
Sampled Simulation of Task-Based Programs
Thomas Grass, Trevor E. Carlson, Senior Member, IEEE, Alejandro Rico, Member, IEEE,

Germán Ceballos, Member, IEEE, Eduard Ayguadé, Marc Casas, and Miquel Moreto

Abstract—Sampled simulation is a mature technique for reducing simulation time of single-threaded programs. Nevertheless, current
sampling techniques do not take advantage of other execution models, like task-based execution, to provide both more accurate and
faster simulation. Recent multi-threaded sampling techniques assume that the workload assigned to each thread does not change
across multiple executions of a program. This assumption does not hold for dynamically scheduled task-based programming models.
Task-based programming models allow the programmer to specify program segments as tasks which are instantiated many times and
scheduled dynamically to available threads. Due to variation in scheduling decisions, two consecutive executions on the same machine
typically result in different instruction streams processed by each thread. In this paper, we propose TaskPoint, a sampled simulation
technique for dynamically scheduled task-based programs. We leverage task instances as sampling units and simulate only a fraction
of all task instances in detail. Between detailed simulation intervals, we employ a novel fast-forwarding mechanism for dynamically
scheduled programs. We evaluate different automatic techniques for clustering task instances and show that DBSCAN clustering
combined with analytical performance modeling provides the best trade-off of simulation speed and accuracy. TaskPoint is the first
technique combining sampled simulation and analytical modeling and provides a new way to trade off simulation speed and accuracy.
Compared to detailed simulation, TaskPoint accelerates architectural simulation with 8 simulated threads by an average factor of 220x
at an average error of 0.5% and a maximum error of 7.9%.

Index Terms—Sampled simulation, task-based, analytical performance modeling.

F

1 INTRODUCTION

COMPUTER architecture research heavily relies on sim-
ulation. Increasing design complexity and core counts

in modern multi-core processors present new challenges to
architectural simulation. The increasing amount of state-
holding elements, e.g. cache memories, in future systems
tends to increase the time required to simulate a system
executing a given workload. Larger cache memories can
require more simulation to warm up micro-architectural
state. Designs with higher thread counts can additionally
slow down the speed of detailed simulation, especially
when the simulated threads interact with each other.

One popular technique to reduce simulation time is sam-
pling. Sampled simulation reduces simulation time by only
simulating a fraction of the workload in detail. Sampling
is a well-established technique for simulation of single-
threaded architectures. The prevalent techniques perform
detailed simulation of either the representative program
parts identified in profiling [33] or periodically via time-
based sampling [38].

While sampled simulation is widely used for simula-
tion of single-threaded architectures, techniques targeting
multi-threaded applications have only been recently pro-
posed. The main challenge in sampling simulations of multi-

• T. Grass conducted this work as a Ph.D. student at Barcelona Supercom-
puting Center (Spain). He is currently with RWTH Aachen (Germany).
E-mail: thomas.grass@ice.rwth-aachen.de

• M. Casas, M. Moreto and E. Ayguadé are with Barcelona Supercomputing
Center (Spain). M. Moreto and E. Ayguadé are also affiliated with
Universitat Politècnica de Catalunya.
E-mail: {firstname}.{lastname}@bsc.es

• T. E. Carlson is with the National University of Singapore (NUS).
E-mail: tcarlson@comp.nus.edu.sg

• A. Rico is with Arm Ltd. (Austin, TX). E-mail: alejandro.rico@arm.com
• G. Ceballos is with Uppsala university. Email: german.ceballos@it.uu.se

Manuscript received February 28, 2018.

threaded programs is to ensure that at the beginning of
each detailed simulation interval all threads have made the
same amount of progress as in a full detailed simulation.
A technique proposed by Casas et al. [11] detects periodic
behavior in parallel applications using signal processing
techniques. Carlson et al. [8] fast-forward different threads
at different rates between intervals of detailed simulation.
Carlson et al. [10] also propose a technique based on the
insight that after a global barrier all threads are synchro-
nized and resume execution simultaneously. The technique
leverages the inter-barrier regions in barrier synchronized
programs as sampling units. In this work we present a
sampled simulation methodology leveraging the properties
of task-based programming models.

Task-based programming models have been proposed to
reduce load imbalance and thus increase parallel efficiency
of future large-scale multi-core machines [3]. A task-based
programming model allows the programmer to define pro-
gram parts as tasks and to specify dependencies between
those tasks. Tasks are typically instantiated many times dur-
ing the execution of a program. Over-decomposition ensures
that there are many more task instances than execution
threads. The over-decomposition of a parallel program into
tasks, together with dynamic scheduling of task instances
to threads, transparently balances the amount of work
assigned to each thread. Inter-task dependencies enforce
synchronization only when necessary.

In this work we present TaskPoint, a sampled simulation
methodology for dynamically scheduled task-based
programs executed on multi-core machines. TaskPoint
leverages task instances as sampling units and only
simulates a small number of them in detail. The other
task instances are simulated in a faster simulation mode,
ensuring that progress in different simulated threads is

2d
­co

nv
olu

tio
n

3d
­st

en
cil

ato
mic­

mon
te­

ca
rlo

­

dy
na

mics

de
ns

e­
matr

ix­

mult
ipl

ica
tio

n fft

his
tog

ra
m

mer
ge

­so
rt

n­
bo

dy

re
du

cti
on

sp
ar

se
­m

atr
ix­

ve
cto

r­

mult
ipl

ica
tio

n

ve
cto

r­o
pe

ra
tio

n

ch
ec

kS
pa

rse
LU

ch
ole

sk
y

jac
ob

i

km
ea

ns kn
n

bla
ck

sc
ho

les

bo
dy

tra
ck

ca
nn

ea
l

de
du

p

fac
es

im
fer

re
t

flu
ida

nim
ate

fre
qm

ine

str
ea

mclu
ste

r

sw
ap

tio
ns

x2
64

20

10

0

10

20
IP

C
 v

ar
ia

tio
n

[%
]

­28­38

45

­59

48

Fig. 1. IPC variation across all task instances for native execution with 8 threads, normalized per task type

modeled correctly.

In this paper, we make the following contributions:

• We present TaskPoint, a sampled simulation tech-
nique for multi-core architectures programmed with
a dynamically scheduled, task-based programming
model. We propose a mechanism to accurately fast-
forward an architectural simulation of a task-based
program. During fast-forwarding, we simulate task
instances at the IPC of previous, similar instances
which have been simulated in detail. We evaluate
different techniques for identifying classes of similar
task instances.

• For applications with varying behavior across in-
stances of the same task type, we employ basic-block
vectors (BBVs) and clustering to identify classes of
similar behavior. We show, how we (i) identify mul-
tiple classes of behavior among task instances of the
same task type and (ii) merge task instances with
similar behavior belonging to different types. We use
an analytical performance model to improve simu-
lation accuracy during simulation in fast-forwarding
mode. Our approach combines the speed of analyti-
cal models with the accuracy of detailed simulation.

• We evaluate TaskPoint simulating 27 task-based par-
allel benchmarks, including a task-based version of
the PARSEC benchmark suite. We evaluate different
clustering techniques for identifying classes of task
instances which can serve as samples for one another.
By combining DBSCAN clustering with analytical
performance modeling, we speed up architectural
simulation by a factor of 220x for 8 threads and
23x for 64 threads. The average simulation error is
0.46% for 8 threads and 1.32% for 64 threads. To
the best of our knowledge, this is the first tech-
nique combining detailed simulation with analytical
performance modeling, in which the analytical per-
formance model drives the sampling process. Com-
pared to k-means clustering and clustering based
on the task type, DBSCAN with analytical modeling
offers the best combination of speedup and error at a
low error variance.

The remainder of this paper is organized as follows. In
Section 2, we provide background and motivation of our
work. In Section 3, we present TaskPoint. Next, we introduce
the experimental setup in Section 4. We evaluate TaskPoint
in Section 5. Finally, we present related work in Section 6,
before we conclude in Section 7.

2 BACKGROUND AND MOTIVATION

This section provides background on task-based program-
ming models. We then motivate our work with an analysis
of performance variation in native execution of 27 task-
based parallel benchmarks.

2.1 Parallel Programming Models

In traditional parallel programming models for shared
memory systems, like POSIX Threads [6], the programmer
explicitly decomposes an application into concurrent in-
struction streams and manages synchronization between
those. These instruction streams are processed simultane-
ously by different threads. A common problem with multi-
threaded programs is load imbalance. Load imbalance oc-
curs when different threads reach a synchronization point
at different points in time.

Task-based programming models have the potential to
alleviate load imbalance and thus increase parallel effi-
ciency. When implementing a parallel program using a
task-based programming model, the programmer specifies
program parts as tasks and, optionally, data dependencies
between these tasks. Tasks are instantiated many times dur-
ing the execution of a program, resulting in a large number
of task instances, each of which operates on different data.
A runtime system dynamically schedules task instances to
execution threads.

Due to a fine-grained over-decomposition of the applica-
tion, the number of task instances is typically much larger
than the number of execution threads. This allows the
runtime environment to dynamically balance the workload
assigned to each thread. There are proposals for further
optimizations which require the architecture to interface
directly with the runtime environment [12], [34].

In this work, we differentiate between task types and
task instances. In OpenMP, task types are declared by means
of a #pragma omp task statement preceding a function
declaration, a function call or a code block. Task declaration
statements can contain additional information, e.g. data
inputs and outputs of a specific execution of the statement.
Every execution of a task declaration statement at execution
time results in the creation of a task instance. All task
instances resulting from the same task declaration statement
in the source code are said to be of the same task type. In a
typical task-based program, the number of task types is up
to a few tens, whereas the number of task instances lies in
the order of tens to hundreds of thousands.

...
#pragma omp task
 label(task type 1)
do_something();

...

#pragma omp task
 label(task type 2)
do_something_else();
...

...
#pragma omp task
 label(task type 1)
do_something();

...

#pragma omp task
 label(task type 2)
do_something_else();
...

Generate
BBVs

Cluster BBVs

9 clusters

KMeans

DBSCAN

1 cluster

Same task type → same behavior

or

Problems:

 Varying behavior within a task cluster

 Tasks with different behavior in the
 same cluster

 Duplicate work for similar behavior in
 different task types

Solutions:

 Irregularly shaped clusters are split into
 multiple clusters

 Tasks with different behavior end up in
 different clusters

 Tasks with similar behavior are merged,
 independent of task type

 Irregularly shaped clusters remain

 Tasks with unrelated behavior end up
 in different clusters

 Tasks with similar behavior are merged,
 independent of task type

(a) Clustering based on the task type. Task instances of the same type are assumed to have similar behavior.

...
#pragma omp task
 label(task type 1)
do_something();

...

#pragma omp task
 label(task type 2)
do_something_else();
...

...
#pragma omp task
 label(task type 1)
do_something();

...

#pragma omp task
 label(task type 2)
do_something_else();
...

Generate
BBVs

Cluster BBVs

9 clusters

k-means

DBSCAN

1 cluster

Same task type → same behavior

or

Problems:

 Varying behavior within a task cluster

 Tasks with different behavior in the
 same cluster

 Duplicate work for similar behavior in
 different task types

Solutions:

 Irregularly shaped clusters are split into
 multiple clusters

 Tasks with different behavior end up in
 different clusters

 Tasks with similar behavior are merged,
 independent of task type

 Irregularly shaped clusters remain

 Tasks with unrelated behavior end up
 in different clusters

 Tasks with similar behavior are merged,
 independent of task type

(b) Using BBVs and clustering algorithms. Classes of behavior are identified using clustering.

Fig. 2. Overview of TaskPoint without (2a) and with (2b) clustering. Clustering detects multiple classes of behavior within a task type and merges
tasks with similar behavior belonging to different task types.

2.2 Performance Variation of Task-Based Programs
In order to motivate TaskPoint, we analyze performance
variation in native execution of 27 benchmarks. The investi-
gated benchmarks are introduced in Section 4.

Figure 1 shows IPC variation across task instances ob-
served in native execution with 8 threads on a system
with an Intel SandyBridge-EP E5-2670 CPU running at 2.6
GHz and 128 GB of DDR3-1600 as main memory. For an
easy comparison across different benchmarks, we normalize
the IPC of all task instances to the average IPC of their
respective task type. The solid box of each box plot indi-
cates the range from the first to the third quartile of the
normalized IPC values, while the whiskers extend from the
fifth to the 95th percentile. IPC values of task instances
below the fifth and above the 95th percentile are treated as
outliers.The Figure shows that for 16 out of 27 benchmarks
performance variation lies within ±5%. However, for the
remaining benchmarks instances belonging to the same task
type exhibit significant performance variation.

In simulations of regular applications, TaskPoint uses
instances of the same task type as samples for one an-
other. In irregular applications, we apply basic-block vec-
tors (BBVs) [33] and clustering to identify classes of task
instances with similar behavior. A performance prediction
obtained from an analytical performance model is used to
refine the result.

2.3 Identifying Representative Task Instances
Our analysis of performance regularity on a per-task-type
basis in Figure 1 shows that, for many applications, task
instances of the same task type behave similarly in terms
of performance. Therefore, it is reasonable to assume that,
in those cases, instances of the same task type can serve
as performance samples for one another. However, the fig-
ure also shows that some benchmarks expose a significant
performance variation among task instances. Examples are

merge-sort, fft, freqmine and dedup. These applications require
more sophisticated techniques in order to achieve high
simulation speed and low simulation error.

BBVs [33] have been used in the past to characterize
phases of a workload and identify representative workload
regions. A BBV is a vector with as many dimensions as
there are static basic blocks in the simulated application.
Each dimension contains the number of executed dynamic
instructions of the corresponding basic block during a cer-
tain time interval. In this work, we evaluate one BBV per
executed task instance.

Figure 2a illustrates TaskPoint without BBVs, clustering
and analytical modeling. In this figure BBVs are solely used
for the purpose of illustration and not for task clustering or
analysis. The figure shows the BBVs of two task types of
merge-sort, projected into a two-dimensional plane. During
merge-sort’s recursive phase, each task instance creates two
child instances which belong to different task types, but con-
sist of the same static code. When the recursion terminates
the behavior of the last generation of task instances changes.
The results are (i) the two distinct clusters of task instances
for each task type in Figure 2a and (ii) the pairwise similarity
between the upper-left and lower-right clusters of both task
types. In summary, instances belonging to the same task
type can behave differently, while instances belonging to
different task types can expose the same behavior.

Each task type consists of two clearly distinct clusters
of BBVs which expose different behavior and performance
at execution time. One of these clusters is eccentrically
shaped A . Task instances of this cluster which are located
at some distance of each other show different performance.
Furthermore, treating both clusters of a task type as if they
showed the same performance B leads to a simulation
error of more than 40% in the case of merge-sort. In addition,
each cluster observed in one task type is similar to a cluster
in the other task type C , resulting in duplicated work

during sampled simulation. Taken together, the result is an
inefficiently partitioned sample that leads to simultaneously
larger errors and slower performance. An ideal clustering
would consist in two clusters, each of which containing two
of the pairwise similar clusters shown in Figure 2a.

Figure 2b shows how TaskPoint uses BBVs and clus-
tering to detect classes of task instances in an irregular
application. We create a BBV for each task instance. If two
task instances behave similarly, they typically have similar
BBVs [24]. Task instances with dissimilar behavior are likely
to also have dissimilar BBVs. The figure illustrates two
possible clustering algorithms. k-means [27] tends to split
irregularly shaped clusters into many sub-clusters. In the
case of DBSCAN [17], task instances which are connected
by a dense region of other task instances are clustered to-
gether. DBSCAN has been previously used to detect related
computation phases in parallel applications [21].

2.4 Analytical Performance Modeling

Figure 2b illustrates that clusters detected by DBSCAN can
have a large diameter A . If this happens, using a sample to
predict the performance of a task instance, which is further
away in the same cluster, can introduce a simulation error.
We leverage the relative accuracy of an analytical model [35]
to correct this error during simulation.

Analytical performance models have been extensively
used for sequential applications [23], [28] and can be classi-
fied into empirical and mechanistic models. Empirical models
capture a system’s behavior with machine learning tech-
niques, e.g. support vector machines or artificial neural net-
works. While they can achieve good accuracy, they do not
provide much inside into why a certain design achieves bet-
ter or worse performance than another. Mechanistic models
employ mathematical formulas to model the effect of the
key architectural parameters on performance. Mechanistic
models allow to study the sources of particularly good
or bad performance by comparing the contribution of the
different terms of the model’s formula. Since they provide
more insight into the sources of performance, in this work
we use a mechanistic performance model.

In this work, we use an analytical performance model
proposed by Van den Steen et al. [35]. The model is an
extension of Interval Simulation [19]. Van den Steen et al.
replace the micro-architecture dependent input of Interval
Simulation by a micro-architecture independent application
profile and generate the micro-architecture dependent ele-
ments of the model input using analytical models for caches,
branch predictors and memory level parallelism (MLP).
Caches are modeled using StatStack [16], a technique for
modeling arbitrarily sized LRU caches. Branch predictors
are modeled using the Linear Entropy model [28]. MLP, i.e.
the number of memory accesses which can be served by
the DRAM subsystem in parallel, is modeled according to a
model also proposed by Van den Steen et al. [35].

3 SAMPLED SIMULATION OF TASK-BASED PRO-
GRAMS

In this section, we present TaskPoint. First, we introduce the
requirements which need to be fulfilled by an architectural

simulator in order to serve as an implementation platform
for TaskPoint. Next, we show how TaskPoint uses clustering
and analytical modeling to improve simulation accuracy
and speedup. Then, we present the different phases of Task-
Point’s sampling mechanism, namely warm-up, sampling
and fast-forwarding. Afterwards, we introduce our periodic
and lazy sampling policies.

3.1 Requirements for the Architectural Simulator

Our objective is to provide a sampled simulation method-
ology for task-based programs which does not depend on
a specific architectural simulator. Therefore, we keep the
requirements for the target simulator to a minimum. A
simulator needs to fulfil the following two requirements to
support the TaskPoint methodology:

1) The simulator needs to feature detailed, warmup
and fast-forwarding simulation modes.

2) The fast-forwarding mode has to be capable of sim-
ulating each thread at a user-specified IPC.

Most contemporary architectural simulators feature several
levels of detail [2], [5], [32], allowing to trade off speed
for accuracy. Thus, we assume the first requirement to be
trivially fulfilled. If a simulator does not support fixed-IPC
simulation by default, we consider the implementation of
this functionality to be a minor effort.

3.2 Clustering Task Instances

In regular applications, TaskPoint clusters task instances
according to their task type. The underlying idea is that
instances of the same user-defined task type perform similar
computations and are thus naturally clustered. In the case
of applications which show different behavior within a
task type, TaskPoint identifies classes of task instances with
similar behavior prior to simulation. Instances with similar
behavior belonging to different task types are merged into
the same cluster. In a profiling step, we determine the
BBVs of all task instances of the application. Since BBVs are
micro-architecture independent, the costs of BBV generation
and clustering are amortized across all simulations of the
application. In a trace-based simulation environment, BBVs
can be generated together with the application trace.

The amount of detailed simulation required for simu-
lations with TaskPoint increases with the number of task
instance clusters of the application. In order to maximize
simulation performance, it is desirable to find the minimum
number of clusters which maintains high simulation accu-
racy. Therefore, TaskPoint relies on DBSCAN clustering. As
illustrated in Figure 2a, DBSCAN typically reports a smaller
number of clusters than other techniques, e.g. k-means.
These clusters can be shaped irregularly, since DBSCAN
finds clusters of task instances which are densely connected
in the BBV space. Nevertheless, task instances of the same
cluster can have different performance. We minimize the
potential impact on simulation error by determining per-
task-instance performance factors obtained from an analyti-
cal model, which we introduce in the following section.

A
1

Thread 1

Thread 2

Time

B
1

...

warmup

...

t
1

t
2

t
3

t
4

A
2

B
2

A
3

B
3

A
4

B
4

A
5

A
6

B
5

B
6

A
7

A
n-1

B
n

B
n+1

... A
n

A
n+1

B
n+3

A
n+2

B
n+4

A
n+3

B
n+5

t
5

A
n+4

A
n+5

B
n+6

B
n+7

A
n+6

...

measure sample fast-forward warmup measure sample

0

B
n+2

detailed
simulation

fast-forward

X
i

i-th instance
of task-type X

Fig. 3. Initial warmup, sampling, fast-forwarding and resampling in TaskPoint

3.3 Analytical Modeling

As stated earlier, TaskPoint clusters task instances using
DBSCAN in order to achieve high simulation performance
at high simulation accuracy. DBSCAN can cluster task in-
stances with similar but not equal behavior into the same
cluster, as illustrated in Figure 2b. For this reason, the
performance of a task instance observed in detailed simu-
lation may not be representative for all task instances of a
cluster. TaskPoint employs an analytical performance model
to determine a more accurate performance result.

First, we generate a profile of the simulated application.
This profile includes the micro-architecture independent
performance metrics required as inputs to the analytical
model and is generated in the same profiling run as the per-
task-instance BBVs used for clustering. As with the BBVs,
this profile is only generated once per application.

During simulation, we apply the analytical model to
predict the performance of all simulated task instances. For
each simulated application, the model needs to be evaluated
only once per architectural configuration. Changing only the
number of simulated threads does not necessarily require
one to reevaluate the model.

We use the performance information obtained from the
analytical model as follows: assume that two task instances
i and j belong to the same cluster. Furthermore, i has
been simulated in detail and j is to be simulated in fast-
forwarding mode, using i as performance sample. Let
IPCi,m and IPCj,m be the IPC of task instances i and j,
respectively, as predicted by the model, and IPCi,d the IPC
obtained in detailed simulation of i. We estimate the perfor-
mance IPCj,ff of j in fast-forwarding mode according to
Equation 1:

IPCj,ff = IPCi,d ·
IPCj,m

IPCi,m
(1)

In other words, the IPC of the sample is multiplied
with the performance ratio of sample and fast-forwarded
task instance. By following this approach, we combine the
accuracy of detailed simulation with the relative accuracy
and speed of the analytical model.

3.4 Sampling Mechanism

TaskPoint operates on the level of granularity of task in-
stances. A task instance is simulated either in warming,
detailed or fast-forwarding mode. Simulation in warming
mode serves for warming architectural state. Samples are
measured in detailed mode. Fast-forwarding mode accu-
rately fast-forwards simulation time. Switching between
different modes only occurs between two consecutive task
instances.

Figure 3 illustrates the different phases of TaskPoint. For
each task cluster, we maintain two vectors holding the IPC
histories of the most recently simulated task instances. The
size H of these vectors is a parameter referred to as the
history size. Both vectors are FIFO buffers in which a newly
added element replaces the oldest one. The first vector con-
tains the history of task instances which are valid samples,
i.e. which are simulated after warming up architectural
state. We refer to it as the history of valid samples. The second
vector holds the history of all task instances simulated in
detailed mode, regardless of the simulation being properly
warmed. We refer to it as the history of all samples. The former
is the sample history we usually use to determine which IPC
to use in fast-forwarding mode. The latter is needed if there
are task clusters with instances which occur infrequently
and can not be sampled in a single sampling interval. We
refer to these rare task clusters.

In multi-threaded applications, co-running threads can
interfere with each other, e.g. by competing for shared
resources, through inter-thread synchronization or by inval-
idating data residing in remote caches. In order to correctly
model contention between different threads, we simulate
all threads either in detailed mode or in fast-forwarding
mode. Since we assume that mode switching only occurs
between two consecutive task instances, there are short
phases during which some threads are simulated in fast-
forwarding mode, while others are simulated in detailed
mode (see t2, t3 and t5 in Figure 3).

Simulation Warmup
Before conducting performance measurements, a simulation
needs to be warmed, i.e. it needs to be put in a represen-
tative state. Warming micro-architectural state in sampled
simulation is well-studied [15], [22], [26], [33], [37], [38].
In this paper, we warm the simulation by simulating an
empirically determined number of task instances in detail
and avoid complex warmup schemes. Instead, we focus
on the sampling methodology itself. When a task instance
simulated for warmup finishes execution, its IPC is added
to the history of all samples.

At simulation start, all simulated micro-architectural
structures are in their initial (cold) state. During detailed
simulation, state-holding elements begin to fill until occu-
pancy reaches a steady state. In this work, we assume that
simulating W task instances per thread at simulation start
is sufficient for putting the simulator into a representative
(warm) state. We refer to W as the size of the warm-up interval
and evaluate different values for W in Section 5.

After a simulation phase in fast-forwarding mode,
micro-architectural state is stale. Before resampling the sim-
ulation, warmup makes sure that micro-architectural state
is (approximately) the same as if the whole program was

Thread 1

Thread 2

Time

Time

1

1

2

2

P-1

P-1

P

P

1

1

2

2
...

...

...Thread 1

Thread 2

1

1

2

2

P-1

P-1

P

P

sampling

fast-forward

(a) Periodic sampling

(b) Lazy sampling

warmup

Fig. 4. Illustration of periodic sampling (a) and lazy sampling (b) as a special case of periodic sampling with infinite sampling period P

simulated in detail. Before resampling, we perform detailed
simulation until every thread has simulated one task in-
stance in detail.

Sampling
Like simulation warmup, sampling is performed in detailed
simulation mode. When warmup is finished, we start treat-
ing the simulated task instances as valid samples. When a
valid sample task instance finishes simulation, its average
IPC is added to the history of valid samples and to the
history of all samples. We trigger the transition to fast-
forwarding mode when one of the following two conditions
is fulfilled:

1) The history of valid samples is fully populated.
2) A certain number of task instances has been simu-

lated without encountering any additional instance
of a previously seen rare task cluster.

The first condition means that all task clusters are fully sam-
pled. The second condition avoids spending an excessive
amount of time on detailed simulation in the presence of
task clusters occurring infrequently over time. Independent
from the size H of the sample history, we switch to fast-
forwarding when all threads have simulated 5 task instances
without encountering any additional instance of a partially
sampled task cluster. Thus, we avoid simulating large frac-
tions of an application in detail while attempting to fill all
sample histories.

Accurate Fast-Forwarding
After the transition to fast-forwarding mode, all task
instances starting in the future are simulated in fast-
forwarding mode. However, instances which started in the
past are simulated in detailed mode until they complete.
Task instances finishing simulation after the transition to
fast-forwarding mode are only added to the history of all
samples.

A task instance simulated in fast-forwarding mode is
simulated with the average IPC of the history of valid
samples of its cluster. If a task instance belongs to a rare
task cluster whose history of valid samples is empty, we use
the average IPC of the history of all samples instead. If the
history of all samples of the corresponding cluster is also
empty, we trigger resampling.

Instances belonging to rare task clusters tend to occur
infrequently during the execution of an application. They
account only for a small percentage of the total instruction
count of an application and are used for infrequent tasks,
e.g. setting up and deleting data structures. We find the im-
pact of using non-representative samples for fast simulation
of rare tasks to be negligible.

Thread 1

Thread 2

Time

...
Thread 3

Thread 4

t

...

 Task type B Task type A

(a) Change in number of execution threads at time t, thus altering
average performance due to resource contention

Thread 1

Thread 2

Time

...
Thread 3

Thread 4

t

...

(b) Instance of rare task cluster starting execution at time t

Fig. 5. Illustration of changing number of execution threads (a) and rare
task (b)

One contribution of this paper is the presented fast-
forwarding mechanism for architectural simulation of task-
based parallel programs. Our technique fast-forwards each
thread at a rate depending on the cluster of the task instance
currently being simulated.

3.5 Periodic Sampling Policy

A sampling policy decides when to resample a simulation
running in fast-forwarding mode. The periodic sampling pol-
icy, illustrated in Figure 4a, warms and samples a simulation
at simulation start. Afterwards, it switches the simulation
to fast-forwarding mode. When a thread has executed a
number P of task instances of any cluster in fast-forwarding
mode, the simulation is resampled. We refer to the parame-
ter P as the sampling period. When a simulation is resampled,
the entries of the history of valid samples are discarded.
When resampling is complete, the simulation returns to fast-
forwarding mode and the process repeats.

Simulation speedup is determined by the size of the
sampling period. The larger the sampling period, the more
task instances are simulated in fast-forwarding mode. In the
special case of an infinite sampling period, resampling is
never triggered by the sampling policy. We refer to this case
as lazy sampling. Lazy sampling is illustrated in Figure 4b. If
the number of task instances of a program is too small or the
sampling period is too large, a simulation finishes during
the first fast-forwarding interval, before any thread has
simulated P task instances. In this case, periodic sampling
is equivalent to lazy sampling.

Besides the aforementioned case of a thread having sim-
ulated P task instances in fast-forwarding mode, resampling
is also triggered when it is impossible to accurately simulate

TABLE 1
Task-based parallel benchmarks used for the evaluation of TaskPoint

Benchmark # Task # Task Simulation time 8 threads [h : min] Properties
Types Instances Detailed KMEANS DBS+MOD

2d-convolution (2d-conv) 1 16384 44:43 0:07 0:06 Kernel: strided memory accesses
3d-stencil (3d-st) 1 16370 28:25 0:04 0:04 Kernel: strided memory accesses
atomic-monte-carlo-dynamics
(at-mc)

1 16384 5:44 0:01 0:01 Kernel: embarrassingly parallel

dense-matrix-multiplication
(dmtmul)

1 17576 44:30 0:06 0:05 Kernel: high data reuse, compute bound

fft 8 25024 47:28 16:08 21:03 Kernel: variable stride memory accesses
histogram (hist) 1 16384 12:45 0:02 0:02 Kernel: atomic operations
merge-sort (m-sort) 4 20480 16:41 1:48 2:18 Kernel: recursive task instantiation
n-body 2 25000 13:05 0:04 0:03 Kernel: irregular memory accesses
reduction (reduct) 2 16384 40:39 0:19 0:18 Kernel: parallelism decreases over time
sparse-matrix-vector-
multiplication (sp-mv)

1 1024 19:24 0:14 0:02 Kernel: load imbalance, memory bound

vector-operation (vec-op) 1 16400 32:27 0:08 0:09 Kernel: regular, memory bound
sparseLU (splu) 11 22058 19:25 0:40 0:40 Decomposition of large, sparse matrices
cholesky (chol) 4 19600 51:31 0:38 0:30 Decomposition of Hermitian matrices
jacobi 9 20480 19:14 0:27 0:36 Jacobi iterative method
kmeans 6 16337 22:58 0:43 0:28 Clustering based on Lloyd’s algorithm
knn 2 18400 34:31 3:22 0:06 Instance-based machine learning algorithm
blackscholes (bkschl) 2 24500 12:27 0:02 0:02 Option price calculation
bodytrack (bdytrk) 7 21439 54:35 3:36 2:04 Human body tracking with multiple cameras
canneal (cneal) 1 16384 12:21 0:16 0:02 Cache-aware simulated annealing
dedup 4 15738 80:01 2:23 0:11 Combination of global and local compression
facesim (fcsim) 12 20086 17:45 3:26 13:17 Physical modeling of the human face
ferret 6 12288 77:39 1:41 0:21 Image similarity search
fluidanimate (fldanm) 9 8225 31:53 1:16 1:49 Simulation of incompressible fluids
freqmine (frqmn) 7 1932 12:32 0:59 1:02 Frequent Pattern Growth method
streamcluster (strclr) 10 14656 27:41 0:42 0:31 Online clustering algorithm
swaptions (swptns) 1 16384 71:46 1:17 0:10 Monte-Carlo simulation of swaption prices
x264 3 383 123:44 62:15 67:07 H.264 video compression

a task instance in fast-forwarding mode. This happens in the
following two cases.

Figure 5a shows a case where the number of threads par-
ticipating in task execution changes at runtime, e.g. when
the simulated application enters a phase exposing more par-
allelism. When the number of execution threads changes, so
does the contention on shared resources, like shared caches
and main memory. This affects per-thread performance
and invalidates previously measured samples. Resampling
avoids prediction errors due to non-representative samples.

Figure 5b shows a case where the first instance of a
new task cluster is encountered while simulating in fast-
forwarding mode. When encountering an instance of a
previously unknown cluster, the cluster’s sample history is
empty. Therefore, it is impossible to accurately simulate this
task instance in fast-forwarding mode. We circumvent this
problem by triggering resampling.

With this resampling strategy, both periodic sampling
and lazy sampling account for phase changes in the ap-
plication. If a new phase starts with task instances of a
new cluster, the simulation is resampled. The same holds
for changes in the available computation resources or the
available parallelism.

4 EXPERIMENTAL SETUP

In this section, we introduce the experimental setup we use
to implement and evaluate TaskPoint. First, we introduce
the task-based programming model OmpSs. Subsequently,
we present the 27 benchmarks and the two architectures we
use in our evaluation. Finally, we elaborate on the TaskSim

simulator and our implementation of fast-forwarding a sim-
ulation at arbitrary IPC.

The OmpSs Programming Model

For our evaluations we choose the OmpSs programming
model [3]. The OmpSs compiler and runtime environment
are available as open source software. OmpSs allows to de-
clare tasks and annotate them with data inputs and outputs.
Using this information, the OmpSs runtime system sched-
ules task instances taking data dependencies into account
and performs synchronization only when necessary. These
OmpSs features are part of the specifications of OpenMP 3.0
and 4.0.

Benchmarks

Table 1 lists the benchmarks used in our evaluation. They
represent a variety of workloads and are implemented
using the OmpSs programming model. While the major-
ity of benchmarks represent workloads common to high-
performance computing (HPC), blackscholes, bodytrack, can-
neal, dedup, facesim, ferret, fluidanimate, freqmine, streamcluster,
swaptions and x264 are part of the PARSEC benchmark
suite [4], [14]. We do not use raytrace and vips because
task-based versions of these applications are not currently
available. Whenever possible, we simulated the application
for an equivalent of at least ten seconds of single-threaded
execution on a state-of-the-art machine. For the PARSEC
benchmarks we used the simlarge input sets. Table 1 lists
the number of task instances and the time required for
simulating each benchmark with 8 simulated threads in

detail. The table also lists the simulation time for each
benchmark when using two of the techniques proposed in
this paper, namely clustering of task instances based on k-
means (KMEANS) and DBSCAN clustering in combination
with analytical performance modeling (DBS+MOD).

Simulated Architectures
We evaluate the fidelity of our methodology by investigat-
ing simulation speedup and execution time error of multi-
threaded simulations of two different multi-core architec-
tures. One resembles a server-class system, while the other
resembles a low-power mobile platform. Table 2 lists the
key characteristics of the simulated architectures. The high
performance architecture features a large reorder buffer and
a three-level cache hierarchy, as found in HPC systems.
The low-power architecture has a smaller reorder buffer
and two levels of cache memories, as is typical for battery
powered mobile systems. Recently, low-power systems are
gaining interest for applications in HPC [29]. We used the
same parameters for simulation and analytical performance
modeling.

TABLE 2
Architectural parameters of high-performance and low-power

configurations used for simulation and analytical modeling

Parameter High-perf. Low-power
Reorder-buffer
size

168 40

Issue width 4 3
Commit rate 4 3
Cache line size 64 B 64 B
L1 cache 32 kB private

4 cycles latency
8-way associative

32 kB private
4 cycles latency
2-way associative

L2 cache 2 MB private
11 cycles latency
8-way associative

1 MB shared
21 cycles latency
16-way
associative

L3 cache 20 MB shared
28 cycles latency
20-way
associative

none

The TaskSim Simulator
We evaluate our methodology using the TaskSim simu-
lator [30], [31]. TaskSim is a cycle-accurate, trace-driven
performance simulator for multi-core architectures. It inter-
faces with an unmodified version of the OmpSs runtime
system. The runtime system schedules the task instances
of the simulated application for execution on the simulated
processor cores.

TaskSim has a detailed and a fast-forwarding simulation
mode. The detailed mode is based on the Reorder-Buffer
Occupancy Analysis model proposed by Lee et al. [25]. When
running in detailed mode, TaskSim models a user-defined
memory hierarchy including private and shared cache mem-
ories, interconnect structures and DRAM.

In the fast-forwarding mode, called burst mode, TaskSim
only accounts for the number of CPU cycles between events,
in our case between the beginning and the end of the
execution of a task instance. In the existing implementation,
TaskSim reads a task instance’s cycle count from the appli-
cation trace. This is the number of cycles it takes to execute

the task instance on the system used for trace generation.
In contrast, our fast-forwarding mechanism calculates the
duration of a task instance at the beginning of its simulation.
Using the mean IPC of the sample history of a task instance
i’s task type or cluster T and its dynamic instruction count
Ii, we estimate its number of execution cycles Ci according
to Ci =

Ii
IPCT

. The result is the number of cycles it takes to
execute the task instance at an IPC of IPCT , the average IPC
of the instance’s task type. The dynamic instruction count is
read from the application trace.

In the scope of this work, we extended TaskSim with the
capability to switch between warming, detailed and fast-
forwarding mode at runtime. Instead of using previously
recorded cycle counts from a trace, our implementation
of fast-forwarding mode uses cycle counts predicted by
our fast-forwarding mechanism. To the best of our knowl-
edge, this is the first fast-forwarding mechanism applying
different IPCs to different task instances of a task-based
program. Our mechanism allows fast-forwarding of dynam-
ically scheduled parallel programs, in which the per-thread
instruction stream is a-priori unknown.

5 EVALUATION

In this section, we conduct a sensitivity analysis of Task-
Point’s model parameters. Then, we evaluate the simulation
error and speedup for different ways of identifying clusters
of task instances which are used as samples for prediction
the performance of other instances of the same cluster. We
find that k-means clustering achieves high accuracy at a
significant simulation speed reduction. However, DBSCAN
clustering combined with analytical modeling is superior
in terms of simulation speed without a significant loss
in accuracy. Finally, we compare TaskPoint to an existing
sampled simulation technique.

5.1 Overview of the Results

0

2

4

6

E
rr

or
 [%

]

TP

TP+K
MEANS

TP+D
BS

TP+D
BS+M

OD TP

TP+K
MEANS

TP+D
BS

TP+D
BS+M

OD TP

TP+K
MEANS

TP+D
BS

TP+D
BS+M

OD TP

TP+K
MEANS

TP+D
BS

TP+D
BS+M

OD

0

100

200

300

S
pe

ed
up

 [x
]

8.62 7.34

Lazy sampling Periodic sampling
High­perf. Low­power High­perf. Low­power

Fig. 6. Summary of results. Average error and speedup of high-
performance and low-power architectures with 8 threads for Task-
Point with clustering based on the task type (TP), using k-means
(TP+KMEANS), using DBSCAN (TP+DBS) and using DBSCAN in com-
bination with analytical modeling (TP+DBS+MOD). Only the latter com-
bines high simulation speed, low error and low error variance.

Figure 6 gives an overview of the results for simulations
of the two architectures introduced in Tab. 2. The results are
shown for 8 simulated threads, assuming the sampling pa-
rameters we evaluate in the next section. The figure shows
error and speedup for clustering (i) based on the task type
(TP), (ii) using k-means (TP+KMEANS), (iii) using DBSCAN
(TP+DBS) and using DBSCAN in combination with ana-
lytical modeling (TP+DBS+MOD). The error is the relative
execution time difference between a full detailed simulation
and a simulation using TaskPoint. The figure clearly shows
that k-means clustering improves simulation error over only
using the task type, but does so at poor simulation per-
formance. DBSCAN alone achieves the highest simulation
performance, but at a large simulation error. We leverage the
relative accuracy of analytical modeling to correct this error
on a per-cluster basis, effectively combining the accuracy
of detailed simulation with the speed of analytical models.
This approach reduces the simulation error for 8 threads to
0.46% on average and 7.9% at most. The simulation speedup
of 220x is only 2.3% slower than DBSCAN alone, but 11.7%
faster than clustering based on the task type, and 77.5%
faster than k-means. Overall, DBSCAN with analytical mod-
eling achieves a high simulation speed at a low simulation
error and low error variance, offering a superior trade-off
between simulation speed and complexity.

5.2 Evaluating the Model Parameters

We determine the optimal warmup and sampling param-
eters following an incremental approach. First, we deter-
mine the optimal number of task instances (W) needed
for warmup at simulation start. Afterwards, we consider
different numbers of task instances constituting the sample
history (H). Finally, we explore a range of values for the
sampling period (P). We evaluate the model parameters
simulating the high-performance architecture in Table 2 and
clustering of task instances based on their task type. We
apply the same model parameters to the other clustering
techniques. Our results indicate that the model parameters,
once determined, can be applied to different clustering tech-
niques without significantly increasing the simulation er-
ror. We also considered methods to dynamically determine
the sampling parameters. This more complex technique
achieves similar results in terms of simulation error and
speedup, while considerably increasing complexity.

In order to determine the optimal value for W we set
H = 10 and P = ∞ and evaluate different values ranging
from W = 0 (no warmup) to W = 10. Figure 7a shows
error and speedup w.r.t. full detailed simulation, averaged
over simulations with 32 and 64 threads. The reported
values are averaged over the benchmarks and kernels with
an error > 5% for at least one value of W , namely 2d-
convolution, 3d-stencil, atomic-monte-carlo-dynamics, knn, fft,
merge-sort, blackscholes, dedup, freqmine and x264. We found
that W = 2 yields an average error of less than 2%.
Larger values of W do not significantly reduce the average
error, but for some benchmarks they significantly reduce
simulation speedup by requiring more detailed simulation.
Therefore, for the remainder of this paper, we set W = 2.

Next, we evaluate different values for H , the size of the
sample history. For this purpose, we set P = ∞. Note that

0 2 4 6 8 10

Number W of task instances for warmup

0

2

4

6

8

10

A
ve

ra
ge

 e
rr

or
 [%

]

0

50

100

150

200

A
ve

ra
ge

 s
pe

ed
up

Error
Speedup

(a) Error and speedup for different sizes W of warmup interval, average
of 32 and 64 threads on high-performance architecture

1 2 3 4 5 6 7 8 9 10

Size H of sample history

0

2

4

6

8

A
ve

ra
ge

 e
rr

or
 [%

]

0

10

20

30

40

A
ve

ra
ge

 s
pe

ed
up

Error
Speedup

(b) Error and speedup for different sizes H of task instance history,
average of 32 and 64 threads on high-performance architecture

101 102 103

Size P of sampling period

0.0

0.5

1.0

1.5

2.0

2.5
A

ve
ra

ge
 e

rr
or

 [%
]

0

5

10

15

20

25

A
ve

ra
ge

 s
pe

ed
up

Error
Speedup

(c) Error and speedup for different sizes P of sampling period, average
of 32 and 64 threads on high-performance architecture

Fig. 7. Error and speedup for different sizes of warmup interval (a),
sample history (b) and sampling period (c)

we already set W = 2. Figure 7b shows error and speedup
for different sizes H of the sample history, averaged over
simulations with 32 and 64 threads of the aforementioned
benchmarks. We found that H = 4 minimizes the average
error. This value also minimizes the standard deviation of
the average error, which is not shown in the Figure. Larger
values of H do not only result in a larger average error,
but also in lower simulation speedup. Therefore, for the
remainder of this paper, we set H = 4.

5.3 Clustering based on the task type

Finally, we explore different sizes of the sampling period
P . With W = 2 and H = 4 already fixed, P is the only
remaining parameter. Figure 7c shows the average error for
values of P ranging from 10 to 1, 000. We find that average
error and speedup increase with the size of the sampling
period. The larger the value of P , more task instances are
simulated in fast-forwarding mode. Since the total number
of task instances of a program is constant, the fraction of de-
tailed simulation decreases, resulting in increasing speedup.
For P ≥ 1000 error and speedup remain constant. At this

0

2

4

6

8

10

A
bs

ol
ut

e
er

ro
r

[%
] 22

.9
28

.0
40

.8
14

.2
15

.0
14

.5

8 threads
16 threads
32 threads
64 threads

2d­conv
3d­st

at­m
c
dmtmul fft hist

m­sort
n­body

reduct
sp­mv

vec­op
splu chol

jacobi

kmeans knn
bkschl

bdytrk
cneal

dedup
fcsim

ferre
t
fldanm

frqmn
strclr

swptns
x264 avg

0
100
200
300
400
500
600

S
pe

ed
up

Fig. 8. Error and speedup for simulations of the high-performance architecture with different numbers of threads, using clustering based on the task
type and lazy sampling.

0

2

4

6

8

10

A
bs

ol
ut

e
er

ro
r

[%
]

8 threads
16 threads
32 threads
64 threads

2d­conv
3d­st

at­m
c
dmtmul fft hist

m­sort
n­body

reduct
sp­mv

vec­op
splu chol

jacobi

kmeans knn
bkschl

bdytrk
cneal

dedup
fcsim

ferre
t
fldanm

frqmn
strclr

swptns
x264 avg

0
100
200
300
400
500
600

S
pe

ed
up

Fig. 9. Error and speedup for simulations of the high-performance architecture with different numbers of threads, using k-means clustering and lazy
sampling.

point, none of the investigated programs has a sufficient
number of task instances for resampling the simulation at
least once and periodic sampling becomes equivalent to lazy
sampling.

We aim for a simulation error of less than 1%. A sam-
pling period P = 250 yields an error of 0.8% and a simula-
tion speedup of 15.1x, averaged over the benchmarks used
in our sensitivity analysis. In the remainder of this section,
we evaluate TaskPoint for periodic sampling with P = 250
and for lazy sampling (periodic sampling with P = ∞).
For the remainder of this paper, we focus on simulations
of the high-performance architecture introduced in Table 2.
The overview of our results in Figure 6 indicates that for the
low-power architecture similar results can be expected.

Figure 8 shows simulation error and speedup when clus-
tering task instances based on their task type. The average
simulation error is up to 3.21% for 64 threads. At 40.8%, we
observe the largest simulation error for merge-sort, which
is also the benchmark showing the largest performance
variation ranging from -59% to 45% per task type in Figure 1.
Other benchmarks showing high simulation errors are fft,
freqmine and dedup. These benchmarks are also among the
benchmarks showing the largest performance variation (fft:
-38% to 45%, freqmine: -28% to 24%, dedup: -15% to 11%).

On the other hand, benchmarks showing low perfor-
mance variation in Figure 1 also show low simulation error
when clustering task instances based on their task type. Ex-
amples are 2d-convolution, 3d-stencil and atomic-monte-carlo-
dynamics.

For some benchmarks, e.g. 3d-stencil, atomic-monte-carlo-
dynamics and n-body, the simulation error increases for in-
creased numbers of simulated threads. We find that for these
benchmarks the number of last-level cache misses per kilo
instruction (MPKI) increases for larger numbers of threads,
which also increases performance variation. These errors
can be improved by increasing the size of the sample history
at the expense of simulation speedup.

The largest simulation speedup is observed for bench-
marks which have only one task type, e.g. swaptions, which
shows a speedup of 471x. The average speedup ranges from
197x for 8 threads to 22x for 64 threads. For lazy sampling,
simulation speedup is mainly limited by the number of
task instances of the simulated application. For increasing
numbers of simulated threads, an increasing fraction of a
program’s task instances needs to be simulated in detail,
decreasing the fraction which can be simulated in fast-
forwarding mode.

As illustrated in Figure 2a, clustering of task instances
based on the task type can produce clusters of task in-
stances of dissimilar performance. This is especially true for
applications with irregular performance or multiple classes
of behavior among instances of the same task type. This
justifies the use of more elaborate clustering techniques to
identify classes of task instances which can serve as samples
for one another.

0

2

4

6

8

10

A
bs

ol
ut

e
er

ro
r

[%
] 12

.8
13

.7
28

.3
32

.8
25

.5
10

.2
15

.1

8 threads
16 threads
32 threads
64 threads

2d­conv
3d­st

at­m
c
dmtmul fft hist

m­sort
n­body

reduct
sp­mv

vec­op
splu chol

jacobi

kmeans knn
bkschl

bdytrk
cneal

dedup
fcsim

ferre
t
fldanm

frqmn
strclr

swptns
x264 avg

0
100
200
300
400
500
600

S
pe

ed
up

Fig. 10. Error and speedup for simulations of the high-performance architecture with different numbers of threads, using DBSCAN clustering and
lazy sampling.

0

2

4

6

8

10

A
bs

ol
ut

e
er

ro
r

[%
]

8 threads
16 threads
32 threads
64 threads

2d­conv
3d­st

at­m
c
dmtmul fft hist

m­sort
n­body

reduct
sp­mv

vec­op
splu chol

jacobi

kmeans knn
bkschl

bdytrk
cneal

dedup
fcsim

ferre
t
fldanm

frqmn
strclr

swptns
x264 avg

0
100
200
300
400
500
600

S
pe

ed
up

Fig. 11. Error and speedup for simulations of the high-performance architecture with different numbers of threads, using DBSCAN clustering in
combination with analytical performance modeling and lazy sampling.

5.4 Clustering using k-means

Figure 9 shows simulation error and speedup for clustering
of task instances based on k-means. We cluster task in-
stances by using their BBVs as an input to the SimPoint [33]
tool, which relies on k-means. We set SimPoint’s maxK pa-
rameter to 20, limiting the maximum number of clusters to
20. SimPoint finds the clustering with the smallest number
of clusters which still achieves a low per-cluster variance.
As illustrated in Figure 2b, k-means classifies task instances
into clusters of regular performance, whereas irregular clus-
ters get sub-clustered into regular ones. In our evaluation,
atomic-monte-carlo-dynamics is the benchmark resulting in the
largest number of clusters (k = 18). The simulation error
when applying k-means is the lowest of all investigated
clustering techniques, with an average error of up to 0.36%
and a maximum error of 4.1% in case of merge-sort simulated
with 16 treads. Simulation based on k-means clustering
achieves a very high average simulation accuracy at the
expense of simulation time.

At an average simulation speedup of 124x for eight sim-
ulated threads simulations using k-means are 59% slower
than when clustering task instances based on their task type.
The reason for this slowdown lies in the increased num-
ber of clusters for some applications, resulting in detailed
simulation of a larger fraction of the workload compared
to clustering based on the task type. The large loss in
simulation speed indicates that it is desirable to keep the
total number of clusters as low as possible. This can be
achieved by relying on a density-based clustering algorithm,

e.g. DBSCAN.

5.5 DBSCAN clustering
Figure 10 shows simulation error and speedup for simula-
tions using DBSCAN to cluster task instances. The figure
shows that regular applications achieve a simulation accu-
racy similar to clustering based on the task type. However,
compared to clustering based on the task type, irregular
benchmarks expose a higher simulation error. We identify
two sources for this increase in simulation error: First,
similar instances of different task types get merged into one
cluster due to the similarity of their BBVs. Second, DBSCAN
can report clusters with large diameter, as in the example of
merge-sort illustrated in Figure 2b.

In fft, task instances with similar BBVs belonging to
different task types get merged by DBSCAN into one cluster.
The same effect occurs in histogram, swaptions and x264. For
these benchmarks, DBSCAN finds a total number of clusters
which is lower than the number of task types. Although
task instances in the same cluster are generally similar, they
can have different performance. The benchmarks merge-
sort and freqmine contain input-dependent task types whose
instances get clustered into clusters with a large diameter. A
result is performance variation among task instances of the
same cluster, which increases simulation error.

On average, DBSCAN finds a lower number of clusters
and thus achieves larger simulation speedup than k-means
and clustering based on the task type. Simulation speedup
ranges from 225x for 8 threads to 25x for 64 threads. Clusters

can contain task instances of different performance. If un-
accounted for, these differences can cause high simulation
errors, as shown in Figure 10.

5.6 DBSCAN clustering and analytical modeling
Figure 11 shows simulation error and speedup for simula-
tions using DBSCAN clustering to identify classes of task
instances and performance estimations obtained from the
analytical performance model. The difference to only using
DBSCAN clustering is that, during fast-forwarding, task
instances are simulated at an IPC according to Equation 1
instead of the average IPC of their respective task cluster.

The results show that analytical modeling significantly
improves simulation accuracy over using only DBSCAN.
The merge-sort benchmark shows errors of up to 32.8%
with DBSCAN alone. Analytical modeling reduces this error
to 7.9% in the worst case. The simulation error of fft is
improved from 13.7% to 3.5%. For freqmine and x264 the
error is reduced from more than 10% to 1.5% and 0.1%,
respectively.

The average speedup of DBSCAN combined with ana-
lytical modeling is slightly lower than the speedup achieved
when only using DBSCAN due to the cost of evaluating
the analytical model for each task instance. The biggest
relative decrease in simulation speed amounts to 13.5% and
is observed for 16 simulated threads. However, given the
significant improvement of simulation accuracy we find the
slight loss in simulation speed to be acceptable.

5.7 Comparison to Dynamic Sampling
In the following, we compare error and speedup of Task-
Point and Dynamic Sampling [18], a technique proposed
by Falcón et al. During simulation, Dynamic Sampling
advances threads in fast-forward mode based on previously
seen performance and reevaluates this progress whenever
changes to internal simulator statistics are seen. For a brief
introduction to Dynamic Sampling we refer to the subsec-
tion on multi-threaded simulation sampling in Section 6.

For this comparison, we use the COTSon simulator [2],
which is distributed with an implementation of Dynamic
Sampling. We configure COTSon to simulate an architecture
resembling the low-power architecture in Table 2, running
Ubuntu 16.04 Server as its operating system. We are able
to run COTSon successfully with up to 4 simulated cores
and analyze five applications leading to a similar average
error as the full benchmark set. For these applications, we
use the same application binaries and input sets as in the
simulations with TaskPoint.

We evaluate the parameter space of Dynamic Sampling
and confirm the finding of Falcón et al., that the rate of
translation cache invalidations is a suitable metric for con-
trolling resampling. We found that an interval length of 100
thousand cycles for the warming, detailed simulation and
fast-forwarding intervals in combination with a resampling
threshold of 100 leads to a good trade-off of simulation
speed and accuracy. Resampling is only triggered if the
monitored metric exceeds the threshold, i.e., we allow for
an infinite number of consecutive fast-forwarding intervals.

Figure 12 shows simulation error and speedup for sim-
ulations of 5 benchmarks with TaskPoint and Dynamic

0

1

2

3

4

5

Er
ro

r [
%

]

2d-convolution
blackscholes
dedup
merge-sort
swaptions
average

TaskPoint
1 thread

Dynamic
Sampling
1 thread

TaskPoint
4 threads

Dynamic
Sampling
4 threads

100

101

102

103

104

Sp
ee

du
p

[x
]

Fig. 12. Error and speedup of TaskPoint and Dynamic Sampling for 1
and 4 simulated threads.

Sampling, simulated with 1 and 4 threads. For 1 thread, both
techniques show a high simulation accuracy. We attribute
the slightly higher error of Dynamic Sampling to effects
introduced by the simulated operating system, which is
not simulated in the user-level simulations we perform
with TaskPoint. For 4 simulated threads, Dynamic Sampling
shows an average simulation error of 2.94%, while the
average error of TaskPoint amounts to 0.15%. Again, both
techniques show an acceptable level of simulation error. Be-
sides operating system effects, we attribute the larger error
of Dynamic Sampling to the fact that the fast-forwarding
mechanism does not model the changes in resource con-
tention caused by task instances executing the same static
code, but showing input dependent behavior. TaskPoint
clusters these task instances into different clusters and fast-
forwards them at their specific rate.

The speedup of simulations with TaskPoint is around
one order of magnitude higher than the speedup observed
for Dynamic Sampling. Moreover, our fast-forwarding
mechanism minimizes the amount of detailed simulation
and avoids functional simulation of the fast-forwarded ap-
plication parts, achieving higher speedups in simulation
time as a result.

5.8 Summary
In this section we compare simulation accuracy and
speedup for TaskPoint using different clustering techniques,
namely clustering based on the task type, k-means and
DBSCAN. Our results show that clustering based on the task
type gives good accuracy and speedup for applications with
regular performance per task type. The technique achieves
an average error of 2.95% and a speedup of 197x.

k-means clustering achieves a significantly higher sim-
ulation accuracy across all benchmarks, but sacrifices up
to 59% of the simulation speedup compared to clustering
based on the task type. Overall, k-means shows an average
error of 0.21% and an average speedup of 124x for 8 threads.

We showed that DBSCAN clustering alone shows large
simulation errors of up to 32.8% in the case of merge-sort. Al-
though it yields a low average simulation error of 1.87% and
a speedup of 225x for 8 threads, the error variation across
different benchmarks is significant, as shown in Figure 6.

The combination of Analytical modeling and DBSCAN
reduces the average simulation error for 8 threads to 0.46%.
At 220x, the average simulation speedup is only 2.3% lower
compared to DBSCAN without analytical modeling. Equally
important, the variation of the error across all benchmarks
is also significantly improved. Overall, DBSCAN with ana-
lytical modeling yields good simulation accuracy at a high
simulation speed across all investigated benchmarks.

Finally, we demonstrate that TaskPoint’s accuracy is
comparable to existing techniques. Compared to an existing
technique, Dynamic Sampling, the speedup of TaskPoint
is an order of magnitude higher with a lower average
error. TaskPoint minimizes the amount of time-consuming
detailed simulation. Once obtained, a sample can be used
for the remainder of the simulation, ensuring high accuracy
by means of an analytical performance model. Furthermore,
our fast-forwarding mechanism does not rely on functional
simulation of the simulated application to advance to the
next detailed region.

6 RELATED WORK

In this section, we first introduce a number of simulators
for multi-core systems. Then, we present the prevalent
techniques for sampled simulation of single-threaded archi-
tectures. Afterwards, we review recent work on sampled
simulation of multi-threaded architectures.

Multi-Threaded Architectural Simulation
COTSon [2] is a full-system simulator that decouples func-
tional and timing simulation. Its functional simulation relies
on execution of the simulated program in a virtual machine.
COTSon features several levels of detail and supports sam-
pling.

In addition to performance, ESESC [1] also simulates a
future design’s power consumption and thermal behaviour.
ESESC applies time-based sampling to simulation of multi-
threaded applications.

The full-system simulator gem5 [5] features CPU mod-
els at several levels of detail, ranging from a model em-
ploying hardware virtualization without modeling micro-
architectural details to a detailed model of a superscalar
out-of-order CPU.

In contrast to the aforementioned simulators, Sniper [7]
features two different analytical CPU models. Instead of
modeling micro-architectural structures within the CPU,
it employs analytical core models, namely the mechanis-
tic Interval Simulation model [19] or the instruction-window
centric model [9]. Furthermore, Sniper supports time-based
sampling [8].

Single-Threaded Simulation Sampling
In their SimPoint methodology [33], Sherwood et al. use
basic block vectors to identify the most representative code
sections to simulate in detail. SimPoint requires a-priori

profiling of the application in order to identify basic block
vectors.

SMARTS [38] and TurboSMARTS [36] switch peri-
odically between warmup, detailed simulation and fast-
forwarding to accurately determine the performance of a
single-threaded application. Warmup allows for higher ac-
curacy by putting simulated micro-architectural structures
into a representative state. After warmup, the performance
metrics of interest are measured in detailed mode. Fast-
forwarding mode maintains the correct state of the simu-
lated cache memories with functional warming. The dura-
tions of the respective intervals are user-specified parame-
ters.

The single-threaded sampling techniques introduced in
this subsection can only be applied to single-threaded sim-
ulations of task-based programs, not multi-threaded pro-
grams. However, with TaskPoint, we present a technique
targeting the more general case with arbitrary thread counts.

Multi-Threaded Simulation Sampling
There are recent techniques applying sampling to simula-
tions of multi-threaded programs. Carlson et al. [8] and
Ardestani et al. [1] apply time based sampling [13] to
parallel programs. Short detailed simulation phases take
turns with longer fast-forwarding phases, resulting in a re-
duction of simulation time. The fast-forwarding mechanism
employs functional simulation, using the average IPC of the
previous detailed simulation phase in order to approximate
the progress rates of different threads. The lengths of the
sampling and fast-forwarding intervals are determined dur-
ing profiling using micro-architecture independent metrics.

BarrierPoint [10] first analyzes micro-architecture inde-
pendent performance metrics of program sections between
global barriers. Afterwards, the SimPoint infrastructure [33]
identifies clusters of those inter-barrier regions with similar
performance. Simulation time is reduced by simulating only
one representative out of each cluster. BarrierPoint achieves
an average simulation speedup of 24.7x with an average
execution time error of 0.9%. This shows that leveraging
the nature of a parallel programming model can lead to
significantly higher simulation speedup.

In their Multilevel Simulation technique, Gonzalez et
al. [20] identify representative phases (CPU bursts) of pro-
grams implemented in the Message Passing Interface (MPI)
programming model. Representative CPU bursts are identi-
fied during profiling prior to simulation and are afterwards
simulated in detail. The obtained performance information
is then used to extrapolate the overall program performance.
Multilevel Simulation targets distributed-memory applica-
tions, while with TaskPoint we present a technique for
multi-threaded applications on shared-memory systems.

Dynamic Sampling [18] targets full-system simulation
based on execution in a virtual machine and switches be-
tween warming, detailed simulation and fast-forwarding
without cache warming. Resampling results in the execution
of a warmup phase followed by a detailed simulation phase
and is triggered based on changes of internal statistics of
the virtual machine. The lengths of the warmup, detailed,
and fast-forwarding phases are user-specified parameters.
Resampling is also triggered after a user-specified max-
imum number of consecutive fast-forwarding phases. In

our evaluation in Section 6 we show the applicability of
Dynamic Sampling to task-based programs. For single-
threaded simulations TaskPoint achieves a simulation error
comparable to the error of Dynamic Sampling. For multi-
threaded simulations, TaskPoint reduces the average error
by 2.79%. For both single and multi-threaded applications,
TaskPoint achieves a simulation speedup one order of
magnitude higher than the average simulation speedup of
Dynamic Sampling.

Warming in Multi-Threaded Simulations
Warming for single-threaded simulations has been exten-
sively studied [15], [22], [26], [33], [38]. The technique used
by the BarrierPoint methodology combines two existing
methodologies, namely functional warming [15] and check-
pointing [37]. The resulting technique uses dynamic instru-
mentation to track the most recent memory accesses on a
per-cache-line basis. Afterwards, this information is used to
restore cache state at the beginning of each detailed simula-
tion interval. In this paper, we simulate a fixed number of
task instances for architectural warmup.

7 CONCLUSIONS

Sampled simulation is a widely used technique to achieve
high performance with low error in architectural studies.
Previous sampled simulation techniques have proven to be
fast and accurate for statically scheduled fork-join based
programs. However, they can lose speed and accuracy in
simulations of dynamically scheduled task-based parallel
programs.

The proposed methodology enables sampled simula-
tion of task-based parallel programs. Sampling units are
identified based on the partitioning into tasks provided by
the programmer. Between detailed simulation phases, we
employ a novel fast-forwarding mechanism, which correctly
reflects the different progress rates of task instances belong-
ing to different task types and adapts to phase changes in
the simulated application.

In this paper, we provide a complete methodology for
task-based simulations that are resilient to performance
variation across instances of the same task type, while taking
advantage of inter-task similarity. By combining clustering
(BBVs and DBSCAN) with analytical modeling, we create
a hybrid simulation methodology, changing the classical
trade-off curve of simulation speed and accuracy. Compared
to using only DBSCAN clustering, we improve accuracy
while maintaining performance for all benchmarks. We also
significantly decrease the error variance. Our methodology
enables simulations of benchmarks with large input sets,
which previously were infeasible.

ACKNOWLEDGMENTS

This paper was developed with the support of the HiPEAC
network that received funding from the European Union’s
Horizon 2020 research and innovation programme under
grant agreement no. 687698, by the Spanish Government
(Severo Ochoa SEV2015-0493), the Spanish Ministry of Sci-
ence and Innovation (contract TIN2015-65316-P), Gener-
alitat de Catalunya (contracts 2014-SGR-1051 and 2014-
SGR-1272), the RoMoL ERC Advanced Grant (GA 321253),

and the Mont-Blanc project (EU-FP7-610402 and EU-H2020-
671697). M. Moreto has been partially supported by the
Ministry of Economy and Competitiveness under Juan de
la Cierva postdoctoral fellowship JCI-2012-15047. M. Casas
is supported by the Ministry of Economy and Knowledge of
the Government of Catalonia and the Cofund programme of
the Marie Curie Actions of the EU-FP7 (contract 2013BP B
00243). T. Grass has been partially supported by the AGAUR
of the Generalitat de Catalunya (grant 2013FI B 0058).

REFERENCES

[1] E.K. Ardestani and J. Renau, “ESESC: A Fast Multicore Simulator
Using Time-Based Sampling,” in Proc. 19th IEEE Int’l Symp. High
Performance Computer Architecture, 2013, pp. 448–459.

[2] E. Argollo et al., “COTSon: Infrastructure for Full System Simula-
tion,” ACM SIGOPS Operating Systems Review, vol. 43, no. 1, pp.
52–61, 2009.

[3] E. Ayguadé et al., “The Design of OpenMP Tasks,” IEEE Trans.
Parallel Distrib. Syst., vol. 20, no. 3, pp. 404–418, 2009.

[4] C. Bienia, “Benchmarking Modern Multiprocessors,” Ph.D. disser-
tation, Princeton University, 2011.

[5] N. Binkert et al., “The gem5 Simulator,” ACM SIGARCH Computer
Architecture News, vol. 39, no. 2, pp. 1–7, 2011.

[6] D.R. Butenhof, Programming with POSIX Threads. Addison-Wesley
Professional, 1997.

[7] T.E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Exploring
the Level of Abstraction for Scalable and Accurate Parallel Multi-
core Simulation,” in Proc. 24th Int’l Conf. for High Performance
Computing, Networking, Storage and Analysis, 2011, pp. 52:1–52:12.

[8] T.E. Carlson, W. Heirman, and L. Eeckhout, “Sampled Simulation
of Multi-Threaded Applications,” in Proc. 2013 IEEE Int’l Symp. on
Performance Analysis of Systems and Software, 2013, pp. 2–12.

[9] T.E. Carlson et al., “An Evaluation of High-Level Mechanistic Core
Models,” ACM Transactions on Architecture and Code Optimization,
vol. 11, no. 3, p. Article No. 28, 2014.

[10] T.E. Carlson et al., “BarrierPoint: Sampled Simulation of Multi-
Threaded Applications,” in Proc. 2014 IEEE Int’l Symp. on Perfor-
mance Analysis of Systems and Software, 2014, pp. 2–12.

[11] M. Casas, R.M. Badia, and J. Labarta, “Automatic Phase Detection
and Structure Extraction of MPI Applications,” Int’l J. of High
Performance Computing Applications, vol. 24, no. 3, pp. 335–360,
2010.

[12] M. Casas et al., “Runtime-Aware Architectures,” in Proc. 21st Int’l
European Conf. on Parallel and Distributed Computing, 2015, pp. 16–
27.

[13] M. Casas et al., “Extracting the Optimal Sampling Frequency of
Applications Using Spectral Analysis,” Concurrency and Computa-
tion: Practice and Experience, vol. 24, no. 3, pp. 237–259, 2012.

[14] D. Chasapis et al., “PARSECSs: Evaluating the Impact of Task
Parallelism in the PARSEC Benchmark Suite,” ACM Trans. on
Architecture and Code Optimization, vol. 12, no. 4, pp. 1–22, 2015.

[15] T.M. Conte, M.A. Hirsch, and W.M.W. Hwu, “Combining Trace
Sampling with Single Pass Methods for Efficient Cache Simula-
tion,” IEEE Trans. Comput., vol. 47, no. 6, pp. 714–720, 1998.

[16] D. Eklov and E. Hagersten, “StatStack: Efficient Modeling of LRU
Caches,” in Proc. 2010 IEEE Int’l Symp. on Performance Analysis of
Systems and Software, 2010, pp. 55–65.

[17] M. Ester et al., “A Density-Based Algorithm for Discovering Clus-
ters in Large Spatial Databases with Noise,” in Proc. 2nd Int’l Conf.
on Knowledge Discovery and Data Mining, 1996, pp. 226–231.

[18] A. Falcón, P. Faraboschi, and D. Ortega, “Combining Simulation
and Virtualization Through Dynamic Sampling,” in Proc. 2007
IEEE Int’l Symp. on Performance Analysis of Systems and Software,
2007, pp. 72–83.

[19] D. Genbrugge, S. Eyerman, and L. Eeckhout, “Interval Simulation:
Raising the Level of Abstraction in Architectural Simulation,” in
Proc. 16th IEEE Symp. on High Performance Computer Architecture,
2010, pp. 1–12.

[20] J. Gonzalez et al., “Simulating Whole Supercomputer Applica-
tions,” IEEE Micro, no. 3, pp. 32–45, 2011.

[21] J. Gonzalez, J. Gimenez, and J. Labarta, “Automatic Detection of
Parallel Applications Computation Phases,” in Proc. 32nd IEEE
Int’l Parallel and Distributed Processing Symp., 2009, pp. 1–11.

[22] J.W. Haskins Jr and K. Skadron, “Memory Reference Reuse La-
tency: Accelerated Warmup for Sampled Microarchitecture Simu-
lation,” in Proc. 2003 IEEE Int’l Symp. on Performance Analysis of
Systems and Software, 2003, pp. 195–203.

[23] T. Karkhanis and J. Smith, “A First-Order Superscalar Processor
Model,” in Proc. 31st Ann. Int’l Symp. on Computer Architecture,
2004, pp. 338–349.

[24] J. Lau et al., “The Strong Correlation Between Code Signatures
and Performance,” in Proc. 2005 IEEE Int’l Symp. on Performance
Analysis of Systems and Software, 2005, pp. 236–247.

[25] K. Lee, S. Evans, and S. Cho, “Accurately Approximating Super-
scalar Processor Performance from Traces,” in Proc. 2009 IEEE Int’l
Symp. on Performance Analysis of Systems and Software, 2009, pp.
238–248.

[26] Y. Luo, L.K. John, and L. Eeckhout, “Self-Monitored Adaptive
Cache Warm-Up for Microprocessor Simulation,” in Proc. 16th
Symp. on Computer Architecture and High Performance Computing,
2004, pp. 10–17.

[27] J. MacQueen et al., “Some Methods for Classification and Analysis
of Multivariate Observations,” in Proc. 5th Berkeley Symp. on Math-
ematical Statistics and Probability, vol. 1, no. 14, 1967, pp. 281–297.

[28] S.D. Pestel, S. Eyerman, and L. Eeckhout, “Micro-Architecture
Independent Branch Behavior Characterization,” in Proc. 2015
IEEE Int’l Symp. on Performance Analysis of Systems and Software,
2015, pp. 135–144.

[29] N. Rajovic et al., “Supercomputing with Commodity CPUs: Are
Mobile SoCs Ready for HPC?” in Proc. 26th Int’l Conf. for High
Performance Computing, Networking, Storage and Analysis, 2013, pp.
1–12.

[30] A. Rico et al., “On the Simulation of Large-Scale Architectures
Using Multiple Application Abstraction Levels,” ACM Trans. on
Architecture and Code Optimization, vol. 8, no. 4, pp. 36:1–36:20,
2012.

[31] A. Rico et al., “Trace-Driven Simulation of Multithreaded Appli-
cations,” in Proc. 2011 IEEE Int’l Symp. on Performance Analysis of
Systems and Software, 2011, pp. 87–96.

[32] D. Sanchez and C. Kozyrakis, “ZSim: Fast and Accurate Microar-
chitectural Simulation of Thousand-Core Systems,” in Proc. 40th
Ann. Int’l Symp. on Computer Architecture, 2013, pp. 475–486.

[33] T. Sherwood et al., “Automatically Characterizing Large Scale
Program Behavior,” in Proc. 10th Int’l Conf. on Architectural Support
for Programming Languages and Operating Systems, 2002, pp. 45–57.

[34] M. Valero et al., “Runtime-Aware Architectures: A First Ap-
proach,” Int’l J. on Supercomputing Frontiers and Innovations, vol. 1,
no. 1, pp. 29–44, Jun. 2014.

[35] S. Van Den Steen et al., “Analytical Processor Performance and
Power Modeling Using Micro-Architecture Independent Charac-
teristics,” IEEE Trans. Comput., vol. 65, no. 12, pp. 3537–3551, 2016.

[36] T.F. Wenisch et al., “TurboSMARTS: Accurate Microarchitecture
Simulation Sampling in Minutes,” in Proc. ACM SIGMETRICS Int’l
Conf. on Measurement and Modeling of Computer Systems, 2005, pp.
408–409.

[37] T.F. Wenisch et al., “Simulation Sampling with Live-Points,” in
Proc. 2006 IEEE Int’l Symp. on Performance Analysis of Systems and
Software, 2006, pp. 2–12.

[38] R.E. Wunderlich et al., “SMARTS: Accelerating Microarchitecture
Simulation via Rigorous Statistical Sampling,” in 30th Annual
International Symposium on Computer Architecture, 2003, pp. 84–95.

Thomas Grass is currently a postdoctoral re-
searcher at RWTH Aachen. He received his
Ph.D. degree from UPC in 2017. From 2012 to
2017 he was a Junior Researcher at BSC. In
2011 he received a Dipl.-Ing. degree in Elec-
trical Engineering from the Technical University
of Kaiserslautern. His research interests include
techniques for performance analysis and design
methods for future parallel systems.

Trevor E. Carlson is currently an assistant pro-
fessor at the National University of Singapore.
He received his B.S. and M.S. degrees from
Carnegie Mellon University in 2002 and 2003,
his Ph.D. from Ghent University in 2014, and has
worked for 3 years as a postdoctoral researcher
at Uppsala University. His research interests in-
clude highly-efficient microarchitectures, hard-
ware/software co-design, performance modeling
and fast and scalable simulation methodologies.

Alejandro Rico is a Senior Research Engineer
at ARM Research (Austin, TX, USA). Previously,
he was a post-doctoral researcher at BSC. He
received a Ph.D. from UPC in 2013 and a M.Sc.
and B.Sc. from Universitat Pompeu Fabra in
2005. During his studies he worked as an intern
at IBM (NY, USA) and Arm (Cambridge, UK). His
research interests are high performance com-
puting, multi-core scalability and heterogeneous
architectures.

Germán Ceballos is a Ph.D. student at Upp-
sala University. In 2013, he received his MSc. in
Computer Science from FaMAF, Universidad Na-
cional de Córdoba (Argentina) working with the
GPUGPU Computing Group. After his MSc. he
joined the Uppsala Architecture Research Team
to investigate resource contention in runtime
systems within the UPMARC research project.
His research interests are analytical models for
resource contention and performance, and run-
time systems.

Eduard Ayguadé is a full professor at the Com-
puter Architecture Department at UPC. He is
the associate director of research in Computer
Science at BSC. His research interests include
multicore architectures, programming models
and compilers for high-performance architec-
tures. He published around 250 publications on
these topics and participated in several research
projects with universities and frameworks of the
European Union or in direct collaboration with
leading technology companies.

Marc Casas is a senior researcher at the
Barcelona Supercomputing Center. Prior to this,
he spent 3 years as a post-doctoral fellow at
the Lawrence Livermore National Laboratory
(LLNL). He received his B.Sc. and M.Sc. de-
grees in mathematics in 2004 from the UPC and
the Ph.D. in Computer Science in 2010 from the
Computer Architecture Department of UPC. His
research interests are high performance com-
puting, runtime systems and parallel algorithms.

Miquel Moretó is a senior researcher at BSC.
Prior to joining BSC, he spent 15 months as
a post-doctoral fellow at the International Com-
puter Science Institute (ICSI), Berkeley, USA. He
received the B.Sc., M.Sc., and Ph.D. degrees
from UPC. His research interests include study-
ing shared resources in multithreaded architec-
tures and hardware-software co-design for future
massively parallel systems.

