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Abstract—Many hardware structures in today’s high-
performance out-of-order processors do not scale in an efficient
way. To address this, different solutions have been proposed that
build execution schedules in an energy-efficient manner. Issue
time prediction processors are one such solution that use data-
flow dependencies and predefined instruction latencies to predict
issue times of repeated instructions. In this work, we aim to
improve their accuracy, and consequently their performance, in
an energy efficient way. We accomplish this by taking advantage
of two key observations. First, memory accesses often take
additional time to arrive than the static, predefined access
latency that is used to describe these systems. This is due to
contention in the memory hierarchy and variability in DRAM
access times. The use of this observed delay is important to
optimize a processor’s execution schedule, as previous works that
use predefined information demonstrate performance losses as
high as 25%. Second, we find that these memory access delays
often repeat across iterations of the same code. This, in turn,
allows us to predict the arrival time of these accesses.

In this work, we introduce a new processor microarchitec-
ture, that replaces a complex reservation-station-based scheduler
with an efficient, scalable alternative. Our proposed scheduling
technique tracks real-time delays of loads to accurately predict
instruction issue times, and uses a reordering mechanism to
prioritize instructions based on that prediction, achieving close-
to-out-of-order processor performance. To accomplish this in an
energy-efficient manner we introduce: (1) an instruction delay
learning mechanism that monitors repeated load instructions and
learns their latest delay, (2) an issue time predictor that uses
learned delays and data-flow dependencies to predict instruction
issue times and (3) priority queues that reorder instructions based
on their issue time prediction. Together, our processor achieves
86.2% of the performance of a traditional out-of-order processor,
higher than previous efficient scheduler proposals, while still
consuming 30% less power.

I. INTRODUCTION

With each processor generation, architects aim to improve
core performance while maintaining energy efficiency. To
achieve high levels of performance, a processor must be able
to build aggressive schedules that exploit instruction-level
parallelism (ILP) and memory-level parallelism (MLP). One
of the main challenges in this process is reordering instructions
in a scalable, energy efficient manner. Traditional out-of-
order processors schedule ready instructions using complex
schedulers, that dynamically build data-flow dependencies
and implicitly learn instruction delays. They achieve this by
monitoring, waking up and issuing instructions once their
operands are produced. However, as previous studies have
shown [1], [2], this technique uses power hungry hardware
structures that inefficiently scale processor performance.

To build efficient, scalable hardware that provides both
high performance and energy-efficiency, previous research has
proposed a number of techniques covering both in-order and
out-of-order processors. Some examples include parking non-
ready instructions to better utilize available resources [3]–
[5], bypassing stalled instructions or filtering instructions
based on their criticality to reduce stalling delays [6]–[9],
replaying stalled instructions to avoid blocking the instruc-
tion queue [10] and instruction prescheduling using data-
flow dependencies [11], [12]. Some solutions make the re-
alization that the schedules of general-purpose applications
are highly regular and repeat during execution; these pro-
pose issue time prediction processors that try to explicitly
predict when instructions will be ready to issue, using data-
flow dependencies and pre-defined instruction delays [13]–
[21]. But, unfortunately, without explicit knowledge of real-
time instruction delays, the issue time predictions will never
be accurate enough to achieve close-to out-of-order core
performance in an efficient way. On the other hand, some
works [1], [2] propose hybrid processors where an out-of-
order core produces repeated instruction schedules, taking into
account true memory access latency, and offloads them to
simple in-order cores. However, these solutions require the
implementation of two cores which increases design cost.

In this work we aim to overcome the limitation of issue time
prediction processors by dynamically building the knowledge
of real-time instruction delays with low-cost hardware. In addi-
tion, we introduce an instruction reordering technique that uses
this knowledge to prioritize instructions based on data-flow
and timing information in a highly efficient way. We achieve
high performance (and in some cases, outperform cores with
expensive on-demand issue structures used by traditional out-
of-order cores), with a light-weight structure that understands
program dependencies and timing information to prioritize key
instructions when necessary. We do this with a delay-based
scheduling mechanism that uses latency information as seen
by the core itself, instead of pre-defined values that have been
used in all previous works up to now.

In this paper, we propose a processor microarchitecture
that dynamically prioritizes the issuing of instructions, just in
time for execution, by recording real-time delays of repeated
loads (i.e., in loops) and learning data-flow dependencies of
instructions to accurately predict issue times of the same in-
structions in future appearances. It improves energy efficiency
by replacing reservation-station based instruction queues with
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priority queues that reorder instructions using the predicted
issue time as their ordering policy, and reduces complexity by
issuing only from the head of queues.

In this work, we make the following contributions:

• An efficient issue time prediction processor with prior-
itization hardware that enables instruction reordering to
achieve 86.2% of the performance of the upper-bound (a
traditional out-of-order baseline), while consuming 30%
less power (Section IV);

• An issue time prediction algorithm that uses real-time
load delays to enable accurate prediction of issue times
for repeated instructions. A prediction that facilitates the
prioritization of key instructions to fill the gaps between
stalled instructions, improving the performance of issue
time prediction processors by 5.5%-25% on average
(Section III);

• A comprehensive evaluation of the proposed microarchi-
tecture with quantitative comparison to state-of-the-art
issue time prediction processors (Sections V and VI).

II. MOTIVATION AND OVERVIEW

One of the key reasons why out-of-order processors are
able to achieve high performance is because of the aggressive
scheduling of instructions. Past research suggests that out-of-
order schedules are repeated [22] across loop iterations and
can be learned [1], [2] or predicted by assuming a pre-defined
delay, as specified in the specifications for different types of
instructions [11], [12], [15], [16], [21]. But, although many
instructions execute with static delays, like traditional addition
and multiplication, load instructions that miss in the L1 can
have variable latency, depending on the level of the memory
hierarchy they access.

Our study shows that even for accesses to the same level
of the memory hierarchy, different load instructions can have
different delays due to bandwidth contention in the memory
hierarchy and the variability in DRAM access times. More
specifically, we see variations across all PCs of as many as 4
cycles for L2 accesses and more than 2× the number of cycles
for DRAM accesses compared to the specifications defined
by the implementation. Therefore, assuming a single mini-
mum pre-defined delay for memory accesses is not sufficient
to accurately predict instructions issue times. On the other
hand, Figure 1 shows that memory access times of loads in
different appearances are repeated over consecutive iterations,
on average 92.8% of the time.

The key insight of this paper is that to accurately predict
repeated instruction issue times and build a high performance
schedule, learning the latest delay of memory accesses is
required. In this work, we build schedules and reorder instruc-
tions in an energy efficient way using three core components
that can replace the traditional out-of-order scheduler: (1) an
instruction delay learning mechanism that tracks delays of
load instructions over repeated appearances, (2) an issue time
predictor that dynamically predicts when an instruction will be
ready to issue and (3) priority queue reordering that use these
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SPEC CPU2006 Applications

Fig. 1: Percentage of repeated loads with identical access time
in consecutive iterations. On average more than 92% of loads
in the SPEC CPU2006 benchmark applications have the same
access time in consecutive iterations.

predictions to prioritize key instructions, even after dispatch
has occurred.

III. ISSUE TIME PREDICTION

To achieve aggressive, high performing schedules we need:
(1) to schedule instructions in a data-flow manner that satisfies
producer-consumer relationships and (2) to reorder instruc-
tions such that idle cycles between dependent instructions
are filled with independent work. Data-flow dependencies
provide a scheduling policy where the execution of instructions
follows the flow of the data from producers to consumers.
The processor dynamically derives data-flow dependencies
from the input and output operands of instructions. Because
instructions require a certain amount of time to produce their
output data, gaps of idle cycles are formed between dependent
instructions. To achieve a high performing schedule, these gaps
must be filled with independent instructions that are ready to
execute. In this work, we identify these gaps by learning real-
time delays of load instructions that miss in the L1 cache.
All other operations have static delays; therefore, learning
is not required. Assuming instructions in repeated code (e.g.
loops) appear more than once, we combine instruction delays
with their dependencies to predict their issue time in future
appearances.

A. Prediction Algorithm

The predicted issue time of a consuming instruction
(TPredicted(c)) is estimated as the maximum value of the
addition of the predicted issue time (TPredicted(p)) and the
delay (TDelay(p)) of each of its producers (Equation 2). The
delay (TDelay(p)) of each producer p is calculated as the differ-
ence of its completion time (TComplete(p)) and its issue time
(TIssue(p)) (Equation 1). An instruction can be issued only
after all its producers have completed, therefore the algorithm
chooses the maximum value. By using the predicted issue time
of the producers, the algorithm inherently propagates data-flow
dependency chain delays to all instructions, thus the resulting
predicted issue time can directly be used to order instructions.



An instruction’s delay is calculated as:

TDelay(p) = TComplete(p)− TIssue(p) (1)

An instruction’s predicted issue time is estimated as:

TPredicted(c) =
P

max
p=0

[TPredicted(p) + TDelay(p)] (2)

The proposed technique requires the core to observe and
store delay information (TDelay(p)) of repeated instructions
(remember that storing delays is only required for load in-
structions that miss in the L1 cache as all other instructions
have static delays). In the absence of this information (first
appearance of an instruction or non-repeated instructions), the
algorithm assumes the lowest delay, to avoid unnecessary stalls
in the execution. Because load instructions access different
levels of the memory hierarchy in different iterations in an
unpredictable way, constant monitoring and retraining of the
predictor is required to keep the delay information up to date.
Therefore, stored load delays are updated every iteration.

B. Example

To demonstrate how the issue time prediction algorithm
works, we annotate a code region, see Table I, that illustrates
two loop iterations of a code snippet of the hmmer appli-
cation from the SPEC CPU2006 benchmark suite. Although
this example demonstrates reordering within one basic block,
in normal execution, there are no restrictions in reordering
instructions between different blocks.

For the purpose of this example, we assume a simple in-
order core with 1 issue per cycle, loads/stores take 4 cycles to
execute, and all other instructions execute in 1 cycle. TIssue

corresponds to the issue cycle, TDelay is the instruction’s delay
in the current iteration and TPredicted is the predicted issue
time for its next appearance, in relation to producers. ∆this

and ∆ooo are the number of cycles an instruction was issued
earlier, compared to a traditional in-order execution, for the
proposed solution and a fully out-of-order core respectively.
Note, that now is a relative time and is different for each
instruction. It merely means that an instruction is ready for
execution immediately after it is dispatched.

Load instruction ¶ produces a result for instruction ·.
Instruction ¸ is a store that depends on ·, while ¹ and º are
loads producing the operands for instruction ». Instructions
¸ and » are producers of instructions ¼ and ½, while store
instruction ¾ is a consumer of instruction ½. Based on these
dependencies, the loop consists of two major dependency
chains: ¶ → · → ¸ and ¹,º → ». These chains are
independent of one another, and therefore instructions can
be reordered between these chains as needed. Instruction ·
must wait for 4 cycles before it can issue because of its
dependence on load instruction ¶. An in-order core will stall
for 4 cycles between the two instructions. But an out-of-order
core will fill these idle cycles by issuing instructions ¹ and º
earlier. To emulate this, we keep track of timing information
for the relevant instructions. During the first iteration, we
collect the issue cycle (TIssue) and the delay (TDelay) of every

TABLE I: Issue time prediction example code of the hmmer
application. We assume that instructions are already in the
instruction window. ∆ is the number of cycles an instruction
was issued earlier in the proposed solution and an out-of-order
core, compared to a traditional in-order core. Rows marked in
green show the reordered instructions and in blue instructions
that were issued earlier than their previous appearance. While
the example uses instructions, the actual implementation uses
uops.

Repeated Instructions Prediction Algorithm
TIssue TDelay TPredicted ∆this ∆ooo

It
er

at
io

n
1

¶ mov (r10,rax,4),ecx 2 4 now 0 0

· add 0x0(r13,rax,4),ecx 6 1 T 1
pred+4 0 0

¸ mov ecx, 0x4(rdx) 7 4 T 2
pred+1 0 0

¹ mov 0x18(rsp), rbx 8 4 now
′

0 -5

º mov (r9,rax,4), r15d 9 4 now
′′

0 -5

» add (rbx,rax,4), r15d 13 1 T 5
pred+4 0 -5

¼ cmp ecx, r15d 14 1 T 6
pred+1 0 -3

½ cmovge r15d, ecx 15 1 T 7
pred+1 0 -3

¾ mov ecx, 0x4(rdx) 16 4 T 8
pred+1 0 -3

...
¶ mov (r10,rax,4),ecx 20 4 now 0 0

¹ mov 0x18(rsp), rbx 21 4 now
′

-5 -5

º mov (r9,rax,4), r15d 22 4 now
′′

-5 -5

· add 0x0(r13,rax,4),ecx 24 1 T 1
pred+4 0 0

¸ mov ecx, 0x4(rdx) 25 4 T 2
pred+1 0 0

» add (rbx,rax,4), r15d 26 1 T 5
pred+4 -5 -5

¼ cmp ecx, r15d 29 1 T 6
pred+1 -3 -3

½ cmovge r15d, ecx 30 1 T 7
pred+1 -3 -3

It
er

at
io

n
2

¾ mov ecx, 0x4(rdx) 31 4 T 8
pred+1 -3 -3

...

instruction and associate them with the data-flow dependencies
to predict the issue time (TPredicted) of the same instructions
in future appearances. In the second iteration, instructions ¹,
º (marked in green) bypass independent instructions that have
a higher predicted issue time.

Observing the ∆s in the second iteration allows us to see
the benefit of this technique. After one iteration, the prediction
algorithm builds a schedule that is the same as the schedule of
the out-of-order core as shown by the matching deltas (∆this

and ∆ooo). The ∆this of instructions ¹ and º is -5 because
they are issued 5 cycles earlier compared to execution on an
in-order core. Instructions that are part of the same dependency
chain will also benefit, and will also be able to issue earlier
(instructions », ¼, ½ and ¾ in the example (marked in blue)).
The ∆ooo is the same for both iterations because the out-of-
order core can reorder instructions in every iteration.

The issue time predictor requires just one iteration to
learn real time load instruction delays before applying them
in the prioritization algorithm that will reorder instructions
accordingly. However, in our implementation, instructions are
also reordered in the first iteration by assuming L1 hit access
time for all load instructions to avoid unnecessary stalls.

IV. PROPOSED MICROARCHITECTURE

By tracking real-time load delays and instruction dependen-
cies, we can more accurately predict instruction issue times
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Fig. 2: The proposed microarchitecture design. In green dashed
lines we mark the Instruction Delay Learning process and in
blue dotted lines the Issue Time Prediction process.

and build aggressive schedules that mimic those of an out-of-
order core, as shown in the example in Section III-B. Using
priority-based ordering hardware and the issue times predicted
as the priority index it can efficiently reorder instructions.
Figure 2 shows the schematic representation of the proposed
architecture. Green colored components are the structures
added to implement the Instruction Delay Learning process,
while blue colored structures implement the Issue Time Pre-
diction and Priority Queue Reordering in the execution unit.

In step 1 of the Instruction Delay Learning process instruc-
tion dependencies are stored in the Dependency Table (DT),
that contains an entry for each physical register, and maps it
to the instruction pointer that last wrote to this register. In step
2 the issue and completion time of load instructions that miss
in the L1 cache are stored per PC in a direct-mapped memory
structure called DelayCache. For every dispatched instruction
the Issue Time Prediction algorithm identifies its producers
from the DT in step A and their delays from the DelayCache
in step B , to calculate the Predicted Issue Time in step C that
will be used by the Priority Queues (PQs) as a priority index
to reorder instructions in the execution engine.

A. Instruction Delay Learning

While instructions are being fetched, decoded and renamed,
dependencies are stored and built by the Dependency Table
(DT). As instructions start executing, delays of instructions
that caused upcoming instructions to stall (L1 cache miss)
are stored in the DelayCache, initiating the training of the
prediction mechanism. In this work, the delay represents the
execution time of an instruction with respect to its issue time.
An alternative approach not used in our final design stores the
delay of an instruction with respect to its dispatch time, but
our study shows large slowdowns in such design due to the
unpredictability of structural hazards (see Figure 8a).

Although most instructions require a static delay before
delivering their result, it is loads that cause the majority of
the stalls, and their delay can be variable and unknown at
dispatch time. In this implementation we only store delays of
loads that miss in the L1 and for all other instructions we use
their predefined delay (derived from their type or L1 access
time for loads that don’t miss). This allows us to minimize the

storage overhead and power requirements when implementing
the DelayCache.

Due to application characteristics that relate to branch
behavior and memory access patterns, load delays are unpre-
dictable in different iterations (see Section VI-E/Figure 9a).
Therefore, the DelayCache is continuously updated with the
latest delay for every stored instruction and the issue time
predictor is trained in every iteration of a repeated code. Our
experiments show that, for the majority of the applications
tested, training every iteration produces the highest perfor-
mance. Activity-based power analysis shows that training is
not expensive, as only a subset of load instructions have a
variable delay that require an update to the DelayCache.

Although our implementation trains the issue time predictor
using load delay information, the issue prediction mechanism
can be applied as-is to other instructions with variable delay,
such as floating point division and transcendental functions. In
this work, we do not cover their potential performance benefits,
as they do not occur often in the applications we evaluate.

B. Issue Time Prediction and Dispatch
The delays of instructions stored in the DelayCache com-

bined with the dependencies from the Dependency Table
(DT), provide the necessary inputs for predicting the issue
time of instructions as described in Section III. For every
renamed instruction, the DT is queried using the instruction’s
input operands to find possible producers. In a DT hit, the
DelayCache is queried with the producer’s addresses, and cor-
respondingly, in a DelayCache hit, the delay will be retrieved
to calculate the current instruction’s issue time. In case of a
miss in the DelayCache, the value of an L1 hit (4 cycles in
our microarchitecture) is used to avoid unnecessary delays in
the absence of misses.

The Execution Engine, which has the primary task of re-
ordering instructions, is built using multiple priority instruction
queues, with each functional unit having its own dedicated
queue. Although instructions from multiple queues can execute
out-of-order, instructions in a single queue can be issued only
from the head of the queue and only to the corresponding
functional unit. Because each queue corresponds to a specific
functional unit, instructions are dispatched to the queues
according to their type. If an instruction matches to more than
one queue, data-flow dependencies are used to steer incoming
instructions to the first queue that has a producing instruction
at its tail, otherwise it will go to the queue with the least
number of instructions. Our studies indicate that round-robin
and global dependence steering schemes reduce performance
compared to our scheduling methodology (see Figure 10 for
more details).

Issue times are predicted for first time appearing or non-
repeated instructions even in the absence of delay information
by assuming the lowest delay (L1 access hit), to avoid unnec-
essary execution stalls.

C. Priority Queue Reordering and Issue
In the proposed architecture we remove the traditional

reservation-station-based scheduler, and instead, reorders in-



structions using light-weight and efficient priority instruction
queues in the execution engine. Priority Queues (PQ) are built
using Systolic Priority Queues [23], where instructions are
reordered using a priority index (their predicted issue time
in this case). Insertion and removal in a priority queue happen
at the head as described in [23] thus, highest-priority inserted
instructions are directly available from the head of a PQ on
the next cycle, therefore back-to-back instruction execution is
achieved. A free list of entries in the queues is also used so
that new entries can be inserted at a free position. Because
each functional unit has its own instruction queue and only
instructions at the head of each queue can be issued, complex
selection logic is not required to decide which instructions
to issue every cycle. When an instruction at the head of a
queue has unresolved data dependencies the queue blocks.
However, instructions in other queues are not affected as only
instructions in a blocked queue will stall.

D. Register Renaming

Register renaming works in the same way as in traditional
out-of-order processors. Renaming replaces destination archi-
tectural registers with physical registers to eliminate the name
dependencies (output dependencies and anti-dependencies)
between instructions and it automatically recognizes true de-
pendencies. True data dependencies between instructions allow
for a more flexible execution of instructions. Maintaining the
status for each register, indicating whether or not it has been
computed yet, allows the execution of instructions to be per-
formed out-of-order when there are no true data dependencies.

E. Memory Dependencies

Memory operations are also reordered to maximize perfor-
mance. Contrary to register dependencies that can be resolved
at decode time, store-to-load memory dependencies with over-
lapping memory addresses can lead to incorrect execution if
loads or stores are executed before older stores that refer
to the same address. Memory dependencies are accurately
predicted by identifying the stores upon which a load depends
(store set), and communicate that information to the issue time
predictor [24]. Similarly to a traditional out-of-order processor,
using the ROB and the LSU prevents memory violations. The
LSU tracks executing memory operations and makes sure that
they are committed in program order. Instructions are verified
before commit to ensure that no memory violations will be
visible to the architecture state.

F. Commit

The commit stage checks for exceptions before it releases
structures such as store buffer entries and rename registers.
Instructions enter in-order into the ROB during dispatch,
record their completion out-of-order, and leave the ROB in-
order. Interrupts and branch misspeculation events are handled
as in other conventional processors. However, retraining of the
issue time predictor is not required in this case and if the core
matches a repeated instruction from the DelayCache, it will
be reordered immediately.

TABLE II: Power and area of the new design structures. In
parenthesis is their overhead over the entire core. The Priority
Queues are implemented using 2×13 entries per unit to match
the 64 entries of the out-of-order baseline.

Component Organization Ports Area (µm2) Power (mW)
DT 256 entries × 1B 12r4w 14.54 (0.37%) 11.74 (0.37%)
DelayCache 512 entries × 12B 4r1w 103.31 (3.25%) 43.41 (1.87%)
Priority Queues 5 × 2 × 13 entries × 1B 1r1w 0.28 (0.01%) 1.49 (0.05%)

G. Multi-core Support

In a multi-core implementation, new connections are added
in the memory hierarchy for loads accessing remote memory
locations. Issue time prediction in the proposed design is based
on memory access latency at any part of the memory hierar-
chy; therefore, the prediction algorithm will adapt accordingly
and learn remote access delays. As the coherence misses
could be less predictable, it would require new studies and,
potentially, structure changes to handle these cases. However,
this is out of the scope of this work. This core, as implemented,
does not change any significant components in the back-end
of the processor and, therefore, is compatible with the original
coherence and consistency models as described in the core.

V. EXPERIMENTAL SETUP

The performance evaluation of this work was performed on
a modified version of the Sniper Multi-Core Simulator [25],
version 6.2 that uses the Instruction Window-Centric core
model [26]. We use a detailed DRAM model that takes into
account DRAM page locality, and other low-level details that
account for all detailed DRAM delays. Power and energy
analysis was conducted with McPAT [27] version 1.3, modified
to support our microarchitecture. Applications were compiled
with the GCC compiler (-O2 optimization flag) and executed
with the reference inputs of the SPEC CPU2006 benchmarks,
using a single, representative (SimPoint-based [28]), 750
million instruction trace. Average results are computed by
combining output results of common workloads (but different
input) into a weighted value before averaging the results across
applications. The details of added structures to the core, with
area and average power consumption, are listed in Table II
and the details of the simulated microarchitectures are listed
in Table III. Performance is measured in Instructions per Cycle
(IPC) and energy efficiency in Million Instructions Per Second
per Watt (MIPS/Watt) and Energy Delay Product (EDP). Un-
less explicitly stated, all summary results are weighted average
values of all applications, while black bars represent results of
the proposed design configuration described in Table III.

VI. RESULTS AND ANALYSIS

A. Performance Analysis

The proposed processor achieves 2.7× and 86.2% of the
performance of the baseline in-order and out-of-order cores
respectively (Figure 3). Although instructions issue only from
the head of the instruction queues, it achieves near-out-of-order
performance by de-prioritizing instructions that were predicted
to stall the execution (i.e. consumers of loads that do not hit in



0

1

2

3

IP
C

in-order This Work out-of-order

Fig. 3: Performance of the proposed implementation compared to in-order and out-of-order baseline processors. For clarity,
we plot average values for applications with multiple inputs (<application name>.avg).

TABLE III: Simulated microarchitecture parameters.

Component Parameters
in-order This Work out-of-order

Core 2GHz, superscalar
Issue width 4-way 4-way 4-way
Reorder logic none 128-entry ROB 128-entry ROB,

5×13-entry PQs 64-entry RS
DT - 256 entries (× 1B) -
DelayCache - 512 entries (× 12B) -
Branch Predictor TAGE-SC-L [29]
Branch Penalty 6 cycles 8 cycles 8 cycles
Execution units 2 int, 1 fp, 1 branch, 1 load/store
L1-I Cache 32KB, 4-way LRU
L1-D Cache 32KB, 8-way, LRU, 4 cycle, 8 outstanding
L2 cache 512KB, 8-way, LRU, 8 cycle, 12 outstanding
Prefetcher L1, stride-based, 16 independent streams
Main memory DDR3-1600, 800 MHz, ranks: 4, banks: 8,

page size: 4KB, bus: 64 bits,
tRP-tCL-tRCD: 11-11-11

Technology node 28nm

the L1 cache). This allows ready instructions to move to the
head of the instruction queues. Note that when an instruction
at the head is not ready to issue, the queue will block.

Per instruction analysis shows that loads and their address
generating instructions are issued earlier in the new design,
compared to the out-of-order baseline. This happens because
address generating instructions rarely depend on long-latency
operations [6], therefore, the new processor predicts shorter
issue times for them and their consuming loads, even com-
pared to older instructions that are also ready to issue. In an
age-based ordering scheduler of an out-of-order core however,
ready instructions are issued based on their fetched order.
Therefore, loads that are issued earlier result in shorter data
waiting time. This is reflected in applications, like astar,
dealII and povray where this work’s performance meets
or exceeds the performance of the out-of-order. While in
general, this work performs as well as the out-of-order for
compute-intensive applications, there are a few that show
lower performance. Applications like gamess that are not
bound by long-latency memory accesses, stress the multi-
queue backend of the new design, where instructions can issue
from the head of a queue, to the corresponding functional unit
only.

The main reasons the proposed processor is unable to meet
the performance of the out-of-order processor are: (1) the per
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Fig. 4: Normalized to the out-of-order: (a) Power consumption,
(b) Efficiency (MIPS/Watt), Power Delay Product (PDP) and
Energy Delay Product (EDP).

functional unit instruction queue design, (2) the prediction
algorithm training that requires at least one iteration to learn
real time load delays and (3) the accuracy of using the previous
load delay to predict the next delay. However, the design
is a trade-off made to significantly improve the processor’s
overall energy efficiency. An alternative single in-order issue
queue would severely limit the performance, while adding
selection logic over queues that can issue to multiple units or
using reservation-station-based queues would greatly increase
power consumption (see Figure 8b). While the delay prediction
training and accuracy is an application dependent overhead
that does not have a major impact on overall performance (see
Figure 9a), even on a larger core. Our analysis shows that on
a scaled-up, Skylake-like processor, the additional overhead is
only 3%.

B. Power and Efficiency Analysis

Figure 4a shows power results for the same processors,
normalized to the out-of-order baseline. The in-order core
consumes 31.6% the power of the out-of-order, while the
proposed processor consumes 67.4% its power. One of the
main reasons for the power reduction in this work is the
removal of the reservation-station-based instruction scheduler
that takes 13% of the total power of the out-of-order core
(including wake-up and selection logic). The rest of the power
gained is coming from the difference in runtime compared
to the out-of-order. As performance increases, the amount
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Fig. 5: (a) Performance and (b) Energy efficiency of state-
of-the-art issue time prediction processors, normalized to the
baseline out-of-order processor.

of dynamic power also increases. Dynamic power is data
dependent and is closely tied to the number of transistors
that change state [30]. The DelayCache, the Priority Queues
and the DT contribute only 2% to the total power of the new
core. Priority queues are efficiently implemented using simple
interconnected FIFO queues, while the small number of delays
that need to be stored allows for a small size DelayCache with
few accesses, consequently little dynamic power consumed.

Figure 4b outlines the energy efficiency normalized to the
out-of-order core. Despite its low performance, the simplicity
and low-power hardware of the in-order core provide a 21%
increase in efficiency over the more complex out-of-order core.
The significantly higher performance of this work, in conjunc-
tion with the lower total power, achieves an improvement of
22.7% over the out-of-order. On the right side of Figure 4b,
efficiency is outlined as a metric of the Power Delay Product
normalized to the out-of-order core. The proposed processor
achieves a reduction of 19% and 1% in PDP compared to the
out-of-order and in-order respectively.

C. State-of-the-art Issue Time Predictors

Figure 5 shows performance and energy efficiency results
of state-of-the-art issue time predictors implemented on top
of our baseline processors and compared to this work. We
categorize these processors to those that eliminate the tra-
ditional reservation-station-based scheduler (without-RS) and
those that still use it (with-RS). To calculate the efficiency for
the processors with-RS we used the power consumption of
the out-of-order core as-is, without adding the overheads of
their added structures. We use these results only as a reference
and note that in a real implementation, their efficiency would
actually be lower.

The Complexity-Effective [12] solution steers instructions to
in-order queues based on their dependencies alone. Dependent
instructions are steered to the same queue, while independent
instructions are steered to empty queues. This solution only
achieves 61.8% of the out-of-order core performance because

it does not take advantage of the delays between dependent
instructions. Cyclone [10] uses dependencies to predict instruc-
tion issue times and employs a selective replay mechanism for
stalled instructions. However, performance is low due to the
conflicts arising during instruction flow because of its queue
structure and the limitation that only instructions at the head
of the queue are candidates for issuing [14]. Using real-time
delay information on top of data-flow dependencies to predict
instruction issue times in This Work, solves these problems
and achieves significant performance improvement over other
processors without-RS.

Predicting only L1 hits [21] and assuming L2 (L1 Hit
Prediction L2 delay) or DRAM (L1 Hit Prediction DRAM
delay) access delays for all other loads does not improve out-
of-order processor performance, because it ignores the actual
miss delay that is the key factor for stalling the pipeline.
Assuming L2 delay for all misses ignores DRAM accesses
and stalls the pipeline for extended periods of time and
using DRAM delay makes dependent instructions wait for an
unnecessary amount of time, even though they are ready to
execute. Data-flow Prescheduling [11] reorders instructions
before sending them to the instruction window using data-
flow dependencies and assuming a L1 cache-hit delay for all
loads. This optimistic assumption improves performance over
the out-of-order core as it does not delay ready instructions
in the issue window. However, as in all solutions with-RS,
misspredicted instructions will not stall the pipeline because
they will be overlapped using the out-of-order scheduler.

In general, processors with-RS produce higher performance
(Figure 5a) because the reordering is handled by their
reservation-station-based instruction queue. However, proces-
sors without-RS achieve higher energy efficiency (Figure 5b)
because of the simplicity of their design. These results high-
light the importance of using real-time delay information to
provide out-of-order performance when predicting instruction
issue times, while reordering instructions using priority queues
will achieve it in an energy efficient way (as we demonstrate
with This Work). We note that previous solutions investigated
their effectiveness using very large cores. We performed
experiments using similar simulation configurations and this
work scales in a similar way.

D. State-of-the-art Issue Time Predictors on the Proposed
Hardware

In Figure 6 we show results for the same state-of-the-art
issue time prediction techniques implemented on-top of the
proposed microarchitecture. With this study we highlight the
importance of using real-time delays and their effectiveness in
predicting instruction issue time. We categorize these solutions
to those that use only dependencies to reorder instructions
(Dependence-based) and those that use both dependencies and
load delays (Load Delay-based).

Dependence-based solutions achieve low performance be-
cause using only dependencies between instructions does not
take into account the idle time between dependent instruc-
tions. Load Delay-based solutions outperform Dependence-
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Fig. 6: Performance of state-of-the-art issue time prediction
techniques implemented on the proposed microarchitecture,
normalized to the out-of-order baseline. Because Complexity-
Effective does not use a prediction mechanism, its microar-
chitecture is implemented precisely as described in [12].

based solutions, but using a static delay, like Data-flow
Prescheduling [11], for all types of instructions results in
an average performance loss of 5.5% compared to the This
Work (detailed analysis shows up to 32% performance loss
for memory-intensive applications). Predicting L1 hits [21]
and assuming L2 (L1 Hit Prediction L2 delay) or DRAM
(L1 Hit Prediction DRAM delay) delays also incurs significant
overhead as they ignore access time to other memory regions
and stall instructions at the heads of the in-order multi-queue
backend of this design.

Using the instruction delay learning mechanism on the
baseline out-of-order improves performance only by 1.6%. The
ability of reservation-station-based scheduler to monitor and
issue instructions based on operand availability is sufficient
enough to get optimal performance. However, applying these
techniques on top of a simpler in-order-based core offers large
performance benefits as results for the This Work illustrate.
A limit study (This Work w/ RS-based PQs) can achieve
97.9% of the out-of-order core performance when associative
lookups are performed in the PQs to minimize issue time
mispredictions.

E. Proposed design Implementation Analysis

In this work we take advantage of the high levels of repeat-
ably of the code [22] to learn the delays of instructions up-front
and prioritize them on future encounters. Figure 7a shows the
number of cycles each application spends executing Repeated
and Debut instructions. Instructions that appear more than
once during execution are called Repeated, while instructions
seen for the first time are called Debut (including the first
appearance of Repeated instructions). Some applications (like
astar and mcf) see as much as 36% Debut instructions.
While some of this is an artifact of application sampling (see
Section V), there will always exist code that is seen only
once, either because of large Debut code or because of large
number of loops that do not fit in the DelayCache for the
entire execution of the application. Overall, a large number of

(a) Debut vs Repeated
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Fig. 7: (a) Cycles spent executing Debut instructions (appear
for the first time or miss in the DelayCache) and Repeated
instructions (hit in the DelayCache), (b) Cycles the instruction
queues are blocked due to unresolved dependencies.
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Fig. 8: Implementation options for (a) the prediction algorithm
and (b) the execution engine (Q and PQ: issue from the head,
RS: issue from any position in the queue, 1: one instruction
queue for all units, N: one queue per functional unit).

Debut instructions can potentially reduce performance as the
issue time predictor will not have real-time information for
these instructions and will have to use static delays instead,
that can produce issue time mispredictions.

In Figure 7b, we show the number of stalls at the head
of the queues due to unresolved dependencies, normalized to
the in-order processor baseline. The out-of-order processor is
not represented in this figure as it allows issuing from any
position in the instruction queue. Some applications, like gcc,
have long dependency chains and stall the processor more
often, while compute-intensive applications, like cactus, can
expose more ILP. Overall, the proposed core reduces stalled
cycles at the head of instruction queues by an average of 38%.

Structural hazards are another major source of stalls as
they can block the instruction queue by increasing resource
contention of the functional units. To take into account the
time an instruction waits in the instruction queue, we use
the dispatch time instead of issue time in calculating the
issue time prediction. However, instruction waiting times in
a dynamic processor environment are unpredictable across
iterations. Figure 8a shows that using the dispatch time instead
of the issue time in the prediction algorithm reduces the
performance by an average of 25.7%. The dynamic nature of
the proposed core changes the schedules in every iteration and
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Fig. 9: (a) Train for a number of iterations and use that
prediction thereafter (normalized to training every iteration),
(b) Use a saturating counter to update the delay every N
identical consecutive delays (normalized to This Work). Note
that the y-axis starts at 80%.
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Fig. 10: Steering instructions to priority queues: Round-Robin,
All-Dependencies (follow all producers in a queue) and Tail-
Dependencies (dependent on an instruction at a queue’s tail).

the time an instruction will wait in a queue, making structural
hazard delays unpredictable.

To minimize the impact of structural hazards in an energy
efficient way, the proposed core implements per functional
unit priority queues (PQ-N). Figure 8b shows results of
implementing a multi-queue back-end for each baseline core.
The performance of the in-order core is not improved as
instructions still need to be issued in program order (in-order-
Q-1 to in-order-Q-N). The proposed core (that uses a PQ-N)
achieves a performance improvement of 14.7% over a single
priority queue (PQ-1) implementation. Increasing the number
of reservation stations (RS) in the out-of-order processor and
limiting issue of each queue to a single functional unit (RS-
N), reduces its performance due to the limited destinations
an instruction can issue to. Implementing an RS-1 on this
work surpasses out-of-order performance by 1.6% as the
RS compensates for issue time mispredictions and removes
structural hazards completely. An RS-N solution suffers from
performance loss for the same reason as the out-of-order core.

Issue Time Training Frequency. Load latency analysis
shows that using the previous load delay (per PC) provides an
average of 92.8% accuracy for predicting the next delay value.
The training frequency of the issue time predictor depends on
the application and the number of times the instruction delay
changes throughout the execution. Using different predictor
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Fig. 11: Scaling the: (a) Priority instruction queues with a
128-entry ROB (the size refers to the total sum of all queues),
(b) number of functional units (each one normalized to its
corresponding out-of-order baseline) and (c) DelayCache.

training frequencies (Figure 9a) shows that the more often
the predictor is trained, the higher the performance that can
be achieved. Alternatively, using a saturating counter delay
predictor that updates the delay of an instruction in the
DelayCache only after the same delay appears for a number
of consecutive iterations (Figure 9b) shows a marginal average
improvement of 0.8% over this work (with sphinx3 the only
exception to achieve a 10% improvement due to the high
number of consecutive misses in the cache). Both of these
studies show that changes in different iterations of load access
delays of repeated instructions are highly unpredictable and do
not follow a specific pattern that can be easily learned. But,
in-depth analysis of the delays shows that in most consecutive
appearances the delay is the same (hence the 92.8% accuracy).

A more sophisticated branch-predictor-like mechanism
based on loops could store multiple delays per instruction to
train the predictor with higher confidence. However, our study
shows that storing as many as 5 delays per instruction and us-
ing the most frequent, the smallest, the largest or the average,
in the prediction does not further improve performance.

Instruction Steering Analysis. As described in Sec-
tion IV-B, the proposed design uses dependencies on instruc-
tions at the tails of the queues to dispatch new instructions
to the queues (Tail-Dependencies). We found this technique
to produce higher performance compared to either checking
dependencies to all instructions in a queue (All-Dependencies)
or inserting instructions in a Round-Robin scheme. Checking
for dependencies only at the tail of each queue achieves on
average 2.1% and 0.3% improvement over Round-Robin and
All-Dependencies respectively (See Figure 10).

Core Components Scalability. Figure 11 shows a scal-



ability study of the core structures and how they affect the
performance of the proposed design. The size of the priority
instruction queues (Figure 11a) affects the throughput of
the front-end. The number of functional units affects the
throughput of the backend (Figure 11b), while the size of
the DelayCache determines the number of delays that can be
stored (Figure 11c).

Stalling of the front-end can happen when instruction
queues are too small. The proposed core can stall even when
a single queue is full, therefore selecting the correct size is
important. Figure 11a shows that for the same ROB size (128
entries), a total of 64-entries for all queues (13 entries per
queue) achieves similar performance to a total size of 128
entries.

The port configuration of this work is based on an Intel
Nehalem core that supports 3 generic, 1 load and 2 store
(1 for address calculation and 1 for data) units. Figure 11b
shows results for a Skylake-based configuration (4 generic, 2
load and 2 store units) and Skylake+ (4 generic, 2 load and
4 store units). The proposed implementation achieves perfor-
mance within 10% and within 6.4% of their corresponding
out-of-order Skylake and Skylake+ processors respectively.
Figure 11c shows that performance improvement for more
than 64 entries in the DelayCache is marginal and levels off
at 512-entries for all applications tested. The DelayCache can
be small as we only store delays of load instructions that miss
in the L1 cache.

VII. RELATED WORK

There has been extensive work in the past on instruction re-
ordering to reduce runtime delays and improve processor per-
formance. Table IV presents state-of-the-art hardware solutions
in instruction reordering, the delays they try to mitigate, the
stage in the processor the reordering takes place and the type
of scheduler used to reorder instructions. High performance
comes from mitigating both Static and Dynamic delays, while
reordering instructions in the backend of the processor pro-
vides for higher flexibility. Unfortunately, the majority of past
solutions use an RS-based scheduler for reordering instructions
which limits energy efficiency improvement. In this work
we argue that smarter solutions are needed to significantly
improve energy efficiency, using a simpler and more scalable
scheduler (PQ) to reorder instructions in the backend, while
achieving high performance by addressing Static and Dynamic
delays. In this section we discuss different categories of
solutions that address runtime delays in instruction scheduling.

RS-based Schedulers. Many solutions use data-flow de-
pendencies to preschedule or prioritize instructions in order
to improve the performance or the efficiency of an out-of-
order processor. Data-flow Prescheduling [11] fetches and
reorders instructions in a prescheduling buffer using data-flow
dependencies. This provides for a larger effective window
size while keeping the issue buffer small. However, it does
not take into account variable delay instructions and assumes
static delays for all instructions (all loads are presumed to
hit in L1). Segmented Instruction Queues [20] divide large

TABLE IV: State-of-the-art instruction reordering processors
that try to mitigate delays coming from data-flow dependencies
(Static) and/or runtime delays (Dynamic). Reorder designates
the stage instructions are reordered at (Back: Back-end and
Front: Front-end). Scheduler is the reordering mechanism used
(RS: Reservation Station, FIFO: First In First Out, AST:
Associative Table, Replay: Reschedule stalled instructions,
CQ: Circular Queues and PQ: Priority Queues).

State of the art hardware in-
struction reordering St
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Data-flow Prescheduling [11] X Front & Back RS
Wait Instruction Buffer [4] X Front & Back RS
Long-Term Parking [3] X X Front & Back RS
Insequence Instructions [18] X Back RS
WiDGET [17] X Back RS
Runahead [31] X Back RS
Continuous Runahead [32] X Back RS
Load Scheduling [21] X Back RS
Segmented IQs [20] X X Back RS
Look-ahead Prediction [19] X X Back RS
Dynamos [1] X X Back RS+FIFO
Mirage [2] X X Back RS+FIFO
FIFOrder [9] X X Front & Back RS+FIFO
Dealy and Bypass [8] X X Front & Back RS+FIFO
N-use Issue Logic [16] X X Front & Back AST+FIFO
Deterministic Issue Logic [16] X Back RS+CQ
Distance Issue Logic [15] X Back RS+CQ
In-order SMT [33] X Front FIFO
Load Slice Core [6] X Front FIFO
Freeway [5] X X Front FIFO
Complexity-Effective [12] X Front FIFO
iCFP [13] X Front FIFO
CASINO [7] X Front FIFO
Wakeup-free [14] X X Front & Back Replay
Cyclone [10] X X Front & Back Replay
This Work X X Back PQ

instruction queues into smaller segments which can be clocked
at higher frequencies. They use dynamic dependence-based
scheduling to promote instructions from segment to segment
until they reach a small issue buffer. Data Cache Hit-Miss
Prediction [21] tries to predict L1 hits and reschedule load
dependent instructions based on that information. But predict-
ing only L1 hits does not take into account off-chip memory
delays that have the most impact on the the performance of a
processor. In a more complex implementation Look-ahead Pre-
diction [19], tries to predict load delays using a value predictor.
Dynamic solutions like [3], [4] predict and prioritize critical
or independent instructions. In [4] instructions that depend on
long-latency operations are moved from the issue queue to a
much larger waiting instruction buffer (WIB) until their long-
latency producer completes. Long Term Parking (LTP) [3]
analyzes instructions and parks non-critical instructions from
the main instruction stream to prioritize critical ones (address-
generating instructions and loads). Similarly, N-Use [16], uses
an associative table to park non-ready instructions, Distance
Issue Logic [15] assumes unknown load delays and parks all
their consumers in an RS IQ until their operands are produced,
while Deterministic Issue Logic [16] assumes a static delay
for all loads and only parks stalled consumers to the RS IQ.



FIFOrder [9] and Delay and Bypass [8] use the knowledge
that an OoO-core instruction scheduler offers (availability
of the instructions operands) to dispatch ready instructions
to FIFO queues to reduce the size and power consumption
of complex instruction queues. They differ by the type of
instructions to be send to the FIFO queues based on their
criticality and readiness. All these solutions require additional
hardware to implement and still employ a traditional out-of-
order scheduler to handle the reordering and compensate for
timing mispredictions of their techniques.

FIFO-based Schedulers. Due to their low power consump-
tion, in-order processors are highly energy efficient. However,
they achieve significantly lower performance compared to
an out-of-order processor. Complexity-Effective [12] reorders
instructions based on their dependencies. Instructions that
belong to the same data-flow dependency chain are directed
to dedicated in-order queues, while selection logic is used
to issue instructions from the head of the queues. The Load
Slice Core [6] extends an in-order, stall-on-use core with a
second in-order pipeline that allows memory accesses and
address-generating instructions to bypass stalled instructions
in the main pipeline. Unfortunately, these solutions do not take
into account dynamic delays. This creates large gaps between
load-dependent instructions in a real execution, that stall until
the producing load returns from memory, thus limiting their
performance improvement.

Cyclone [10] uses a store set dependence predictor to moni-
tor memory dependencies, while mispredicted instructions are
replayed from the tail of the queue. But, this implementation
potentially scrambles the ordering of other instructions in
the instruction window, creating a performance bottleneck.
Wakeup-free scheduling [14] improves this structural con-
straints by using a collapsing scheme that does not allow in-
structions to move while their latency counters are decreasing.
But their evaluation is done using a perfect L1 Hit predictor
for load latency delays, that does not take into account off-
chip memory delays that have the most impact on the the
performance of a processor. iCFP [13] uses a Continual Flow
Pipeline that switches to an advance execution mode when it
encounters a L1 or L2 cache miss. Miss-dependent instructions
are diverted into a slice buffer, un-blocking the pipeline for
miss-independent instructions to execute. Although it achieves
low power consumption, its performance is limited to 68% of
the performance of an out-of-order processor [13]. Freeway [5]
is an orthogonal solution that implements a technique similar
to LTP [3] on top of an in-order core and manages to
improve its performance by 80%, while we achieve 180%
increase in performance over our in-order baseline core (on
the same applications). CASINO [7] uses two in-order queues
to filter instructions that block the issuing queue. However,
their solution takes no real-time information into consideration
when doing the filtering that can potentially lead to even more
excessive delays when one of the queues is filled, depending
on the applications executed.

Heterogeneous Processors. Mirage Cores [2] and its
predecessor Dynamos [1] employ a full out-of-order core

to produce fast out-of-order schedules that are stored in a
local cache structure and executed by a number of in-order
cores on the same processor. WiDGET [17] enables dynamic
customization of different combinations of small and/or pow-
erful cores as a way to increase performance and reduce
power consumption depending on the executing workload. The
design complexity and cost of these solutions however, makes
them inefficient as they still require the implementation of an
out-of-order core to learn aggressive instruction schedules.

Software Implementations. Compile-time application
analysis is also used to categorize and prioritize instructions
by predicting the critical path of the execution [34], [35].
Solutions with good balance between performance and energy
efficiency use modified hardware equipped with the appro-
priate compile-time support to statically reorder instructions
in advance [36]–[42]. But, unlike our work, these solutions
require modification to the application itself and do not provide
backward compatibility for deployed applications.

Simultaneous Multi-Threading (SMT). In a multi-
threaded architecture, independent instructions from different
threads can be used to overcome dependency stalls from a
single thread [18], [33]. This boosts performance of multi-
threaded applications as it increases processor throughput
in throughput-sensitive parallel applications. However, these
techniques do not address single-thread performance.

Prefetching. Prefetching attempts to minimize cache
misses by executing additional instructions [31], [32], [43].
Runahead [31] allows the execution to continue past stalling
to pre-execute instructions and generate new cache misses
that fetch data earlier for future instructions. Continuous runa-
head [32] extends previous solutions by dynamically filtering
the instruction stream to identify the chains of operations that
cause a pipeline to stall. Unfortunately, prefetching techniques
alone are not enough as they only try to hide memory latency.
All solutions referenced here still use a complex out-of-order
scheduler to handle instructions reordering.

VIII. CONCLUSION

In this work, we propose a novel scheduling scheme that
tracks real-time delays of load instructions to accurately pre-
dict instruction issue times, and a priority-based instruction
reordering mechanism that achieves near out-of-order perfor-
mance in an energy efficient way. To this end, we design a
new microarchitecture that builds aggressive schedules and
produces near out-of-order performance in an energy efficient
way. The proposed design replaces the complex instruction
scheduler of an out-of-order processor with a instruction
delay learning mechanism that monitors load instructions and
learns their latest real-time delays, an issue time predictor that
predicts their issue times and priority queue reordering that ef-
ficiently reorder instructions. Together, these three techniques
allow the new core to achieve 86.2% of the performance of the
baseline out-of-order, while reducing the power consumption
for instruction scheduling hardware by 88%.
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