a fast translation in case
of a TLB hit. In case of a TLB miss, the MMU performs
a page walk over the page tables (PT) to find the mapping.
The operating system (OS) is responsible for maintaining the
mappings from the virtual addresses provided by each process
to the physical addresses in dynamic random-access memory
(DRAM). As these mappings typically have a granularity of
4 KiB, the page walking process involves primarily the upper
48 bits of the virtual address, referred to as the page offset.
Meanwhile, the lower 12 bits remain identical to those of the
physical address and are called the in-page offset.

TLB flush. In modern processors, the TLB is flushed if the
CPU needs to update the TLB [23]. However, there are two
main events that require a TLB flush:

o Context Switch: When the OS switches from one pro-
cess to another, the TLB needs to be updated with the
new virtual-to-physical address mappings for the new
process>.

« Page Table Changes: If the page tables are updated, such
as when a page is swapped in or out of memory, the TLB
will be flushed to ensure the correct page mappings are

used.

TLB shootdown. When a core changes the property of
a shared page (e.g., virtual-to-physical mapping, read-write
permissions, etc.), the OS launches a TLB shootdown event
to inform other cores to invalidate that mapping in their TLB.

St is worth noting that frequent TLB flushes during context switches are
avoided in modern processors as every TLB entry is tagged with an ASID,
ensuring minimal impact on process performance.

1 int

12 int start = rdtsc();

13 asm volatile ("mfence”);

14 char junk = ptr[test_index % CACHE_LINE];

15 asm volatile (”Ifence”);

16 int diff = rdtsc() - start;

17

sf void main() {

19 int page_size = 4096;

20 char =ptr = (char =*)mmap(page_size,
MAP_LOCK, ...);

21 for (int i = 0; i < page_size; i+=64)

2) ptr[i] = 'x';

23 flushall (ptr);

24 train (ptr);

25 test(ptr);

2| }

void train (char =ptr) {

1

2 int n = 32;

3 int random_num/[n];

4 generate_random (random_num) ;

5 for (int i = 0; i < n; i++) {

6 int index = random_numl[i];

7 char junk = ptr[index % CACHE_LINE];
|)

9

ol void test(char =ptr) {

test_index = rand() % 10 + 53;

Listing 1. Determining how to trigger the XPT prefetcher. The results shown
in Figure 3.

We will later show that TLB flush/shootdown impacts the
XPT prefetcher status and is the root cause of a number of
our cross-core covert-channel attacks.

IV. REVERSE-ENGINEERING THE XPT PREFETCHER

We perform extensive microbenchmarking to better under-
stand the XPT prefetcher. In this paper, we use an AWS
EC2 mé6i.4xlarge instance powered by a 16-core Intel(R)
Xeon(R) Platinum 8375C CPU (Ice Lake generation, Sunny
Cove microarchitecture).

A. Triggering the XPT Prefetcher

Based on our experiments, the XPT prefetcher is enabled
after a fixed number of LLC cache misses. To determine the
number of LLC cache misses required to trigger the XPT
prefetcher, we use a microbenchmark outlined in Listing 1.
The microbenchmark first initializes a page (line 20) and
flushes the initialized data from the cache using clflush
instructions (line 23). We then train the XPT prefetcher up
to a specific number of LLC misses, and finally, test the
memory access latency for an LLC cache miss (i.e., DRAM
access) to test if XPT is enabled. The parameter n in the
train() function specifies the number of cache misses to
be generated, which is achieved through the use of the
generate random() function that generates n unique random
numbers as indices for accessing the page. This ensures that
the memory accesses are irregular and will not trigger other
potential prefetchers, such as the next-line, IP-stride, adjacent,
and streamer prefetchers. After generating n cache misses, a
test index is set, computed at runtime and distant from n,
to test the DRAM latency of the access at ptr[test index].

—Cross-Core Trigger —Same-Core Trigger

g 480

S 400 I LLC miss
= 320 e
S S0 LLC miss
5 160 J | (XPT enabled)
g 80 32 misses ! LLC hit

S 0

< 0 10 20 30 40 50

Number of LLC misses

Figure 3. Triggering the XPT prefetcher from either the same core or a

different core. In both cases, the XPT prefetcher is triggered after 32 LLC

misses.

i| void main() {

2 int page_size = 4096;

3 char #ptr = (char =)mmap(page_size, ...,
MAP_LOCK, ...);
pid_t sub_process = fork();

5 if (sub_process > 0)

6 train (ptr);

7 else if (sub_process == 0)

8 test(ptr);

o }

Listing 2. Determining how the XPT prefetcher table is indexed. We use
semaphore to control the train/test sequence

The results of our experiments are presented in Figure 3
(green line) which runs our microbenchmark with an increas-
ing number of LLC misses during training. One can see that
the XPT prefetcher begins to start requesting data early after
32 cache misses, leading to a reduction in DRAM access
latency from approximately 350+ cycles to an optimized LLC
cache miss (between 160 to 300 cycles) which has triggered
the XPT prefetcher.

As the XPT is located in parallel to the LLC, it is reasonable
to assume that it is shared between two different cores. To
verify this assumption, we modify the Listing 1 to run the
train and test functions on different cores. The result is
presented in Figure 3 (red line), which is similar to our
observation from triggering the XPT from the same core
(green line). This implies that the XPT prefetcher is shared
between different cores.

B. Indexing into the XPT Prefetcher

Intel commonly employs the instruction pointer (IP) [7],
virtual address [26], or physical address [10] as an index for
accessing hardware tables or caches in its processors. Our ob-
jective is to examine and understand the indexing mechanism
employed by the XPT prefetcher. Given its position as a bypass
for LLC lookup and its location between the LLC and L2
cache, our initial focus is to determine if the XPT utilizes
physical address indexing, similar to the LLC [10], [26].

We developed a microbenchmark (See Listing 2) to evaluate
the indexing policy of the XPT prefetcher. Our microbench-
mark involves allocating a shared memory page and a child
process. The train and test functions, as shown in Listing 1,
are reused in this experiment. The main process trains the XPT
prefetcher on the shared page and the child process accesses

Table II
THE XPT PREFETCHER TRIGGERING RESULTS WITH DIFFERENT INDEXING
POLICIES.

Tested Scenario || Indexing Policy | Is XPT triggered?

Scenario-1 Physical Page v

Scenario-2 Virtual Page X

Scenario-3 Instruction Pointer X
i| void main() {
2 char xhuge_1GiB_page = (char =x)mmap(l << 30,
3 ., MAP_HUGE_1GB|MAP_LOCK) ;
4 char =huge_2MiB_page = (char =)mmap(l << 21,
5 ..., MAP_HUGE_2MB |MAP_LOCK) ;
6 char =normal_4KiB_page = (char %)mmap(8192,
7 ., MAP_LOCK) ;
8 char =ptr;
9 train (ptr);
10 test(ptr[4096]);
nl }

Listing 3. Determine the page boundary of the XPT prefetcher.

an uncached data block in the shared page to determine if the
XPT prefetcher has been triggered.

A shared page has a unique mapping in the virtual address
spaces of both the main process and the child process (in
Listing 2), because the main process and child process have
distinct address spaces. However, the physical page mapping is
the same for both processes. The results of our experiment, as
shown in the first row of Table II (Scenario-1), indicate that the
XPT prefetcher is consistently triggered when two processes
access the same physical page, suggesting that the XPT is
indexed by the physical page. We also tested the possibility
of indexing by the virtual address and IP (Scenario-2 and
Scenario-3 Table II, respectively). For instance, we use the
same PC to generate 32 LLC misses on different physical
pages and use the same PC to test the latency. The experiments
wouldn’t have failed if the tags were determined by the PC. but
the results indicate that these methods do not trigger the XPT
prefetcher and are not used for indexing the XPT prefetcher.

To gain a deeper understanding of how many bits of the
physical address are utilized for indexing the XPT, we create
a 32 GiB memory pool so that we can manipulate the least
significant 35 bits of physical addresses. We then identify two
physical pages with identical least significant M bits for their
page offsets (i.e., physical addresses from 13" bit to the (13+
M)" bit are the same). By training the XPT prefetcher on one
page, we expect that if the table is indexed by the lower M bits
of the page, another page should also trigger the prefetcher.
Nevertheless, we do not observe this behavior even when M
is increased to 20, suggesting that the XPT prefetcher should
be either indexed by the full physical address or possesses a
tag for each physical page.

C. Page Boundary

To determine if the XPT prefetcher is enabled in the
case of huge-paging (larger than normal size of 4 KiB) and
cross-4 KiB accesses. The benchmark shown in the Listing 3

Table IIT
THE XPT PREFETCHER TRIGGERING RESULTS WITH VARIOUS PAGE
TABLES SETTING.

Cross 4 KiB-Page Boundary Trigger
Page Table Size Contiguous on Contiguous on Is XPT
Virtual Address | Physical Address | Triggered?
1GiB Yes Yes X
2MiB Yes Yes X
4KiB Yes No X

void train (char =ptr,
int n = 32;
int random_num/|[n];
generate_random (random_num) ;
for (int i = 0; i < num; i++) {
for (int j = 0; j < n; i++) {
int idx = random_numl[j];
char junk = ptr[i*4096+idx+*CACHE_LINE];

int num) {

- - N S S R R

nl }

Listing 4. Determine the number of entries of the XPT prefetcher.

first maps three memory pools named huge 1GiB page,
huge 2MiB page, and normal 4KiB page. The first two
memory pools will be allocated with huge page tables (1 GiB
or 2MiB), and the last one will be allocated with a normal
page table, i.e., 4KiB. All of these pages are tagged with
MAP _LOCK to avoid unused pools being reclaimed and impact-
ing the experimental results. We then train the XPT prefetcher
on the 4KiB region and test it on another 4 KiB region. In
this case, only normal 4KiB page exhibits the cross-page
prefetches and the XPT prefetcher should be re-trained on the
new page. The result presented in Table III, however, shows
that even huge 1GiB page and huge 2MiB page cannot
trigger the XPT prefetcher after crossing the 4 KiB boundary,
which indicates that the XPT prefetcher has a 4 KiB boundary
tag in every entry that prevents cross 4 KiB-page prefetch.

D. Number of Entries and Set Associativity

We construct a microbenchmark that trains the XPT
prefetcher on varying numbers of 4 KiB pages (Listing 4).
By giving different numbers to num, we can create num entries
in the XPT prefetcher. After training, we then use the test
function shown in Listing 1 to test if the first trained page can
still trigger the XPT prefetcher.

The results of the experiment are presented in Figure 4.
The DRAM access latency increases sharply to approximately
350+ cycles after accessing 256 pages, and then remains
stable. This indicates that the number of entries in the XPT
prefetcher is 256. It is worth noting that the gradual increase
in latency with the linear slope between the first page and
the 256" page appears to be the result of queuing delay.
We hypothesize that the queuing delay observed is not caused
by the memory controller, as the latency remains unchanged
after priming more than 256 entries. However, if the delay is
attributed to the memory controller, we expect a continuous
latency increase beyond 256 entries. More specifically, the

F

S

I3 LLC miss

g

S 330 et gReNART ST AT T T IO NN Y
g

© LLC miss

2 (XPT enabled)
8

Q

<

0 250 500 750 1000 1250 1500

Number of Trained Pages

Figure 4. The number of entries of the XPT prefetcher.

delay can be attributed to either the constrained MSHRSs of the
prefetcher or the limited number of MSHRs within the core.
Our experimental investigation reveals a critical observation:
upon priming 12 entries, memory latency consistently exceeds
200 cycles, and subsequently continues to rise. This indicates
that if the number of in-flight requests exceeds 12, the excess
requests will have to wait in a queue, leading to the queuing
delay. To further investigate if the delay is caused by the core
MSHRs, we generate different cache misses on the same page,
and then test the memory latency of an uncached data block on
this page. If this queuing delay is caused by core MSHRs, we
would anticipate an observable elevation in the access latency
of the test data block subsequent to generating a number
of in-flight memory accesses. However, we did not find any
significant difference, even with the number of cache misses
growing to 60. This experiment suggests that the queuing delay
originates from the restricted number of MSHRs of the XPT
prefetcher, most likely capped at a count of 12.

In order to accurately determine the set associativity of the
XPT, we allocate a 16 GiB memory pool and generate N + 1
physical pages with identical bits from the 13" bit to the
(13+ M)*" bit. We test with varying values of N, specifically
N =4,8,16, 32,64, in an attempt to infer the number of cache
ways. Additionally, we define M = 256/N, which is used to
compute the set number of the corresponding way.

For example, if we guess that the XPT prefetcher uses a
4-way set-associative cache, we will prime 5 (4+1) entries to
map to the same set, and at least one entry should be evicted,
thereby stopping prefetching on that particular page. However,
we observed that no eviction occurs even when we increased
the guessed number of ways to 128. Based on these findings,
we hypothesize that the XPT operates as a fully-associative
cache.

E. Benefits of the XPT Prefetcher

The XPT prefetcher operates based on physical page index-
ing. This means that when a memory access is not found in the
L2 cache, it triggers a search in both the XPT prefetcher and
the LLC. In the XPT prefetcher, once it detects that a particular
page has generated 32 (or more) LLC misses, the prefetcher
begins to access the DRAM to retrieve the data in memory.
Simultaneously, the memory access also undergoes an LLC
lookup, a process that involves several cycles for computing
the LLC slice hash, determining the set index, and finally,
searching the target set to determine if the data resides there.

Table IV
THE XPT PREFETCHER INVALIDATING RESULTS ON DIFFERENT SCENARIOS. NOTE THAT WE BUILD A SHARED MEMORY REGION TO ENABLE TWO

PROCESSES TO ACCESS THE SAME PHYSICAL PAGE. *IN OUR EXPERIMENTS,

WE EVALUATE VARIOUS CORE PAIRINGS, e.g., CORE 0 AND CORE 1, AND

CORE 0 AND CORE 15, TO INVESTIGATE THE POTENTIAL IMPACT OF CORE DISTANCE ON THE RESULTS. OUR FINDING SHOWS THAT WE ALWAYS SEE
SIMILAR RESULTS, WHICH IMPLIES THAT THE XPT PREFETCHER REMAINS UNAFFECTED BY CORE DISTANCE ON THE SAME SOCKET ON THIS
MICROARCHITECTURE.

. Cross Cross Cross | Same - . - . .
g 9
Scenario H Process | Thread | Core* Core Training Operation Invalidating Operation Invalidate?
Scenario-1 v 4 4 v Process 1 Page A Process 2 page A Process 1, page A, /trigger
Scenario-2 v v v v Process 1 Page A Process 2 Page B Process 1, page A,B, /trigger
Scenario-3 v v v v Process 1 256 Pages Process 2 Page A Process 1, first page X no trigger
Scenario-4 v v v v Process 1 Page A Process 2 Change A’s Permission Process 1, page A, Xno trigger
Scenario-5 v v v v Process 1 Page A Process 2 Change B’s Permission Process 1, page A, /trigger
Scenario-6 4 v v Process 1 Page A Process 2 Flushes A from TLB Process 1, page A, /trigger
Scenario-7 4 4 v v Process 1 Page A Process 1 Flushes A from TLB Process 1,2, page A, Xno trigger
Scenario-8 - 4 4 Thread 1 Page A Thread 2 page A Thread 1, page A, /trigger
Scenario-9 4 v Thread 1 Page A Thread 2 page B Thread 1, page A, Xno trigger
.) ’ . i Thread 1, page A, /trigger
Scenario-10 v v Thread 1 Page A Thread 2 page B Thread 1, page B, /trigger
. Thread 1, page A, Xno trigger
Scenario-11 4 4 Thread 1 ~ Pages A, B | Thread 2 page C Thread 1, page B, /trigger

v:This configuration is enabled for the scenario. -:

If the data hits in the LLC, the processor gets back the
data. In contrast, in case of an LLC miss and without XPT
enabled, the processor needs to request the data from the main
memory. However, the XPT prefetcher optimizes the access
latency for LLC misses since the memory request has been
pre-issued as the prefetcher has predicted that this memory
access would result in an LLC miss, effectively optimizing
the memory latency. This LLC miss then increases the miss
counter within the XPT prefetcher.

F. Key Observations and Leakage Sources

As we discussed in Section II-A, there are two main root
causes leading to data leaks from the XPT prefetcher (XPT
evictions and TLB flushes). In this section, we will discuss our
key observations. Table IV consists of eight distinct scenarios.
The first two scenarios involve the creation of two threads
running in separate processes, with one of the processes (Pro-
cess 1) trained on shared page A. Another process (Process
2) is then trained on shared page A or B, and we assess the
ability of Process 1 to continue triggering the XPT prefetcher
on page A. The results of these two scenarios allow us to
conclude that the XPT is shared among multiple processes. In
the third scenario, Process 1 trains the XPT prefetcher using
its private pages. Process 2 then accesses a private page. We
find that the first page trained by Process 1 (i.e., the oldest
page) will no longer trigger the XPT prefetcher. These results
indicate that the XPT prefetcher is using a Least Recent Usage
(LRU) replacement policy.

Observation 1. The eXtension Prediction Table (XPT) is
a global structure with 256 entries shared by all processes
and all cores. An LRU replacement policy is used to evict
an entry when the table is full.

In order to comprehensively examine the influence of the
page management unit, particularly the TLB, on the behavior
of the XPT prefetcher, we conducted the fourth, fifth, and sixth
scenarios. First, Process 1 running on Core 1 trains on a shared

This configuration is disabled for the scenario.

page A. Then, Process 2 running on another core changes the
permission of this shared page A to generate a remote TLB
shootdown on Core 1. Page A will thus be invalidated in Core
1’s TLB. If Process 2 is running on the same core as Process 1,
it flushes Page A in the TLB directly using MOV CR3. However,
if Process 2 changes other pages’ permission, page A will not
be impacted (see the fifth scenario). We also notice that if
Process 2 only flushes its local TLB (not the remote TLB
shootdown), Process 1 can still trigger the prefetcher on Page
A (see the sixth scenario). This implies that the entry will
be invalidated only if the corresponding ASID’s TLB entry is
invalidated/flushed. Lastly, if Process 1 flushes Page A from
TLB (e.g., INVLPG), we found that Process 2 cannot trigger
the prefetcher. Our results indicate that if a page trained by a
process is invalidated or flushed from this process’s TLB, this
page can no longer trigger the prefetcher.

Observation 2. When a page mapping is flushed/invalidated
from the TLB by the trainer, the corresponding page in the
XPT prefetcher will also be flushed/invalidated.

To further experiment with an in-depth study of the char-
acteristics of the XPT prefetcher, we conducted the remaining
scenarios presented in Table IV. The eighth scenario highlights
that the XPT prefetcher is similarly shared between different
threads within the same process space.

The ninth scenario suggests that the XPT prefetcher should
possess a thread or core identification tag for controlling its
status. As a result, if two threads are executing in the same
process space but on different cores, i.e., they share the same
Address Space ID (ASID), and one of the threads accesses
a page not present in the XPT, then the well-learned entries
associated with that ASID will be invalidated. This raises two
questions:

1) Is the XPT prefetcher tagged by thread ID or core ID?

2) Will all entries related to the ASID be invalidated?

To further investigate the first question, we ran two threads
Thread 1 and Thread 2 on the same core (the tenth scenario)

eXtension Prediction Table (XPT) Prefetcher Structure

Physical | Address Space | Core | Least Recent | LLC Miss Enabled
Address ID (ASID) ID Usage (LRU) | Counter
21 2efa800 20 1 1 32 True
ﬁ 1af5000 140 1 1 18 False

Figure 5. The architecture of the XPT prefetcher

and discovered that the XPT entries trained by Thread 1 are
not evicted by Thread 2. This means that the XPT is tagged
by the CorelD. This also makes sense as the hardware only
records CorelD and ASID.

The eleventh scenario was conducted to provide an answer
to the second question (i.e., will the invalidation caused by
different threads impact all well-trained entries?). In this
scenario, Thread 1 trains the XPT prefetcher on pages A and
B, and then Thread 2 trains the XPT prefetcher on page C.
The results showed that only the prefetching of page A was
stopped. In another experiment, where Thread 1 trains the XPT
prefetcher on pages A, B, and C and then Thread 2 trains on
pages D and E, the prefetching of pages A and B was found
to have been stopped.

These results indicate that the intra-process replacement
policy is also using LRU but the replacement is determined by
the CorelD. Additionally, this finding implies that if a process
is moved to a different core, the entry trained by the previous
core will be reclaimed (invalidated and then reused), as the
XPT doesn’t know if the entry trained by the previous core
will still be used. This approach creates more room for holding
additional entries.

G. Summary of the XPT Prefetcher Operations

The XPT prefetcher, depicted in Figure 5, operates as
follows. Upon accessing a physical page, it checks for a hit
in the table. If it is present and the cache miss counter is 32
or higher, then the prefetcher is triggered and a speculative
load is issued. When a table miss occurs, the XPT prefetcher
checks if the ASID of the physical address is recorded. If
present, it then checks CorelDs. The new page replaces the
oldest entry of other CoreIDs under the same ASID using the
LRU replacement policy. We call this policy a core-tagged
LRU policy. If there are no other CorelDs associated with
this ASID or if the ASID is not presented in the table, the
page is allocated with a new entry with a cache miss counter
of 1, unless the prefetcher is full, in which case the global
oldest entry is replaced using the LRU policy.

In summary, experimental results support that the eviction
policy should follow the core-tagged LRU policy along with
the global LRU policy. Our key observations in this section
lead to various successful and practical side-channel and
covert-channel attacks.

V. PREFETCHX ATTACK PRIMITIVES

In this section, we introduce two attack primitives based on
our reverse-engineering observations from the XPT prefetcher.

A. PREFETCHX-Evict

The first attack primitive is named PREFETCHX-Evict,
which consists of four steps:

o Step 1: Priming the XPT entries;

o Step 2: Waiting for victim execution (it will either evict
or not evict the oldest primed XPT entry);

o Step 3: Probing the oldest primed XPT entry to assess
the victim eviction.

o Step 4 (Optional): Evict the victim’s entry.

More concretely, the attacker first primes all entries in the
XPT and waits for the victim to execute the target code. The
attacker then probes the oldest entry to infer if the target code
is executed (e.g., square in RSA).

Note that the initial three steps offer the attacker only a
single opportunity to detect the victim’s behaviors. In scenarios
where repeated inference of the victim’s behaviors is necessary
(e.g., multiple iterations in RSA decryption), the attacker
must proceed to Step 4. To evict the victim’s entry, the most
efficient and general method involves accessing the remaining
255 pages under the attacker’s control (i.e., generating cache
misses on these 255 pages). Subsequently, the victim’s entry
becomes the least recently used and will be displaced once the
attacker establishes a new entry (generating 32 cache misses on
a fresh page). This eviction technique mandates the generation
of 287 cache misses by the attacker to successfully displace
the victim’s page. Due to the memory- and instruction-level
parallelism, on our test platform, this capability is harnessed
to execute the eviction procedure efficiently, requiring a maxi-
mum of 16,000 cycles (5 us) to complete. This temporal aspect
holds significant importance, as it governs the synchronization
mechanism in side-channel attacks and establishes the upper
bandwidth limit of our presented covert-channel, which will
be introduced in subsequent sections.

B. PREFETCHX-Flush

The second attack primitive, PREFETCHX-Flush, is con-
structed for building higher throughput and better noise-
resilient cross-core covert-channels compared to PREFETCHX-
Evict primitive. PREFETCHX-Flush requires shared memory
and consists of three steps:

o Step 1: Sender primes the XPT using a shared page;
o Step 2: Receiver tests the prefetcher availability;
o Step 3 (Optional): Sender flushes the trained entry.

Using PREFETCHX-Flush, the sender and the receiver could
transmit secret information with higher throughput and without
using caches. We will detail how to establish a covert-channel
using PREFETCHX-Flush primitive in Section VII.

By following the steps in these two attack primitives,
PREFETCHX is able to effectively leak the victim’s sensitive
page-related actions through side-channel analysis, while also
enabling covert-channel attacks. Section VI describes our side-
channel attacks, while Section VII describes the details of how
to use PREFETCHX for covert-channel attacks.

Attacker Repeati;{g the attack for thgnext secret bit
) |
o Training XPT e Checking XPT Status

Process 0 | Core 0

Process 0 | Core O

Signal

—> Decryption

i Victim Process 1 | Core 1 !

Figure 6. Overview of attacking RSA applications. After the attacker trains
the XPT prefetcher, the victim decrypts the message and the attacker then can
check the prefetcher status.

VI. CROSS-CORE SIDE-CHANNEL ATTACKS

In light of our observations from the XPT prefetcher be-
havior, we propose a new side-channel attack that exploits
these characteristics to leak secret keys from real-world cryp-
tographic applications. In this section, we focus on Observa-
tion 1 and deploy our PREFETCHX-Evict primitive to exploit
the contention and eviction policies of the XPT prefetcher.

A. Attacking Real-World Square-and-Multiply RSA

In this attack, we leak the private exponent (exp) of
the Square-and-Multiply RSA application used in the latest
MbedTLS [3] and the GnuPG 1.4 [14], as real-world ap-
plications that have been used as proof-of-concept by recent
work [13], [19]. Listing 5 shows how MbedTLS [3] performs
square-and-multiply. To optimize performance, MbedTLS in-
troduces a sliding window to allow the algorithm to operate
on multiple bits of exp during one iteration. However, prior
works [13], [31] have shown that attacks on window length
‘1’ can be extended to an arbitrary length. Therefore, we
set the window length to 1 to make sure only one bit of
exp is operated in every iteration. For every iteration, if
the least significant bit (LSB) of the exp is equal to b'l,
the base exponent bits in window will be loaded from
memory and be used to perform multiplication (lines 19-22).
Otherwise, only a square operation will be executed (lines 9
and 10). GnuPG also has a similar structure.

The least recently used XPT entry will be evicted if a
new process causes a cache miss on an XPT-uncached page.
(see Observation I). Hence, an attacker first primes the XPT
and then measures the prefetcher status after each decryption
iteration to know if the secret-dependent branch (line 7 in
Listing 5) is executed or not. Figure 6 shows an overview
of our attack to reveal the RSA private exponent. For a
successful attack, we need to address two challenges: (1)
how to synchronize with the victim thread to guarantee we
can measure the XPT prefetcher status at a proper time. (2)
How to flush exponent bits in_ window (as it is initialized
first, i.e., not a copy-on-write variable, it is stored in a
separate page with other not-copy-on-write variables) after
each iteration (as we need to let the victim insert the page
stored exponent bits in window into the XPT prefetcher
after each iteration).

1

2

3 size_t exponent_bits_in_window = 0;

4

5

6 E->p[nblimbs] = E->p[nblimbs] >> bufsize

7 ei = E->p[nblimbs] & 1;

8

9 if (ei == 0 && state == 1) {

10

1 MBEDTLS_MPI_CHK(mpi_select (...));

12 mpi_montmul (...) ;

13 continue ;

14 }

15

16/

17 MBEDTLS_MPI_CHK(mpi_select (...));

18 mpi_montmul (...)

19!

20

21 size_t exponent_bits_in_window |= (ei << (
window_bitsize — nbits));

22

23 MBEDTLS_MPI_CHK(mpi_select (...,
exponent_bits_in_window));

24 mpi_montmul (...) ;

2| }

while (E->p[nblimbs] is not 0) {

Listing 5. Code segment of the Square-and-Multiply Exponentiation in latest
MbedTLS.

Since the victim and the attacker are running on different
processes and different cores without any shared resources, the
most common synchronization technique is adding a timing-
fixed waiting delay [19], [45]. As evicting the victim’s entry
consumes Sus, we thus add a 100us waiting delay for the
victim after each iteration to ensure we have enough time to
sample the XPT prefetcher variation and prime the XPT again.
Since the waiting delay is constant, it will not help the attacker
infer any extra information from the victim directly.

There are many existing techniques designed to delay a
victim. For instance, the task scheduler attack [17] can achieve
this by executing a denial-of-service attack on the Linux
scheduler, thereby allocating very small execution intervals
to the hot region of the victim process (e.g., decryption) to
cause delays. Additionally, the attacker can leverage the ring
bus attack [33] to exhaust bus resources to delay the victim.
Moreover, the performance degradation attack [2] can identify
the hot region of the victim’s process and occupy the resource
of the coherence directory, memory channels, or cache during
the hot region execution to slow down that region. It is
important to note that neither of these methods requires OS
privileges. It is also worth noting that this delay is not strictly
required for synchronization, especially if the attacker can
prime the XPT prefetcher more rapidly than each decryption
iteration, such as through the use of hyper-threading and/or
multiple cores to prime the XPT prefetcher in parallel.

Moreover, concerning the second challenge, inspired by
prior work [7], we also found out that the victim’s cached data
is highly likely to be flushed after the context switch. Thus,
the attacker can implicitly flush exponent bits in_ window
by sending a signal to the victim to cause a context switch

after each iteration. Note, that sending a signal to another
process on another core is a standard function to processes
without requiring special privileges if these processes run with
the same user-id. The signal itself will not cause a context
switch. However, the OS will typically stop the normal flow
of the process and execute the signal handler associated with
that signal even if the signal does nothing for the victim
(e.g., kil1(PID, SIG_CONT) or kill(PID, @)). Thus, a
context switch happens during the signal handler processing
in the kernel model. Although almost all cached data could
be evicted at the context switch, the attacker is still able to
recognize the victim’s access pattern, as one extra entry trained
by the attacker will be evicted if the multiplication is executed
(exponent bits in_ window goes to a separate page).

In this attack, the attacker utilizes the same user-id as the
victim, as sending the attack signal requires the attacker to
either be a privileged user or under the same user-id as the
victim. However, it is important to note that due to the isolation
mechanisms between different processes, even if an attacker
uses the same user-id as the victim, direct access to sensitive
data remains infeasible.

Note, that purpose of sending a signal is to direct the
victim’s memory requests to look up the LLC/DRAM, thereby
accessing the XPT prefetcher. Alternative techniques exist
for achieving this without the same user-id requirement. For
example, the utilization of a coherence directory primitive [45]
allows to reset cache coherence status on other processor cores,
even within a non-inclusive memory system. Subsequently,
memory accesses will retrieve data from the DRAM, making
them training the XPT prefetcher.

In Section VIII-A, we present our proof-of-concept (PoC)
attack results that led to the successful extraction of one byte
of the RSA secret key in 20 seconds.

B. Attacking Low-Resolution User Privacy without Synchro-
nization

We found that certain events related to drivers (e.g.,
keystrokes, Bluetooth connections, network packet transmis-
sions via a network card, etc.) will have long triggering inter-
vals (i.e., low resolution). More concretely, the time interval
between two events is very long (microsecond- or millisecond-
grained). In addition, many of these events are related to user
privacy. Thus, it is worthy to attack these events without any
synchronization requirement.

1) Attacking Keyboard Activities: Our first driver-event
attack focuses on leaking the precise timing of keystrokes, i.e.,
when the keyboard is activated by the victim. This leakage is
very important since it can assist in reconstructing typed words
from users [28], [47].

We consider a victim that receives user input from the
keyboard (e.g., getchar, scanf, etc.), and writes the input
into a private page (e.g., a file mapped into memory by
mmap). In the case of keyboard activation, we assume that
the victim is appending characters to the file via keyboard,
thereby generating a succession of cache misses and repeatedly
evicting the oldest entry trained by the attacker. The attacker

void victim_client () {

1

2 int sd = socket (AF_INET,SOCK_STREAM,O0) ;

3 struct sockaddr_in serveraddr ,clientaddr;

4 set(serveraddr);

5 socklen_t len = sizeof(clientaddr);

6 int acceptfd = accept(sd,(struct sockaddr =)&

7 clientaddr ,&len);
8 int recvbytes = recv(acceptfd ,private_page,

20) 8
o }

Listing 6. Code segment of the victim TCP client. Line 6 establishes the
connection with the client and line 8 receives the packets.

Predefined
synchronization protocol

Receiver
Core-1

Sender
Core-0

Sending b’0 Sending b’1

Idle Prime an XPT
State entry

Prime 256
XPT entries

Evict sender
primed entry

Figure 7. Attack flow of PREFETCHX-Evict based covert-channel.

repeatedly executes the PREFETCHX-Evict primitive to infer
if the victim is writing into her private file. We discuss the
results of our attack in Section VIII-B.

2) Attacking Network Traffic: Network traffic analysis at-
tacks [1], [21], [39] represent a serious threat to online
security. Although an attacker cannot get the content of the
message directly, an attacker can determine the location of
both sides of the communication, deanonymize communicat-
ing parties, and deduce sensitive information by observing
the patterns of datagrams (e.g., packet transmission timing
interval, number of transmitted packets, etc.).

Listing 6 shows the code segment of the TCP client as our
victim. The key parts are lines 6 and 8. Line 6 establishes
the connection with the client, while line 8 is used to receive
packets and write these packets into the victim’s private page.
The victim on Core 1 always tries to receive packets. Similar
to our keystroke attack, the attacker on Core O repeatedly
performs the PREFETCHX-Evict primitive. In case of receiving
a packet by the victim, the attacker can infer the timing if the
oldest entry in the prefetcher does not trigger.

VII. CROSS-CORE COVERT-CHANNEL ATTACKS

Attack assumptions. Similar to previous covert-channel
attacks [18], [19], the sender and receiver synchronize with
each other using a timing-fixed waiting delay. The sender
and receiver should agree on predefined protocols, including
synchronization, encoding, and error correction up-front. In
addition, the PREFETCHX-Flush covert-channel assumes that
the sender and the receiver share data via a shared page.

A. Cross-Core Covert-Channel Attack via PREFETCHX-Evict

Figure 7 shows a novel cross-core covert-channel built on
top of the PREFETCHX-Evict primitive, without using shared
memory. The receiver initiates training the XPT prefetcher
across 256 distinct pages, thereby priming the entire XPT.

Predefined
synchronization protocol
Sender Receiver
Core-0 Core-1
Sending b’0 Sending b’1
Flush the Training XPT Accessing an
shared page-0 | | on the shared uncached
from the TLB page-0 data block

Figure 8. Attack flow of PREFETCHX-Flush-based covert-channel.

In the event that the sender intends to transmit signal b'l,
it accesses a private page, triggering the eviction of the oldest
page trained by the receiver. In contrast, should the sender opt
to transmit b'0, it maintains an idle state. Upon detecting the
eviction of its oldest entry, the receiver employs the technique
delineated in Step 4 mentioned in Section V-A, effectuating
the eviction of the page accessed by the sender. This strategy
guarantees that the receiver always occupies all entries before
the sender sends a new bit of the secret.

For the purpose of synchronized operation within a fixed
timeframe, it is imperative to ensure that this temporal win-
dow is longer than the most time-intensive step of a secret
transmission, namely, the eviction of the sender’s entry. In
the pursuit of this objective, in this paper, a synchronization
waiting period of 18,000 cycles is chosen, which consists of
both the eviction delay (16,000 cycles) and error correction
overhead.

Concretely, the sender initiates secret transmission follow-
ing a precise delay of 16,000 cycles, subsequently followed
by an additional latency of 2,000 cycles. On the receiver side,
a determination is made whether an eviction of the sender’s
entry is needed (i.e., if the sender sent b'l last round). If
deemed necessary, the Step 4 is executed, and subsequent
waiting continues until the culmination of 16,000 cycles.
Conversely, if eviction is unnecessary, the wait spans precisely
16,000 cycles. Subsequently, the receiver allocates 2,000
cycles to the iterative monitoring of the oldest entry’s status,
thereby effecting error correction. The throughput can achieve
21KiB/s with an error rate that is lower than 8%.

B. Cross-Core Covert-Channel Attack via PREFETCHX-Flush

To further leverage the reverse-engineered characters of the
XPT prefetcher to build a higher throughput and lower noise
covert-channel, we then construct a PREFETCHX-Flush based
covert-channel. Figure 8 depicts the communication flow. If
the sender wants to transmit b’1, it first trains the XPT on the
first half of the shared page on Core 0. In the next round, if the
sender wants to send b’0, it will flush his trained page from
TLB, and the XPT entry on this page will also be flushed.
The receiver, running on Core 1, randomly accesses a cache
line on the last half page of the shared page to observe if the
cache miss is an optimized LLC miss or a normal LLC miss
(XPT is not triggered). An optimized cache miss indicates that
the sender did not reset the XPT, sending b’1, and vice versa.
As the training of a page and TLB flush requires a maximum

Table V
ARCHITECTURE AND SYSTEM CONFIGURATIONS.

AWS EC2 Instance mo6i.4xlarge
Processor Intel(R) Xeon(R) Platinum 8375C
Architecture Ice Lake (Sunny Cove)
CPU cores 16
Last Level Cache Non-inclusive, 54 MiB
Operating System Ubuntu 20.04
ASLR/KASLR Enabled
DRAM DDR4, 64 GiB
500
? 400 I LLC miss
QO —~
5 §300 “““;Jt;jt““‘ o e
i 5200 (WNNIVVW WASTW AN WY |JXPT enabled)
S 100 LLC hit
< 0 0 7] 1 1] 1 1 0

0 10 20 30 40 50 60 70 80 90 100 110
Sample ID

Figure 9. RSA attack results (second Multiplication page eviction shown).
The x-axis orders the secret bits from most significant bit (MSB) to least
significant bit (LSB). Note, that in case of b’l as secret bit, an extra well-
trained entry in XPT is evicted which results in a normal LLC miss.

of 900ns in our test platform, a fixed 1us synchronization
delay is used in the PREFETCHX-Flush covert-channel, i.e., the
receiver checks the XPT prefetcher after every 1us (another
100 ns is used to correct the error). The highest bandwidth of
this covert-channel is 122 KiB/s with an error rate lower than
1%. Our results demonstrate the feasibility and robustness of
our proposed covert-channel exploiting Observation 2.

VIII. EXPERIMENTAL RESULTS

Experimental environment. We perform Proof-of-Concept
(PoC) side-channel experiments on an Ice Lake machine. The
system details are shown in Table V.

A. RSA Side-Channel Attacks

In our PoC, the attacker first primes all entries and waits
for decryption to occur. For each round of the decryption, a
page will be accessed for the Square operation no matter what
the secret bit is; however, an extra page will be accessed for
the Multiplication operation when the secret bit is 1. Thus,
because of the LRU replacement policy (see Section IV), the
first trained entry is always evicted and we need to monitor
if the second trained entry is evicted (as shown in Figure 9)
after each decryption entry, and the attacker does not need to
know the exact page address of the victim.

As we operate on an AWS EC2 instance, our environment
is within a virtual machine (VM). The VM and all other back-
ground processes (e.g., network manager, daemons) generate
system noise, which may impact the attack result [13], e.g.,
well-trained entries may be evicted by the VM or system
activities. To remove the effects of system noise, we collect
1000 traces in order to reveal one bit of the private exponent.
The Square-and-Multiply RSA attack result is demonstrated
in Figure 9.

z 288 keyboard triggered\

S 200 « ™ LLC miss

- un

= 5300 CTss
& £ 200 /_(XPT enabled)
& 100 LLC hit

o

0O 20 40 60 80 100 120 140 160 180
Execution timing of the victim (ms)

Figure 10. Side-channel attack to monitor user keyboard activities.

Table VI
AVERAGE MEMORY ACCESS LATENCY WHETHER A KEYSTROKE HAS
OCCURRED IN DIFFERENT SCENARIOS: XPT ENABLED OR DISABLED.

| Memory Access Latency (cycles) |
Scenario keyboard keyboard Distinguishable?
activated inactivated
XPT || 393 | 193 | v
no-XPT || 388 | 383 \ X
We attempted to leak a [1-byte private exponent
(b’01101100). The results show that we successfully

revealed it within 20 seconds. As every bit’s computation is
independent in RSA decryption, it is reasonable to estimate
that PREFETCHX can break a 2048-bit (256-byte) RSA
engine in approximately 80 minutes (1.4 hours), which is a
practical time window for an attacker.

B. Keystroke Side-Channel Attack

Figure 10 presents the results of our keystroke attack. We
clearly observe that invoking the keyboard activity function
writing to the private page evicts the oldest entry of the
XPT prefetcher. Specifically, the significant difference between
the access latency of normal LLC misses and optimized
LLC misses allows us to identify the precise timing of
each keystroke. Table VI summarizes the average latency we
obtained under different scenarios. The results indicate that
without the XPT prefetcher, we could not detect keyboard
activity. This finding provides further evidence that the XPT
prefetcher plays a crucial role in our attacks.

C. Network Traffic Side-Channel Attack

Our PoC involves a client-server setup where the server
communicates with the victim client (see Listing 6) via port
8888. The server randomly generates packets and then sends
them to the client’s private buffer. The outcome of this attack
is shown in Figure 11, which clearly shows the timing of
packet reception by the victim. Our results demonstrate that
by observing the XPT prefetcher status, we can detect network
traffic patterns that reveal information about the victim’s
behavior.

Resolution Analysis. In the real world, the frequency of
network packet transmission can be very high, and we need
to ensure that training the XPT prefetcher is shorter than
packet transmission interval®. To investigate this, we sampled

6Keystrokes require milliseconds to seconds to complete, which trivially
the XPT prefetcher can be trained in this interval.

600

> acket transmission
g 500 b 4

LLC miss
% g 400
- 9300 " “LCmiss
g <200 || (XPT enabled)
£ 108 LLC hit

0O 20 40 60 80 100 120 140 160 180
Execution time of the victim (ms)

Figure 11. Side-channel attack to monitor user network traffic.

IP packets from our network interface card (NIC) and observed
that the timing interval between sending two packets are
consistently around 26,000 ns. As mentioned in Section V-A,
evicting a victim entry only requires 5 us, i.e., 5,000 ns. The
significant gap between the packet transmission interval and
the XPT entry eviction time demonstrates that PREFETCHX’s
resolution is high enough to track network packets in real-
world applications.

IX. POTENTIAL MITIGATION

While disabling the prefetcher blocks the security leaks of
the XPT prefetcher, it may introduce unexpected performance
overheads for memory-intensive applications with highly ir-
regular memory accesses. A more efficient mitigation is to
partition the prefetcher. To achieve leakage-free partitioning,
the system needs to partition the XPT prefetcher based on
the ASID and the CorelD tags that already exist in the XPT
structure. This ensures to block of information leakage across
different cores and different processes on the same core.

X. RELATED WORK

Cache timing attacks. Cache timing side-channels exploit
the timing differences between cache hits and cache misses,
enabling attackers to infer the victim’s memory activities.
There are two primary types of cache timing side-channels:
Prime+Probe based [10], [32], [34], [43] and Flush+Reload
based [16], [46]. For the Prime+Probe type, the attacker
primes the cache with their data and then probes it to observe
the victim’s access time changes. Flush+Reload involves the
attacker flushing a cache line and then waiting for the victim to
reload it, thereby providing insight into the victim’s memory
access patterns. Cache timing side-channels are often referred
as cache primitives since they serve as a building block for
other hardware side-channels [37], [41], [42].

Prefetcher attacks. Side-channel attacks introduced by
prefetching have received extensive attention in recent years.
From the software perspective, modern processors often pro-
vide specific prefetch instructions that programmers can use to
improve performance. Some attacks [15], [29] aim to bypass
Supervisor Mode Access Prevention (SMAP) and KASLR
on Intel and AMD processors. They exploit the timing of
PREFETCH instructions to leak the translation level of the virtual
address and infer the physical mapping. Leaky Way [18]
exploits PREFETCHNTA in Intel processors to change the cache
status and build a covert-channel attack through conflicted

Table VII

SUMMARY OF PREFETCHER/PREFETCH-BASED ATTACKS.

Trigger Paper Cross Side- }]{ifkv; ax: Requirements
From P Core? | Channel? * e . °
Source @ 5 g e 2| g
2|85 | 2| 8| 58| 2
2| 0 2% S| EE | EE
SE|ZE |82 158 |53| 5%
O -2 o S22 2 2| &
£17P=2 |22 |8 | 24|27
g Prefetch Attack [15], [29] X v LI1/L2/LLC [(] O © O O
£ Leaky Way [18] v X LLC OO |O| @] O] O
| Adversarial Prefetch [19] | v LLC e | e | O|®@ | O] O
Fetching Tale [8] X X IP-Stride Prefetcher O O [] O O O
.. . IP-Stride Prefetcher +
Unveiling Prefetcher [37] X v/ LULA/LLC [J ([J O [J O [J
g Pointer-Chasing Prefetcher +
g Augury [42] X v LUL2LLE [J O [J O [J O
g Afterlmage [7] X v IP-Stride Prefetcher O O [J O | O O
PREFETCHX (this work) v v XPT Prefetcher @) @) @) @) O O

*/ @ can be used as both side-channel and covert-channel attacks, X: can only be used as a covert-channel attack

£O ' no need for the address of the victim’s data, @© : need the page granularity address, @ : need the cache-line granularity address

cache ways. Another instruction, PREFETCHW, can leak cache
coherent status and allow cross-core attacks [19].

On the contrary, hardware prefetchers in real processors
typically cannot be explicitly controlled and normally require
more understanding through reverse-engineering. Augury [42]
investigated the data memory-dependent prefetcher in the
Apple M1 processor to perform out-of-bounds reads. After-
Image [7] studied Intel IP-based stride prefetcher that enables
tracking load instructions of the victim. Other works [8], [38]
are either algorithm dependent or can only be used as a
covert-channel. However, all existing prefetcher side-channels
are single-core and they are more or less dependent on the
cache hierarchy, while PREFETCHX can launch cross-core
side-channel and covert-channel attacks that do not rely on
the cache system. Table VII shows a summary of existing
prefetcher/prefetch-based side-channel and covert-channel at-
tacks.

XI. CONCLUSION

In this work, we uncover details of the XPT prefetcher
in Intel processors, which can be intentionally trained and
triggered across different cores within the same processor.
Capitalizing on these features, we introduce a novel at-
tack, named PREFETCHX, capable of leaking victims’ page
activities. PREFETCHX is a cross-core attack, independent
of cache primitives as the foundation of many hardware
attacks. To achieve this, we conducted an in-depth study
of the XPT prefetcher, revealing undocumented details. We
demonstrate that we can extract secret keys in the real-
world Square-and-Multiply RSA application. Furthermore, we
apply PREFETCHX to effectively leak the victim’s driver-
related events. Additionally, we showcase the applicability of
PREFETCHX as a method to create cross-core covert-channel
attacks, achieving low error rates when transmitting secrets.
Finally, we conclude that disabling or partitioning the XPT
prefetcher is required if one wants to mitigate PREFETCHX.

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for their
detailed feedback which allowed us to improve this work.
We also appreciate Andreas Diavastos’s suggestions on the
earlier draft of this paper. This work was supported by a grant
from the National Research Foundation (NRF) of Singapore
(NRF2018NCR-NCR002).

REFERENCES

[11 P. A, L. F,Z A, H M., P J, W K, and E. T, “Fingerprinting at
internet scale,” in Network and Distributed System Security Symposium
(NDSS), 2016, pp. 1-15.

[2] T. Allan, B. B. Brumley, K. Falkner, J. van de Pol, and Y. Yarom,
“Amplifying side channels through performance degradation,” in Annual
Conference on Computer Security Applications (ACSAC), 2016, p.
422-435.

[3] “MbedTLS: An open source, portable, easy to use, readable and flexible
SSL library,” Arm Holdings plc, 2019.

[4] J.-L. Baer and T.-F. Chen, “An effective on-chip preloading scheme to
reduce data access penalty,” in Conference on Supercomputing (Super-
computing), 1991, p. 176-186.

[5] M. Bakhshalipour, P. Lotfi-Kamran, and H. Sarbazi-Azad, “An efficient
temporal data prefetcher for L1 caches,” IEEE Computer Architecture
Letters (CAL), vol. 16, no. 2, pp. 99-102, 2017.

[6] M. Bakhshalipour, P. Lotfi-Kamran, and H. Sarbazi-Azad, “Domino
temporal data prefetcher,” in Symposium on High Performance Computer
Architecture (HPCA), 2018, pp. 131-142.

[71 Y. Chen, L. Pei, and T. E. Carlson, “AfterImage: Leaking control
flow data and tracking load operations via the hardware prefetcher,”
in International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), vol. 2, 2023, pp. 16-32.

[8] P. Cronin and C. Yang, “A Fetching Tale: Covert communication with
the hardware prefetcher,” in International Symposium on Hardware
Oriented Security and Trust (HOST), 2019, pp. 101-110.

[9] S. Deng, B. Huang, and J. Szefer, “Leaky Frontends: Security vulner-

abilities in processor frontends,” in Symposium on High-Performance

Computer Architecture (HPCA), 2022, pp. 53-66.

C. Disselkoen, D. Kohlbrenner, L. Porter, and D. Tullsen, ‘“Prime+Abort:

A Timer-Free High-Precision L3 cache attack using Intel TSX,” in

USENIX Security Symposium (USENIX Security), 2017, pp. 51-67.

J. Doweck, “White paper inside Intel® Core™ microarchitecture and

smart memory access,” Intel Corporation, pp. 72-87, 2006.

H. Fang, S. S. Dayapule, F. Yao, M. Doroslovacki, and G. Venkatara-

mani, “Prefetch-Guard: Leveraging hardware prefetches to defend

against cache timing channels,” in Symposium on Hardware Oriented

Security and Trust (HOST), 2018, pp. 187-190.

[10]

(11]

[12]

[13]

[14]
[15]

[16]

(7]

(18]

[19]

[20]

[21]
[22]
[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

S. Gast, J. Juffinger, M. Schwarzl, G. Saileshwar, A. Kogler, S. Franza,
M. Kostl, and D. Gruss, “Squip: Exploiting the scheduler queue con-
tention side channel,” in 2023 IEEE Symposium on Security and Privacy
(S&P), 2022, pp. 468-484.

“GNU privacy guard,” https://gnupg.org/, 2022.

D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard, “Prefetch
side-channel attacks: Bypassing smap and kernel aslr,” in Conference
on computer and communications security (CCS), 2016, pp. 368-379.
D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+Flush: A fast
and stealthy cache attack,” in Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment (DIMVA), 2016, pp. 279-299.
D. Gullasch, E. Bangerter, and S. Krenn, “Cache games — bringing
access-based cache attacks on aes to practice,” in IEEE Symposium on
Security and Privacy (S&P), 2011, pp. 490-505.

Y. Guo, X. Xin, Y. Zhang, and J. Yang, “Leaky Way: A conflict-based
cache covert channel bypassing set associativity,” in Symposium on
Microarchitecture (MICRO), 2022, pp. 646—661.

Y. Guo, A. Zigerelli, Y. Zhang, and J. Yang, “Adversarial prefetch: New
cross-core cache side channel attacks,” in Symposium on Security and
Privacy (S&P), 2022, pp. 1458-1473.

D. Guttman, M. Arunachalam, V. Calina, and M. T. Kandemir, “Chapter
21 - prefetch tuning optimizations,” in High Performance Parallelism
Pearls, 2015, pp. 401-419.

A. Hintz, “Fingerprinting websites using traffic analysis,” in Workshop
on Privacy Enhancing Technologies (PET), 2002, pp. 171-178.

Intel, “Disclosure of H/W prefetcher control on some Intel processors,”
https://radiable56.rssing.com/chan-25518398/article18.html, 2018.

Intel, “Intel® 64 and IA-32 architectures software developer’s manual,”
Intel Corporation, 2019.

“Understanding Intel software guard extensions (Intel SGX),”
https://www.intel.sg/content/www/xa/en/architecture-and-technology/
software- guard-extensions-enhanced-data- protection.html, 2021.

Intel, “HPC cluster tuning on 3rd generation Intel Xeon Scal-
able processors,” https://www.intel.com/content/www/us/en/developer/
articles/guide/hpc-cluster-tuning-on-3rd-generation-xeon.html, 2022.
Intel, “Intel® 64 and IA-32 architectures optimization reference man-
ual,” Intel Corporation, 2023.

P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom,
“Spectre attacks: Exploiting speculative execution,” in IEEE Symposium
on Security and Privacy (S&P), 2019.

M. Kurth, B. Gras, D. Andriesse, C. Giuffrida, H. Bos, and K. Razavi,
“NetCAT: Practical cache attacks from the network,” in Symposium on
Security and Privacy (S&P), 2020, pp. 1-19.

M. Lipp, D. Gruss, and M. Schwarz, “AMD prefetch attacks through
power and time,” in USENIX Security Symposium (USENIX Security),
2022.

M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn,
S. Mangard, P. Kocher, D. Genkin et al., “Meltdown: Reading kernel
memory from user space,” in USENIX Security Symposium (USENIX
Security), 2018, pp. 973-990.

E Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache
side-channel attacks are practical,” in Symposium on security and privacy
(S&P), 2015, pp. 605-622.

D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and countermea-
sures: the case of aes,” in Cryptographers’ Track at the RSA Conference
(CT-RSA), 2006, pp. 1-20.

R. Paccagnella, L. Luo, and C. W. Fletcher, “Lord of the ring(s): Side
channel attacks on the CPU on-chip ring interconnect are practical,” in
USENIX Security Symposium (USENIX Security), 2021, pp. 645-662.
C. Percival, “Cache missing for fun and profit,” in BSDCan Ottawa,
2005, pp. 1-13.

I. Puddu, M. Schneider, M. Haller, and S. Capkun, “Frontal Attack:
leaking control-flow in sgx via the cpu frontend,” USENIX Security
Symposium (USENIX Security), 2021.

A. Rohan, B. Panda, and P. Agarwal, “Reverse engineering the stream
prefetcher for profit,” in European Symposium on Security and Privacy
Workshops (EuroS&PW), 2020, pp. 682-687.

Y. Shin, H. C. Kim, D. Kwon, J. H. Jeong, and J. Hur, “Unveiling
hardware-based data prefetcher, a hidden source of information leakage,”
in Conference on Computer and Communications Security (CCS), 2018,
p. 131-145.

Y. Shin, H. C. Kim, D. Kwon, J. H. Jeong, and J. Hur, “Unveiling
hardware-based data prefetcher, a hidden source of information leakage,”

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

in Conference on Computer and Communications Security (CCS), 2018,
pp. 131-145.

S. Siby, M. Judrez, N. Vallina-Rodriguez, and C. Troncoso, “DNS
privacy not so private: the traffic analysis perspective,” in Privacy
Enhancing Technologies Symposium (PETS), 2018, pp. 1-19.

S. Somogyi, T. F. Wenisch, A. Ailamaki, and B. Falsafi, “Spatio-
temporal memory streaming,” pp. 252-263, 2006.

S. van Schaik, M. Minkin, A. Kwong, D. Genkin, and Y. Yarom,
“CacheOut: Leaking data on Intel CPUs via cache evictions,” pp. 339—
354, 2021.

J. R. S. Vicarte, M. Flanders, R. Paccagnella, G. Garrett-Grossman,
A. Morrison, C. W. Fletcher, and D. Kohlbrenner, “Augury: Using data
memory-dependent prefetchers to leak data at rest,” in Symposium on
Security and Privacy (S&P), 2022, pp. 1491-1505.

D. Wang, Z. Qian, N. Abu-Ghazaleh, and S. V. Krishnamurthy, “PAPP:
Prefetcher-aware prime and probe side-channel attack,” in Design Au-
tomation Conference (DAC), 2019, pp. 1-6.

H. Xiao and S. Ainsworth, “Hacky Racers: Exploiting instruction-level
parallelism to generate stealthy fine-grained timers,” in International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), vol. 2, 2023, pp. 354-369.

M. Yan, R. Sprabery, B. Gopireddy, C. Fletcher, R. Campbell, and
J. Torrellas, “Attack directories, not caches: Side channel attacks in a
non-inclusive world,” in Symposium on Security and Privacy (S&P),
2019, pp. 888-904.

Y. Yarom and K. Falkner, “Flush+Reload: A high resolution, low noise,
L3 cache side-channel attack,” in USENIX Security Symposium (USENIX
Security), 2014, pp. 719-732.

K. Zhang and X. Wang, “Peeping tom in the neighborhood: Keystroke
eavesdropping on multi-user systems.” in USENIX Security Symposium
(USENIX Security), 2009, pp. 17—32.

Z. N. Zhao, A. Morrison, C. W. Fletcher, and J. Torrellas, “Binoculars:
Contention-based side-channel attacks exploiting the page walker,” in
USENIX Security Symposium (USENIX Security), 2022, pp. 699-716.

APPENDIX A
ARTIFACT APPENDIX

A. Abstract

PREFETCHX is a hardware side-channel inside the 37¢
Generation Intel Xeon processor family’. In this artifact, we
provide the needed environments and information to reproduce
the main results presented in the paper, i.e., the RSA attack,
the keystroke attack, and the network traffic attack.

B. Artifact Check-List (Meta-Information)

Compilation: GCC 8.4.0 or above with -O1

Run-time environment: Ubuntu 20.04

Hardware: AWS mé6i.xlarge

Execution: In three cases, each can be finished in minutes.
Some of them may require multiple runs.

Metrics: Memory latency, indicating if the XPT prefetcher is
triggered or not.

Output: Terminal output or figures that show if the XPT
prefetcher is (not) triggerable.

Experiments: Scripts provided.

How much disk space required (approximately)?: 256MB
How much time is needed to prepare workflow (approxi-
mately)?: 10 mins

How much time is needed to complete experiments (approx-
imately)?: Half an hour

Publicly available?: Yes

Code licenses (if publicly available)?: Creative Commons
Attribution 4.0 International

Archived (provide DOI)?: 10.5281/zenodo.10118346

7the latest Xeon processors at the time of paper submission

https://gnupg.org/
https://radiable56.rssing.com/chan-25518398/article18.html
https://www.intel.sg/content/www/xa/en/architecture-and-technology/software-guard-extensions-enhanced-data-protection.html
https://www.intel.sg/content/www/xa/en/architecture-and-technology/software-guard-extensions-enhanced-data-protection.html
https://www.intel.com/content/www/us/en/developer/articles/guide/hpc-cluster-tuning-on-3rd-generation-xeon.html
https://www.intel.com/content/www/us/en/developer/articles/guide/hpc-cluster-tuning-on-3rd-generation-xeon.html

C. Description

1) How to Access: We leverage the AWS EC2 mé6i.xlarge
instance to launch our attacks and thus recommend using this
instance to reproduce our attack results.

2) Hardware dependencies: PREFETCHX should run on
Intel 3¢ Generation Xeon Processors.

D. Installation

The user should first create an AWS EC2 account and
switch the region to us-east-1 (N.Virginia). The user then
needs to launch an mé6i.xlarge instance with the Ubuntu
20.04 operating system. After logging into the instance and
downloading the code from the 10.5281/zenodo.10118346
(https://zenodo.org/records/10118346/files/prefetchx.zip) via
wget. After that, the user should first install all dependencies
by entering the prefetchx directory and running:

$prefetchx: ./pre-built.sh

E. Experiment workflow

We will reproduce RSA attack (Section VIII-A), keystroke
attack (Section VIII-B), and network traffic attack (Sec-
tion VIII-C). All of them are independent; users can start with
any of them. We have pre-compiled all codes, but you can
also recompile them by typing make in their corresponding
directories. Additionally, we have prepared a demo of running
all the attacks presented in Section A-F: refer to Zenodo DOL.
Reviewers can use this video as a reference to reproduce our
attacks.

F. Evaluation and expected results

1) RSA Attack: The user can enter the rsa_attack direc-
tory to reproduce our RSA proof-of-concept by running:

$rsa_attack: ./run.sh <secret key>

The expected result and attack result will then be output to
the terminal. We have done a further process to make the result
more understandable than Figure 9. The input secret key
needs to be in hex format, e.g., d7, with no prefix, i.e., @x.
As the AWS virtual machine introduces interference, if you
are not able to reproduce the result, you can try multiple
times or restart the instance and run the PoC again. Note that,
the attack might not fully recover the first bit of the secret
(least significant bit), however, since the first bit has only two
choices of 1 and O the full key can be recovered by testing
both choices.

2) Keystroke Attack: The user can reproduce the keystroke
attack by running:

$prefetchx: ./keystroke

The PoC will stop at some point and wait for the keystroke
to continue, and the user can type ENTER to trigger the

keystroke and continue the program. The memory latency
measured at different times is output on the screen. The user
should be able to see that the memory latency is higher when
the keystroke is triggered. Note that, the access latencies might
be higher than the numbers in Figure 10 due to extra noise,
but the keystrokes would still have visibly higher latency.

3) Network Traffic Attack: In this section, we introduce how
to monitor network traffic. To run the experiment, you should
first go to traffic directory and run:

$traffic: ./network traffic
Then, you should open another terminal and run:

$traffic: ./client

This command will create a localhost client to connect to the
server. The server will detect the connection and send a packet.
You will see a higher memory latency after the server sends
the packet, i.e., the XPT prefetcher status is reset. Similar to
the keystroke attack, the reported latency numbers might be
higher than Figure 11, but they would still show visibly higher
latency for network packets.

https://youtu.be/h0pRV1iKk74?si=sNuM3rcqsI25f4Kc

	Introduction
	PrefetchX Motivation and Overview
	The XPT Prefetcher as a Leakage Source
	PrefetchX Threat Model and Attack Surface

	Background
	Prefetching
	Translation Lookaside Buffer and Page Tables

	Reverse-Engineering the XPT Prefetcher
	Triggering the XPT Prefetcher
	Indexing into the XPT Prefetcher
	Page Boundary
	Number of Entries and Set Associativity
	Benefits of the XPT Prefetcher
	Key Observations and Leakage Sources
	Summary of the XPT Prefetcher Operations

	PrefetchX Attack Primitives
	PrefetchX-Evict
	PrefetchX-Flush

	Cross-Core Side-Channel Attacks
	Attacking Real-World Square-and-Multiply RSA
	Attacking Low-Resolution User Privacy without Synchronization
	Attacking Keyboard Activities
	Attacking Network Traffic

	Cross-Core Covert-Channel Attacks
	Cross-Core Covert-Channel Attack via PrefetchX-Evict
	Cross-Core Covert-Channel Attack via PrefetchX-Flush

	Experimental Results
	RSA Side-Channel Attacks
	Keystroke Side-Channel Attack
	Network Traffic Side-Channel Attack

	Potential Mitigation
	Related Work
	Conclusion
	References
	Appendix A: Artifact Appendix
	Abstract
	Artifact Check-List (Meta-Information)
	Description
	How to Access
	Hardware dependencies

	Installation
	Experiment workflow
	Evaluation and expected results
	RSA Attack
	Keystroke Attack
	Network Traffic Attack

