
NOREBA: A Compiler-Informed Non-speculative Out-of-Order
Commit Processor

Ali Hajiabadi
ali.hajiabadi@u.nus.edu

National University of Singapore
Singapore

Andreas Diavastos
andreas@ac.upc.edu

Universitat Politècnica de Catalunya
Spain

Trevor E. Carlson
tcarlson@comp.nus.edu.sg

National University of Singapore
Singapore

ABSTRACT

Modern superscalar processors execute instructions out-of-order,
but commit them in program order to provide precise exception
handling and safe instruction retirement. However, in-order in-
struction commit is highly conservative and holds on to critical
resources far longer than necessary, severely limiting the reach
of general-purpose processors, ultimately reducing performance.
Solutions that allow for efficient, early reclamation of these critical
resources could seize the opportunity to improve performance. One
such solution is out-of-order commit, which has traditionally been
challenging due to inefficient, complex hardware used to guarantee
safe instruction retirement and provide precise exception handling.

In this work, we present Noreba, a processor forNon-speculative
Out-of-order Retirement via Branch Reconvergence Analysis. In
Noreba, we enable non-speculative out-of-order commit and re-
source reclamation in a light-weight manner, improving perfor-
mance and efficiency. We accomplish this through a combination
of (1) automatic compiler annotation of true branch dependencies,
and (2) an efficient re-design of the reorder buffer from traditional
processors. By exploiting compiler branch dependency information,
this system achieves 95% of the performance of aggressive, spec-
ulative solutions, without any additional speculation, and while
maintaining energy efficiency.

CCS CONCEPTS

•Computer systems organization→Reduced instruction set

computing; • Software and its engineering→ Compilers.

KEYWORDS

out-of-order commit, compilers, hardware-software co-design, pro-
cessor design

ACM Reference Format:

Ali Hajiabadi, Andreas Diavastos, and Trevor E. Carlson. 2021. NOREBA:
A Compiler-Informed Non-speculative Out-of-Order Commit Processor.
In Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS ’21),
April 19–23, 2021, Virtual, USA. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3445814.3446726

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ASPLOS ’21, April 19–23, 2021, Virtual, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8317-2/21/04.
https://doi.org/10.1145/3445814.3446726

1 INTRODUCTION

Efficiency, in all forms, from energy-efficiency to area- and dollar-
cost-efficiency, are extremely important in the post-Dennard Scal-
ing, post-Moore’s Law world that we live in today. But, the demand
for efficient general-purpose processing, from datacenter servers
to high-end mobile devices, continues unabated. While accelera-
tors play a key role in addressing the efficiency (and performance)
needs of specialized applications, the general-purpose processor
continues to play a significant role in overall system deployment
strategies. In fact, the traditional processor will be left with more
difficult workloads, as the easy-to-process work is handed off to
GPUs and other accelerators [4]. This means that more aggressive,
as well as efficient strategies, are needed to advance general purpose
core performance.

Core processor design has continued to push forward with more
efficient, higher-performance processors. Typically, load instruc-
tions, specifically those that have been difficult to predict or com-
pute, have been a focus of many attempts to improve performance.
From traditional prefetching [13, 20, 30], execution-driven prefetch-
ing [18, 27], value prediction [23] and data recomputation [3], there
have been many areas of active research that have been able to
reduce the average memory access latency as seen by the proces-
sors themselves. In addition, there have also been techniques that
have helped to initiate memory accesses earlier, or increase the
amount of memory level parallelism (MLP) [12] that a processor
can exploit. While much has been done to improve performance
with high efficiency, it is the combination of delinquent loads and
branches that depend on them that has held back the performance
of the processor [31].

In order to improve overall performance, we need to keep re-
ducing the average load latency seen, and enable making progress
past the branches that depend on loads that are extremely diffi-
cult to predict. Loads, and the branches that depend on them, lock
down the processor into a speculative state that solutions like value
prediction cannot solve; without the data value from that delin-
quent load, the processor’s speculative state will continue to remain
large, limiting forward progress by the size of the processor’s in-
ternal state. What is needed, instead, is the ability to continue to
make non-speculative forward progress, even in the presence of
load-dependent branches.

To address this issue, this work proposes the first energy-efficient
implementation of non-speculative out-of-order commit processing,
a compiler-assisted design that allows the processor to continue to
make non-speculative forward progress, where none was possible
before. By informing the hardware about which instructions are al-
lowed to commit after a branch reconvergence point, the processor

https://doi.org/10.1145/3445814.3446726
https://doi.org/10.1145/3445814.3446726
https://doi.org/10.1145/3445814.3446726

ASPLOS ’21, April 19–23, 2021, Virtual, USA Ali Hajiabadi, Andreas Diavastos, and Trevor E. Carlson

can continue to make progress on independent work that is non-
trivial to hoist above the original branch. Exposing this additional
work allows the processor to issue additional loads, improving MLP,
as well as commit instructions non-speculatively, freeing space in
the processor to continue to make forward progress. By committing,
and reclaiming resources of non-speculative, sure-to-be-committed
instructions early and out-of-order, this technique aims to maximize
the capabilities of the core, allocating resources to truly speculative
instructions and state.

In this paper, we propose an energy efficient non-speculative
out-of-order commit implementation that can reach 95% of the
performance of a speculative, oracle (no commit mispredictions
or roll-back penalties) out-of-order commit technique. This is on
average a 1.22× improvement over an in-order commit baseline (up
to a maximum of 2.17×), with just a 4% power overhead. To enable
this:

• We implement a low-complexity compiler pass for branch
dependency detection. We communicate this information to
the hardware, to allow for the safe out-of-order commit of
independent instructions.

• We propose a novel Selective ROB that implements out-of-
order commit of instructions using low cost hardware. The
Selective ROB allows for reordering to prioritize instructions
that can commit early, without the additional hardware over-
heads typically seen in other solutions.

• We enable precise exceptions in the correct path of branch
mispredictions with an efficient recovery mechanism that ex-
poses out-of-order-committed instructions for OS handling
of recovery or context switching.

In the rest of this paper, we first provide background on out-of-
order commit in Section 2. In Section 3 we describe our compiler
technique and in Section 4 we outline our architecture. In Section 5
we describe our experimental setup and in Section 6 we present
our results. Finally, in Section 7 we outline state-of-the-art related
works and conclude this work with Section 8.

2 BACKGROUND AND MOTIVATION

Bell and Lipasti [5] have investigated the necessary conditions that
allow for a safe commit of an instruction, but none of the conditions
imply that the instruction should be at the head of ROB. In other
words, all instructions in ROB do not have to wait for the instruction
at the head of ROB to resolve and commit which enables out-of-
order commit of instructions. It is this insight which enables early
out-of-order commit and reclamation. Briefly these conditions are:

• Condition 1: The instruction is completed;
• Condition 2: The instruction is involved in no memory traps.
That is, we can’t commit speculative loads and their depen-
dent instructions;

• Condition 3: Register WAR hazards are resolved. We can’t
commit a write to a particular register unless all previous
reads from that register are completed;

• Condition 4: There is no prior instruction that can raise an
exception, like floating point instructions;

• Condition 5: All previous branches are successfully predicted
and the instruction is in the correct execution path.

Figure 1: Performance improvement of different approaches

over in-order commit for a Skylake-like processor baseline

with prefetching.

If all these conditions are true for an instruction in the ROB,
it can safely commit (Non-Speculative OoO-commit1). A more ag-
gressive approach is to commit instructions even if one or more
conditions are not preserved (Speculative OoO-commit). Processor
designs using Speculative OoO-commit must be able to support
checkpoint-and-rollback mechanisms in cases that the speculation
fails. Implementing Speculative OoO-commit processing, however,
can be expensive in matters of energy-efficiency; this is a significant
concern for power-constrained processors. On the other hand, Non-
Speculative OoO-commit designs do not need to support rolling
back the architectural state of the system. Hence, they can offer a
better level of energy efficiency. However, current non-speculative
designs are unable to realize the full potential of OoO-commit to
achieve high-levels of performance.

Figure 1 shows the performance of various OoO-commit so-
lutions normalized to a traditional in-order commit design in a
Skylake-like processor2. Speculative OoO-commit is presented as
an oracle upper-bound, therefore it doesn’t include any penalties
for misspeculation. SpeculativeBR OoO-commit preserves all OoO-
commit conditions except for the branch condition (Condition 5).
This solution commits instructions even if previous branches have
not yet been resolved. Its performance shows a large potential for
improvement when relaxing the branch condition as it achieves on
average 86% of the oracle Speculative OoO-commit.

The key insight of this paper is that it is possible to relax the
branch condition (Condition 5) and commit non-speculative instruc-
tions early and out-of-order in an energy-efficient way. To achieve
this, we adopt a hardware-software co-design solution that uses the
compiler to expose instruction dependencies on earlier branches
(not necessarily the most recent branch instructions) to the proces-
sor that is equipped with new energy-efficient structures that use
this information to enable non-speculative out-of-order commit.
The compiler has all the information on possible execution paths
and can make early decisions about control and data dependencies

1Since the publication of Bell et al.’s work [5], recent research [16, 24] has shown
that Conditions 1 and 3 can be relaxed in a non-speculative way in specific cases.
For example, instructions can be committed even if the results have not returned if
we can guarantee that execution will continue (Conditions 2, 4 and 5 hold). In this
work, we define Non-Speculative OoO-commit as the ability to recover resources
non-speculatively, and therefore we do not follow these original conditions strictly (In
this work, Conditions 1 and 3 do not need to hold if all other conditions are met).
2We use C/C++ subset of SPEC CPU2006 benchmark suite

NOREBA: A Compiler-Informed Non-speculative Out-of-Order Commit Processor ASPLOS ’21, April 19–23, 2021, Virtual, USA

in a Non-Speculative way that relieves the processor from expen-
sive checkpoint-and-rollback mechanisms. Our hardware design
employs small, simple structures in the implementation, that im-
prove the power efficiency over prior OoO-commit solutions, such
as a collapsing ROB [5, 11].

Our proposed solution relaxes the branch condition without
introducing additional speculation by using compiler information
and unlocks the performance gains of SpeculativeBR OoO-commit,
while also maintaining the power efficiency of in-order commit
designs by avoiding complex hardware structures like collapsing
commit buffers.

3 BRANCH DEPENDENT CODE DETECTION

PASS

We use the compiler to perform control-flow and data-flow analysis
and mark true dependent instructions for each branch. Marking
true branch dependencies and exposing this information to the hard-
ware allows the instructions to commit and release their resources
as early as their true dependencies are resolved. In other words,
instructions not marked as dependent on a branch are candidates
for OoO-commit, if that branch is still unresolved and blocking the
head of ROB. Note, that the instructions might still be dependent
on an earlier branch. Effectively, we assign a single branch, either
the most recent, or an older branch, as the dependent branch for
each instruction. The Noreba compiler pass, branch dependent
code detection, consists of four steps as shown in Figure 2, with an
if-then-else structure represented by basic blocks:

A Detecting the branch reconvergence point: The recon-
vergence point of a branch is the earliest instruction in the subse-
quent instructions of the program that we expect the control flow
will eventually reconverge to, regardless of the branch outcome.
We find the reconvergence point by determining the immediate
post-dominator of the branch in the control-flow graph [7, 29]. In
Figure 2, label L2 is the reconvergence point of the branch.

B Detecting control dependent instructions: We perform
reachability analysis to detect branch control dependent instruc-
tions. All basic blocks that can be executed between the branch and
its reconvergence point are control dependent on the branch. Since
it is guaranteed that the program control will reach the reconver-
gence point after executing the branch, we can easily traverse all
basic blocks between the branch and the reconvergence point by
following the successors of the branch until we reach the reconver-
gence point. Note, that if an instruction is control dependent on
multiple branches (like nested loops), we consider the instruction to
be dependent on the inner most branch. In Figure 2, all instructions
in BB2 and BB3 (the red area) are control dependent on the branch,
since their execution depends on the outcome of the branch.

C Detecting data dependent instructions: Since we would
like to commit independent instructions out-of-order, we need to
make sure that these instructions have no data dependencies with
the branch and the control dependent instructions. We consider
a set of instructions to be data dependent if their values might be
different based on the path executed after the branch. We detect
data dependent instructions by analyzing the def-use chains and
memory aliasing of variables. Instructions using the values from

D
at

a
D

ep
en

de
nt

C
on

tro
l D

ep
en

de
nt

setBranchId 1
breqz a5, L1

L1:
setDependency 8 1
lw a4, -40(s0)
lw a5, -36(s0)
subw a5, a4, a5
sw a5, -20(s0)
lw a4, -40(s0)
lw a5, -36(s0)
addw a5, a4, a5
sw a5, -24(s0)

setDependency 9 1
lw a4, -40(s0)
lw a5, -36(s0)
addw a5, a4, a5
sw a5, -20(s0)
lw a4, -40(s0)
lw a5, -36(s0)
subw a5, a4, a5
sw a5, -24(s0)
j L2

L2:
setDependency 4 2
lw a4, -40(s0)
lw a5, -36(s0)
xor a5, a5, a4
sw a5, -52(s0)
setDependency 6 1
lw a5, -20(s0)
xor a5, a5, a4
sw a5, -48(s0)
lw a5, -24(s0)
xor a5, a5, a4
sw a5, -56(s0)

BB1

BB3 BB2

BB4
A

B

C

DBranch Reconvergence Point Setup Instruction

Figure 2: A simple if-then-else structure represented with

basic blocks marked by the branch dependent code detec-

tion pass. Branch ID 1 is assigned to the branch in BB1

with the setBranchId instruction, and all instructions in the

red and the blue areas are control- and data-dependent re-

spectively on this branch. We mark these regions with the

setDependency instruction. In BB4, the first 4 instructions

are independent from this branch, but are marked as depen-

dent on an earlier branch, with branch ID 2.

control dependent instructions or must/may alias with control de-
pendent instructions are considered data dependent. In the example
of Figure 2, both BB2 and BB3 are updating -20(s0) and -24(s0)
locations. As you can see, the first four instructions in BB4 are
independent from the updates in BB2 and BB3, but the data of the
next 6 instructions (the blue area) are dependent on the execution
of BB2 or BB3.

D Marking branch dependent regions: At this point, we have
a set of control- and data-dependent instructions for each branch.
We mark branches and their dependent regions using two new
setup instructions: (1) setBranchId which assigns an ID to the
branch, and (2) setDependency which marks the consecutive in-
structions dependent on the same branch (refer to Table 1 to see
the format of setup instructions). In Figure 2, we mark the branch
with setBranchId and assign 1 as the ID to this branch. Then we
mark all the regions detected as dependent in previous steps with
setDependency instructions. Note, that the first instructions in
BB4 are independent from the branch in BB1, but they might be
dependent on an earlier branch, for example a branch with ID equal
to 2.

Limitations of compiler-only solutions. Step D in the branch
dependent code detection pass can be replaced by a compiler hoist-
ing pass that reorders instructions based on the analysis of steps
A , B , and C , in a way that only truly dependent instructions ex-
ist after the branch and independent ones are hoisted before the

ASPLOS ’21, April 19–23, 2021, Virtual, USA Ali Hajiabadi, Andreas Diavastos, and Trevor E. Carlson

1 for (i=0; i<rarp.elemqu; i++){
2 rarp[i]->centerp.x=0;
3 rarp[i]->centerp.y=0;
4 }
5
6 for (y=0; y<= mapmaxy; y++){
7 for (x=0; x<= mapmaxx; x++){
8 regionp=regmapp(x,y);
9 if (regionp){
10 regionp ->centerp.x+=x;
11 regionp ->centerp.y+=y;
12 }
13 }
14 }

Listing 1: Two critical independent for loops in astar that a
compiler analyzer cannot statically decide the best ordering.

branch. However, reordering independent regions of code is not a
trivial task for a compiler analyzer with no dynamic information.
Take for example the astar application from SPEC CPU2006 and
the two consecutive for loops in Listing 1. The two loops are inde-
pendent of each other and can be reordered without violating the
correctness of the code. Our analysis shows that the two branches
associated with the two for loops have the same criticality. How-
ever, a compiler analyzer cannot statically determine which order
of the loops will produce the highest performance, thus will opt
to not reorder them. In Noreba, independent instructions that are
executed will be committed, regardless of the order of the loops, and
critical processor resources will be released allowing for more work
to be fetched in the processor and performance to be improved (see
Section 6). The Selective ROB design we describe in Section 4 allows
for instructions dependent on different branches (like the two loops
in this example) to be separated and committed independently.

The highest performing ordering of instructions is affected by
the criticality of loads and branches and in turn their criticality is
affected by the program inputs and the processor microarchitecture.
Therefore, a compiler analyzer requires runtime information to
successfully implement a high performance instruction ordering.
One such solution is Profile-Guided Optimization (PGO) where
the underlying hardware provides the compiler with execution-
based feedback. However, PGO is not always practical because the
optimizations provided are highly dependent on the input of the
application and the load or utilization of the machine during the pro-
filing. PGO also has some inherent limitations: (1) the complexity of
the optimization process increases exponentially with the number
of independent code blocks in the source code, and (2) hoisting
instructions across basic blocks can have user visible side-effects
and might violate the semantics of the source program [26]. In a
hardware implementation, like Noreba, such problems don’t exist
since the semantics of the code can be honored, while reordering
the instructions to improve performance.

4 NOREBA MICROARCHITECTURE

By collecting branch dependency information during the branch de-
pendent code detection pass, the Noreba core can relax the Branch
OoO-commit condition (Condition 5). It allows instructions beyond
the reconvergence point of a branch to safely commit if they do not
depend on any previous speculative (unresolved) branch. Branch

Selective ROB

Branch Dependencies Flow Branch Misprediction Flow

ICache

IFQ

IQ
EXE

RF

WB

Commit

ID

Rename

CQT

FPQ

LSQ

CIT

ROB’

BR-CQ2

BR-CQ1

PR-CQ

OoO-Commit Flow

OoO-Committed Instructions

Committed Branches

B
ra

n
c
h
 I

D

1

2

3

4

5

6

BIT DCT

Figure 3: The Noreba core microarchitecture.

dependency information collected at the software level is propa-
gated to the core by extending the Instruction Set Architecture
(ISA) with two new instructions. These instructions are injected
in the code by the compiler to uniquely mark branches and iden-
tify dependent instructions on those branches. The setBranchId
instruction is inserted before every marked branch in the code and
assigns a unique identifier (ID) to it. Instruction dependencies on
marked branches are set with the setDependency instruction that
is inserted at the beginning of a block of dependent instructions
and defines a number of consecutive instructions that follow and
the ID of the branch they depend on. While these new instructions
occupy fetch slots in the Instruction Fetch Queue (IFQ), they will be
dropped at the decode stage and will not be sent to the execution
units (in a similar way to how move instructions are handled in
Intel processors [14]).

We identify three main process flows for the proposed Noreba
core microarchitecture described in Figure 3: (1) the Branch De-
pendencies Flow, marked in blue dashed lines, that propagates
information from the compiler to the hardware (Section 4.1), (2)
the OoO-Commit Flow, marked in green dotted lines, that commits
instructions out-of-order where possible (Section 4.2) and (3) the
Branch Misprediction Flow, marked in orange dashed lines, that
allows the processor to correctly recover from branch mispredic-
tions event (Section 4.3). In Section 4.4 we describe in detail how
exceptions are handled in the proposed implementation.

Figure 4 shows example data in the new structures of the pro-
posed architecture and Table 1 shows a detailed Event-to-Action
analysis of the Branch Dependencies and OoO-Commit Flows.

4.1 Branch Dependencies Flow

With each marked branch, the setBranchId instruction stores the
compiler-defined ID of the branch with its unique sequence num-
ber in the Branch ID Table (BIT) (step ❶ in Figure 3). When a
setDependency instruction is decoded, it stores in the Dependents
Counter Table (DCT) the number of consecutive instructions that
follow and depend on a specific branch. At any given moment,
the DCT only holds one counter for one branch with its dynamic
BranchID that is calculated as a tuple of the compiler-defined ID
and the sequence number of the branch (queried from the BIT). In
step ❷, any instruction entering the ROB checks the DCT counter

NOREBA: A Compiler-Informed Non-speculative Out-of-Order Commit Processor ASPLOS ’21, April 19–23, 2021, Virtual, USA

ID
Sequence

Number

BranchID

[ID, Seq. Num]
BR-CQ

BranchID

[ID, Seq. Num]
Counter

01 1015456 [01, 1015456] 0 [11, 102842] 3

10 1023358 [10, 1023358] 1

11 1028742 [11, 1028742] 0

… …

Dependents Counter Table (DCT)Branch ID Table (BIT) Commit Queue Table (CQT)

PC
Most Recent

Branch (ID)

Register

Mapping

462868 10 $r27

462884 10 $r13

46288a 11 $r2

…

Committed Instructions Table (CIT)

Figure 4: The Branch ID Table (BIT) identifies compiler-

marked branches with their dynamic sequence number, the

Commit Queue Table (CQT) stores the Commit Queue a

branch was steered to in the Selective ROB, the Dependents

Counter Table (DCT) stores the number of subsequent in-

structions that depend on a specific branch and the Commit-

ted Instructions Table (CIT) is used to avoid re-execution of

out-of-order committed instructions in an exception event.

and if there is a non-zero value, a dependency is marked by as-
signing the DCT.BranchID to the instruction’s BranchID position
in the ROB as a 3-bit entry. At the same time, the DCT Counter
is decremented by 1. For instructions that are not marked as de-
pendent (either they are completely independent of all previous
branches, or instructions from a program that was not compiled
with our compiler infrastructure) we reserve BranchID 0 in the
corresponding ROB field.

4.2 OoO-Commit Flow

State-of-the-art OoO-commit solutions use either an associative
ROB or a collapsing ROB implementation to support OoO-commit
of instructions [5, 11]. However, such implementations tend to
require complex and power-consuming hardware that could limit
the efficiency gains of the processor. Therefore, we propose a multi-
queue ROB design, called the Selective ROB (or ROB’) that allows
for the reordering of instructions to prioritize non-speculative (their
dependent branch has resolved) instructions. Decoded instructions
are inserted at the tail of ROB’ in program order, while instructions
at the head of ROB’ are steered to specialized FIFO Commit Queues
(CQ) according to their branch-dependency state:

(1) Branch-independent instructions: If an instruction is inde-
pendent of any live branches in the Commit Queue Table
(CQT), it will be steered to the Primary Commit Queue (PR-
CQ) to be committed as soon as it arrives at the head of the
queue and satisfies all other commit conditions. Note that,
instructions of a program that isn’t compiled with our com-
piler infrastructure fall into this category. Such instructions
will be send to PR-CQ in program order and will commit in
program order;

(2) Branch-dependent instructions: If an instruction is dependent
on a live branch from the CQT, it will be steered to the

Table 1: Detailed OoO-commit processor events and actions.

Event Action

❶ setBranchId ID decoded and BIT[ID] = Branch Sequence Numberbranch entering ROB’

❶ setDependency NUM ID decoded DCT.BranchID = (ID, BIT[ID])
DCT.Counter = NUM

❷ Any instruction entering ROB’
if DCT.Counter > 0:
Inst.BranchID = DCT.BranchID
DCT.Counter = DCT.Counter - 1

else:
Inst.BranchID = INVALID

❸ The branch exiting ROB’ CQT[BranchID] = CQ
Steer branch to CQ

❸ Any instruction exiting ROB’

if CQT[Inst.BranchID] exists:
Steer instruction to CQT[Inst.BranchID]

else:
Steer instruction to PR-CQ

appropriate Branch Commit Queue (BR-CQ) to wait for its
branch to resolve before becoming eligible for commit.

To reduce commit stalling due to unresolved branches that are
independent from one another, we adopt a multi-queue implementa-
tion for BR-CQs (two BR-CQs in this implementation). Instructions
are steered to a BR-CQ based on their dependency to an unresolved
branch (step❸). An unresolved branch instruction at the head of the
ROB’ is steered to one of the BR-CQs and updates the correspond-
ing Commit Queue (CQ) entry in the CQT. Subsequent instructions
match their branch dependencies with the unresolved branches in
CQT and are steered to the same queue. To ensure that load and
store instructions are committed in program-order, they are steered
to the CQs once they are resolved in the Load/Store unit and their
page-table access succeeds.

Due to the low power consumption of a queue-based ROB (see
Figure 16), we choose the size of the ROB’ to be equal to the size of
the ROB of the baseline core. Even-though instructions can commit
out-of-order, the total commit capacity (width) of the processor
remains the same as the baseline processor. More details on the
system configuration can be found in Table 2, with a detailed per-
formance characterization on queue sizes in Section 6.1.1. Finally,
committed branch instructions remove their entry from the CQT
as they are no longer required (step ❹).

4.3 Branch Misprediction Flow

To recover from a branch misprediction event, the processor flushes
the pipeline and fetches instructions from the correct execution
path, including instructions beyond the reconvergence point of
the branch. However, instructions beyond the reconvergence point
that committed out-of-order should not re-execute. To identify
these instructions and discard them in the front-end, we use a
Committed Instructions Table (CIT) that stores instructions (with
their register mapping information) that were recently committed
out-of-order. In step ❺, an entry in the CIT is allocated for every
instruction that is committed out-of-order. The updated Commit
unit of the processor recognizes instructions that committed out-of-
order using the instruction PC. After a branch misprediction, a CIT
hit when re-fetching instructions (step ❻) identifies instructions
that have already committed, thus the re-fetched instruction is

ASPLOS ’21, April 19–23, 2021, Virtual, USA Ali Hajiabadi, Andreas Diavastos, and Trevor E. Carlson

BB2

BB1

BB3

BB4

Predicted
Incorrectly!

(b)

BB2

BB1

BB3

BB4

Predicted
Correctly

(a)
Branch Exception OoO-committedReconvergence Point

Figure 5: Two general cases of exceptions in Noreba.

dropped at the Decode stage. At the same time the output register
is marked for consuming instructions to know where the value will
be found and the CIT entry is rerouted through the OoO-commit
processor and reinserted in the CIT in case a new misprediction
happens again. Note, instructions are identified based on their PC.

Finally, CIT entries are freed by the Commit unit according to
the commit sequence of instructions. With every OoO-committed
instruction in the CIT we also store the ID of the most recent unre-
solved branch. The commit of the most recent unresolved branch
at the time an instruction commits out-of-order, guarantees that all
branches that the specific instruction beyond their reconvergence
point have been committed and it is safe to clear its entry from the
CIT.

4.4 Precise Exception Handling

Webuild the Noreba processor on top of the RISC-V ISA [32], which
limits exceptions to floating-point and memory-related events. In
RISC-V based systems, we can use the floating-point control and
status register, fcsr, to accrue the exceptions that occur during
floating-point operations. In the normal execution of a RISC-V
processor, floating-point exceptions do not cause traps. However, it
is possible to add software checks in the code to examine the fcsr
register and call an exception handler based on its value. We do not
include software checks in the code for floating-point exceptions
but it is common to report the status at the end of execution, and
software developers can check when desired [1].

Regarding memory-related exceptions, the exception can arise in
both the correct path of a correct branch prediction and also the cor-
rect path of a branch misprediction (see Figure 5). Our Noreba im-
plementation waits for the success of the page-table access through
the TLBs before proceeding to out-of-order commit instructions be-
yond the memory operation. However, memory exceptions arising
in the correct path of a branch misprediction can be more complex
for precise exception handling since we might have already com-
mitted some instructions out-of-order beyond the reconvergence
point (Figure 5b). In this case, we have to make sure to inform the
OS of the changes the OoO-committed instructions have made in
the processor’s state and also, successfully resume OoO-commit
after coming back from the OS. When we switch to the OS at the
point of an exception, we expose the CIT information to the OS,
since CIT contains all the recent instructions committed out-of-
order beyond the branch reconvergence point and what changes

they have made (register mappings). We introduce two new instruc-
tions to communicate between CIT and the OS. The OS can use
getCITEntry instruction to iterate over all of the entries in the CIT
and store them, and use setCITEntry to load the stored entries
in the CIT. The OS can use these instructions as it is required for
exception handling, context switching, etc. in order to make sure
we recover from the exception and successfully resume execution
of the application running in OoO-commit.

Note, that all types of exceptions in a RISC-V system (like page
faults caused by illegal address accesses, mprotect-style accesses,
illegal instructions, etc.) can also be handled in the same way as
described above.

4.5 Noreba Multi-Core

To deploy the Noreba architecture in a multi-core design, we need
to take into account how OoO-commit might affect data and re-
sources sharing. Here, we discuss the three main aspects that we
need to take into consideration.

Race Conditions. To guarantee well-synchronized and Data
Race Free (DRF) programs we employ the compiler to detect the
synchronization barriers in the application and perform the Noreba
compiler pass only between those barriers. Instructions at these
boundaries are marked as dependent, thus forcing them to commit
in-order.

Memory Consistency. Because the Noreba architecture oper-
ates in a relaxed memory model, only the memory barriers need
to guarantee consistency. This information is statically available,
thus the compiler can guarantee that the processor will avoid OoO-
commit at the memory barrier boundaries.

Cache Coherence. TLB accesses are checked in program order
before steering instructions to the commit queues and the data is
guaranteed to return (refer to Section 4.2, and [16]). Thus, cache
coherence is not affected by our design.

5 EXPERIMENTAL SETUP

Simulation Environment. To evaluate the performance of this
work, we use the gem5 simulator [6] in syscall emulation mode. We
implemented the OoO-commit microarchitecture on top of the O3
core. For power analysis we modified McPAT [22] version 1.3, to
support our microarchitecture. As a baseline core, we use a Skylake-
like processor. Also, we use Delta-Correlating Prediction Tables
(DCPT) as a prefetcher in our baseline simulations [13]. Detailed
processor parameters are shown in Table 2 and Table 3.

Compiler Implementation. We use LLVM-10.0 [21] for our
compiler analysis. We implement Branch Reconvergence Detection
in machine-level for RISC-V architecture. However, our pass is not
architecture-dependent and can be registered at the LLVM back-end
for any other architecture.

Benchmarks. We target the C/C++ application subset3 of the
SPEC CPU2006 [19] andMiBench [15] benchmark suites in our eval-
uations. For SPECCPU2006 suite, we use gem5 to collect Basic Block
Vectors (BBVs) and use SimPoint [17] to find the representative 1 B
instruction region. Also, we use reference inputs for checkpointing

3The RISC-V backend of the LLVM 10.0 compiler does not currently support Fortran
applications, but we expect to see even greater benefits for Fortran applications as
seen in prior work [24].

NOREBA: A Compiler-Informed Non-speculative Out-of-Order Commit Processor ASPLOS ’21, April 19–23, 2021, Virtual, USA

Figure 6: Performance of various OoO-commit modes normalized to in-order commit (InO-C) on a Skylake-like processor.

Table 2: System configuration.

L1d Size 32KB, 4clk
L1i Size 32KB, 4clk
L2 Size 256KB, 12clk
L3 Size 1MB, 36clk
Dispatch/Issue/Commit Width 4/4/4
Branch Predictor TAGE-SC-L-8KB
Prefetcher DCPT
Selective ROB

ROB’ entries baseline core ROB
BR-CQs entries 2 × 8-entries
PR-CQ entries 8-entries

BIT/CQT entries 8
CIT entries 128

Table 3: Baseline microarchitecture configurations.

Microarchitecture ROB IQ LQ/SQ RF
Nehalem-like (NHM) 128 56 48/36 64
Haswell-like (HSW) 192 60 72/42 128
Skylake-like (SKL) 224 68 72/56 168

and building representatives. From the MiBench suite, we simulate
the entire applications.

6 EXPERIMENTAL RESULTS

To better understand the performance and energy efficiency of
Noreba, we perform an extensive evaluation of the proposed pro-
cessor and present our findings in this section. We compare the
results of Noreba with the performance of various other out-of-
order commit implementations. All reported average numbers are
calculated based on the Geo-mean of all applications’ execution
runtime.

6.1 Performance Evaluation

Figure 6 shows the performance improvement of various OoO-
commit approaches over a baseline in-order commit processor. We
evaluate four different approaches:

• NonSpeculative-OoO-C. Instructions are committed out-
of-order once they satisfy all commit conditions; i.e. all pre-
vious branches and load instructions are resolved [5].

• Noreba: We use the compiler to mark branch-dependent re-
gions of instructions, and implement the Selective ROB struc-
ture in the processor to commit Non-Speculative branch-
independent instructions out-of-order.

• Ideal Reconvergence-OoO-C: Instructions are committed
based on the same compiler branch dependency information
as Noreba, but without hardware restrictions, using an ideal
ROB implementation that allows for arbitrary reordering of
instructions based on the optimal commit sequence.

• SpeculativeBR-OoO-C. Instructions are committed spec-
ulatively with respect to unresolved branches and an ideal
ROB implementation with arbitrary instruction reordering.
This represents the upper bound of any solution that relaxes
the branch condition (Speculative and Non-Speculative).
However, a SpeculativeBR OoO-commit implementation will
need to roll back to a valid state if speculation fails and this
cost is not accounted for in the results presented in Figure 6.

Results in Figure 6 show that across all applications, Noreba
achieves on average 95% of the performance of the upper-bound
SpeculativeBR OoO-commit and 1.22× performance improvement
over the conservative in-order commit implementation.

To understand where the performance improvement is coming
from, we study the behavior of critical branches (frequently cause
the ROB to stall before they resolve) of bzip2 and mcf that achieve
the lowest and highest improvement respectively. In Figure 7, the
x-axis plots the number of instructions that are dependent on a
branch, while y-axis plots the number of cycles that the same branch
caused the ROB to stall. Branches in mcf take longer to resolve but
have fewer dependent instructions present in the ROB and yet
independent instructions are delayed for longer periods of time.
In other words, there are many instructions in the ROB that are
independent from the branch that stalls the ROB and they can be
committed without waiting for the branch to resolve. bzip2 on
the other hand, has a larger number of instructions the depend on
the stalling branch and cannot be committed until the branch is
resolved.

Figure 8 shows the percentage of dynamic instructions com-
mitted out-of-order using Noreba. Applications with little to no

ASPLOS ’21, April 19–23, 2021, Virtual, USA Ali Hajiabadi, Andreas Diavastos, and Trevor E. Carlson

1

2

3

4

5

6

7

0 0.5 1 1.5 2 2.5 3

lo
g(

nu
m

be
r o

f c
yc

le
s R

O
B

 is

st
al

le
d)

log(number of dependent instructions)

bzip2 mcf

Figure 7: Distribution of critical branches for mcf and bzip2.
The majority of branches in mcf (blue area) are stalling the

ROB for more cycles than branches in bzip2 (red area) do.

There are also fewer dependent instructions waiting for the

branch to resolve. This means that in mcf there are more in-

dependent instructions ready to commit while the branch is

stalling theROB, hence the large performance improvement

in mcf. The baseline core is a Skylake-like processor.

Figure 8: Dynamic instructions committed out-of-order in

Noreba. The baseline core is a Skylake-like processor.

performance improvement, over an in-order commit design, like
bzip2 and dijkstra, commit very few instructions out-of-order.
Applications with high number of independent instructions beyond
the reconvergence point of a branch (i.e. CRC and mfc) commit more
than 20% of their instructions out-of-order, hence the performance
improvement we observe in Figure 6.

6.1.1 Evaluating the Size of Selective ROB. The number and size
of the Branch Commit Queues (BR-CQs) we choose were selected
based on the offered performance and the power consumed in order
to maintain an energy-efficient package. Figure 9 shows that for a
traditional 224-entry ROB, the performance of Noreba saturates
at 2 BR-CQs with 8 entries each. These options allow Noreba to
achieve 99% of the performance of an Ideal Reconvergence OoO-
commit processor with the same number of entries (Skylake-like
processor). Figure 10 presents the power consumption of the same
options and the results show that the simplicity of the Selective

Figure 9: Normalized performance of different selective

ROB configurations for a Skylake-like processor with two

different ROB’ sizes. Performance is normalized to the ideal

Reconvergence-OoO-C with the same ROB size.

Figure 10: Normalized power of different selective ROB con-

figurations for a Skylake-like processor. Power is normal-

ized to the minimum configuration.

ROB design allow it to be scalable to larger sizes (if needed) with
very small effect on power consumption. The power consumption
only grows to prohibitive values after a significantly large number
of BR-CQs entries that goes well beyond what is necessary to enable
improved performance. For this work, we choose 2 BR-CQs with 8
entries each.

6.1.2 Impact of Setup Instructions on Performance. To inform the
hardware of the compiler findings on instruction dependencies,
Noreba employs a set of setup instructions. Because our compiler
pass inserts a single setup instruction per region to identify depen-
dent instructions, applications with many dependent instructions
that are fragmented and reside in multiple consecutive regions are
prone to higher performance overheads. However, Figure 11 shows
that the overhead on performance by the added instructions is on
average only 3% compared to a perfect design that does not require
the use of setup instructions.

6.1.3 Sensitivity to the Size of Resources. Applications in the SPEC
CPU2006 suite scale their performance with larger core resources
provided by more aggressive microarchitectures, both for in-order
and out-of-order commit techniques. And as Figure 12 shows, the
same applies for Noreba. For this study we consider three different
core sizes: Nehalem-like processor (NHM), Haswell-like processor

NOREBA: A Compiler-Informed Non-speculative Out-of-Order Commit Processor ASPLOS ’21, April 19–23, 2021, Virtual, USA

Figure 11: Impact of inserting setup instructions in order to

specify branch dependent regions in the code.

Figure 12: Performance for different core designs.

Figure 13: Effectiveness of prefetching on the Noreba core.

Performance is normalized to the NHM in-order commit

with prefetching.

(HSW), and Skylake-like processor (SKL). The architectural details
of each core are described in Table 3.

6.1.4 Evaluating the Impact of Prefetching. Prefetching helps the
processor to reduce the penalty of long latency loads and conse-
quently reduce the stall time of load-dependent branches at the
head of the ROB. Thus, successful prefetching allows instructions
to become commitable much earlier and in combination with an
out-of-order approach the processor resources are released earlier
to accommodate for more future instructions. Figure 13 shows how
Noreba is even more effective when combining prefetching with
OoO-commit.

Figure 14: Early Commit of Loads (ECL) on in-order commit

processor and Noreba. The baseline core is a Skylake-like

processor.

Figure 15: Performance with increased commit bandwidth

(InO-C++: In-order commit with 8 instructions commit

width).

6.1.5 Evaluating the Impact of Early Commit of Loads. Early Com-
mit of Loads (ECL) allows for load instructions to commit as soon as
they are guaranteed not to cause an exception [16]. Such a technique
alone offers modest performance gains but the same performance
benefit we get on an in-order commit processor is achieved on
Noreba. Figure 14 shows the extra performance benefit offered by
ECL on Noreba.

6.1.6 Evaluating the Impact of Commit Bandwidth. With the results
presented in Figure 15 wewant to highlight that increasing the num-
ber of instructions that can be committed per cycle is not enough to
improve application performance on a traditional in-order-commit
processor. Out-of-Order commit solutions take advantage of avail-
able core resources (emulating a larger ROB, reclaiming resources
early through early and out-of-order commit, etc.) to allow not only
instructions to commit earlier but more instructions to enter the
processor and execute earlier.

6.2 Power and Area Overheads

Figure 16 shows the power and area overheads of the proposed im-
plementation normalized to the baseline in-order commit processor.
Overall, we see an average power overhead of 4% that comes from
the implementation of the Selective ROB and the added CIT, CQT,
and BIT structures that implement the Noreba design. The queues

ASPLOS ’21, April 19–23, 2021, Virtual, USA Ali Hajiabadi, Andreas Diavastos, and Trevor E. Carlson

0%

20%

40%

60%

80%

100%

120%

In-Order Commit
NOREBA

Po
w
er

icache bpred idecode
ialu fpalu cmplxalu
dcache lsu rename
regf scheduler rob/SELECTIVE ROB
cdb CQT+BIT+DCT CIT

0%

20%

40%

60%

80%

100%

120%

In-Order Commit
NOREBA

A
re
a

Figure 16: Total power and area consumption normalized to

the In-order commit baseline processor. The new structures

are in capital letters in the legend.

in the Selective ROB only marginally increase power as they are
implemented as simple First In First Out (FIFO) queues. The CIT,
CQT, and BIT tables are direct-mapped memory structures that
also require little power. The average area overhead produced by
the new structures is approximately 8% over the baseline in-order
commit core.

7 RELATEDWORK

Previous OoO-commit processors can be categorized into (1) Spec-
ulative, and (2) Non-speculative solutions. Speculative solutions
allow higher flexibility in committing instructions to produce high
levels of performance, but require checkpoint-and-rollback mecha-
nisms to revert the architectural state to the original state in the
case of misspeculation. Such mechanisms have been traditionally
implemented using inefficient hardware structures that limit the
processor’s energy efficiency. Non-speculative solutions implement
a Safe OoO-commit design that doesn’t allow committing specula-
tive instructions. Therefore, expensive check-pointing or rollback
mechanisms that correct the architectural state of the processor are
not required. However, as we have shown, prior non-speculative de-
signs do not take advantage of the full potential of an OoO-commit
processor.

Compiler support has also been used in OoO-commit solutions,
where the program is statically modified to increase OoO-commit
eligible instructions. However, previous solutions require complex
and power consuming core structures to implement the out-of-order
commit of instructions. To the best of our knowledge, Noreba is
the first to use the compiler to identify independent instructions
beyond the reconvergence point of a branch. Unlike other OoO-
commit processors, we use energy-efficient structures to implement
a non-speculative out-of-order commit design that uses compiler
information to make progress based on true branch dependencies.

Table 4 summarizes previous state-of-the-art solutions for OoO-
commit designs and outlines their basic characteristics and their
proposals on the hardware implementation.

Speculative OoO-commit solutions. A processor that as-
sumes it is following the correct path in every branch instruction,
without waiting for it to resolve, can commit many instructions
and release its resources earlier, offering high potential for perfor-
mance improvement. However, speculatively committing instruc-
tions doesn’t necessarily make forward progress, as the processor
would have to return to the correct path in case of a misspeculation.
To do so, expensive roll back mechanisms are required.

In [25], instructions are committed in program order, but release
critical resources, like RF and LQ/SQ, early to allow for more in-
structions to be processed in parallel. However, not committing
instructions reserves ROB slots that limits the amount of work the
processor can do. In [2], the authors increase the commit granular-
ity of the ROB from a single instruction to a group of instructions
that write to the same register. A group’s end is marked by the last
instruction that writes to a shared register. Special instructions are
used and additional entries are reserved to mark the start and end
of each group in the ROB. In addition, a checkpoint is marked at
the beginning of each group to revert changes made in case of a
misspeculation event. The authors of [9] remove the conventional
ROB structure and replace it with checkpoint-oriented mechanism
that allows committing instructions in groups by adding check-
points in specific points of the program. Assuming all instructions
are executed and no misspeculation arises, resources are released.
In case of a misspeculation, the processor rolls back to the previous
checkpoint and restarts.

In [10], the authors propose a speculative OoO-commit imple-
mentation for in-order processors. They use the compiler to divide
the program into idempotent regions and this enables the processor
to recover from misspeculations just by re-executing the idempo-
tent regions, hence there is no need to store hardware checkpoints.
Their proposal targets in-order processors and the benefits of their
OoO-commit implementation is limited to the size of idempotent
regions that the compiler identifies. Large idempotent regions can
lead to the re-execution of a large number of instructions. Noreba
avoids any speculation and there is no need for any hardware
checkpoints or re-execution of instructions.

Non-speculative OoO-commit solutions. Committing in-
structions in a safe, non-speculative way allows for efficient al-
location of processor resources that provides for correct execution
without requiring expensive check-pointing and rollback mecha-
nisms. However, expensive mechanisms are still required to find
safe-to-commit instructions in the ROB.

Bell and Lipasti in [5] defined the necessary conditions that al-
low an instruction to safely commit, even if it’s not at the head of
the ROB. To implement this, they propose a collapsing ROB, that
arbitrarily removes entries from the ROB and either collapses it
to fill the void created or manage the gaps on a free list to deter-
mine where new entries can be added. In [24], the authors replace
ROB with a Validation Buffer that uses speculative instructions (i.e.
branches) to create groups of instructions called epochs. A Valida-
tion Buffer waits only for epoch initiators at it’s head to resolve
and releases all instructions in the preceding epoch.

NOREBA: A Compiler-Informed Non-speculative Out-of-Order Commit Processor ASPLOS ’21, April 19–23, 2021, Virtual, USA

Table 4: State-of-the-art solutions and their hardware implementations for out-of-order/early commit/resource reclamation.

*Our main results do not include Early Commit of Loads (ECL) but Noreba can support this feature as shown in Section 6.1.5.

Paper

N
on

-S
pe
cu
la
tiv

e

Co
m
pi
le
r-A

ss
ist
ed

Ea
rly

co
m
m
it

O
oO

-C
om

m
it

Ea
rly

re
cl
am

at
io
n

Hardware Implementation

Deconstructing Commit [5] Collapsing ROB
Validation Buffer [24] Validation Buffer
Cherry [25] Normal ROB/ Early release of RF and LSQ
Compiler Assisted OoO-commit [11] Collapsing ROB
DeSC [16] Normal ROB/ Decoupled design/ Early commit of terminal loads
OoO-commit Processors [9] Check-pointing ROB
Group Commit [2] Augmented ROB
Idempotent Processor [10] In-order processor with Slice Data Buffer (SDB) and non-blocking cache
Noreba * Multi-queue selective ROB

Some non-speculative designs use the compiler to assist the
hardware to decide which instructions can commit early. DeSC [16]
uses the compiler to decouple the program into memory access
and value computation parts and run the program in a decoupled
hardware design. They detect and commit early loads that are only
for computational purposes (terminal loads). In [11], the authors
use the compiler to choose a commit mode for instructions. The
compiler partitions the code into blocks that can either commit
in-order of out-of-order.

Branch reconvergence detection techniques. Finding the
reconvergence point of a branch allows us to specify control- and
data-independent instructions beyond that point. Previous work in
this direction has used hardware-only solutions to predict reconver-
gence points [7, 8, 28, 29]. However, these hardware-based solutions
work in a speculative way that doesn’t allow for a Safe OoO-commit
design. In our work, similarly to [28], we use the compiler to spec-
ify independent instructions and enable out-of-order-commit of
instructions in a safe and efficient way.

Most of the solutions presented in this section require an asso-
ciative ROB structure to search for instructions that satisfy commit
conditions. However, such a structure consumes large amounts of
power, making it unsuitable designs for energy-efficient processors.

8 CONCLUSION

General-purpose processors continue to be the work-horse for
many workloads, from mobile and embedded devices, to server-
class systems. But, recent performance improvements of processor
cores have been modest, at best, as processor technology has failed
to continue to provide the continued cost reductions and transistor
power budget of years past. To overcome these challenges, archi-
tects are looking for promising, efficient solutions that can continue
to provide performance for general-purpose applications, in an en-
ergy efficient way.

In this work, we propose the first non-speculative out-of-order
commit and reclamation implementation, that combines compiler-
directed annotation of independent instructions, with a novel and

efficient ROB implementation. We demonstrate a significant perfor-
mance improvement over the baseline in-order commit processor,
achieving 95% of the performance of speculative out-of-order com-
mit techniques with just a 4% overhead in power.

ACKNOWLEDGMENTS

Wewould like to thank the anonymous reviewers for their insightful
suggestions and feedback to improve this work. This work was
funded by a grant from the Singapore National Research Foundation
(NRF2018NCR-NCR002), and a Startup Grant from the National
University of Singapore.

REFERENCES

[1] 2010 (accessed August 21, 2020). IEEE Floating-Point Arithmetic. https://docs.
oracle.com/cd/E19957-01/805-4940/6j4m1u7pj/index.html.

[2] Furat Afram, Hui Zeng, and Kanad Ghose. 2013. A group-commit mechanism for
ROB-based processors implementing the x86 ISA. In International Symposium
on High Performance Computer Architecture (HPCA ’13). https://doi.org/10.1109/
HPCA.2013.6522306

[3] Ismail Akturk and Ulya R. Karpuzcu. 2017. AMNESIAC: Amnesic automatic
computer trading computation for communication for energy efficiency. In In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’17). https://doi.org/10.1145/3037697.3037741

[4] Manish Arora, Siddhartha Nath, Subhra Mazumdar, Scott Baden, and Dean
Tullsen. 2012. Redefining the role of the CPU in the era of CPU-GPU integration.
IEEE Micro 32, 6 (2012), 4–16. https://doi.org/10.1109/MM.2012.57

[5] Gordon B Bell andMikko H Lipasti. 2004. Deconstructing commit. In International
Symposium on Performance Analysis of Systems and Software (ISPASS ’04). https:
//doi.org/10.1109/ISPASS.2004.1291357

[6] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh
Sardashti, et al. 2011. The gem5 simulator. ACM SIGARCH Computer Architecture
News 39, 2 (2011), 1–7. https://doi.org/10.1145/2024716.2024718

[7] Yuan Chou, Jason Fung, and John Paul Shen. 1999. Reducing branchmisprediction
penalties via dynamic control independence detection. In International Conference
on Supercomputing (ICS ’99). https://doi.org/10.1145/305138.305175

[8] Jamison D Collins, Dean M Tullsen, and Hong Wang. 2004. Control flow opti-
mization via dynamic reconvergence prediction. In International Symposium on
Microarchitecture (MICRO ’04). https://doi.org/10.1109/MICRO.2004.13

[9] Adrian Cristal, Daniel Ortega, Josep Llosa, and Mateo Valero. 2004. Out-of-order
commit processors. In International Symposium on High-Performance Computer
Architecture (HPCA ’04). https://doi.org/10.1109/HPCA.2004.10008

[10] Marc De Kruijf and Karthikeyan Sankaralingam. 2011. Idempotent processor
architecture. In International Symposium on Microarchitecture (MICRO ’11). https:
//doi.org/10.1145/2155620.2155637

https://docs.oracle.com/cd/E19957-01/805-4940/6j4m1u7pj/index.html
https://docs.oracle.com/cd/E19957-01/805-4940/6j4m1u7pj/index.html
https://doi.org/10.1109/HPCA.2013.6522306
https://doi.org/10.1109/HPCA.2013.6522306
https://doi.org/10.1145/3037697.3037741
https://doi.org/10.1109/MM.2012.57
https://doi.org/10.1109/ISPASS.2004.1291357
https://doi.org/10.1109/ISPASS.2004.1291357
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/305138.305175
https://doi.org/10.1109/MICRO.2004.13
https://doi.org/10.1109/HPCA.2004.10008
https://doi.org/10.1145/2155620.2155637
https://doi.org/10.1145/2155620.2155637

ASPLOS ’21, April 19–23, 2021, Virtual, USA Ali Hajiabadi, Andreas Diavastos, and Trevor E. Carlson

[11] Nam Duong and Alex V Veidenbaum. 2012. Compiler-assisted, selective out-of-
order commit. IEEE Computer Architecture Letters 12, 1 (2012), 21–24. https:
//doi.org/10.1109/L-CA.2012.8

[12] Andrew Glew. 1998. MLP yes! ILP no. ASPLOS Wild and Crazy Idea Session (Oct.
1998).

[13] Marius Grannaes, Magnus Jahre, and Lasse Natvig. 2011. Storage efficient hard-
ware prefetching using delta-correlating prediction tables. Journal of Instruction-
Level Parallelism 13 (2011), 1–16.

[14] Part Guide. 2011. Intel® 64 and IA-32 architectures software developer’s manual.
Volume 3B: System Programming Guide, Part 2 (2011), 5.

[15] Matthew R Guthaus, Jeffrey S Ringenberg, Dan Ernst, Todd M Austin, Trevor
Mudge, and Richard B Brown. 2001. MiBench: A free, commercially representative
embedded benchmark suite. In International workshop on workload characteriza-
tion (WWC ’01). https://doi.org/10.1109/WWC.2001.990739

[16] Tae Jun Ham, Juan L Aragón, and Margaret Martonosi. 2015. DeSC: Decoupled
supply-compute communication management for heterogeneous architectures.
In International Symposium on Microarchitecture (MICRO ’15). 191–203. https:
//doi.org/10.1145/2830772.2830800

[17] Greg Hamerly, Erez Perelman, Jeremy Lau, and Brad Calder. 2005. Simpoint 3.0:
Faster and more flexible program phase analysis. Journal of Instruction Level
Parallelism 7, 4 (2005), 1–28.

[18] Milad Hashemi, Onur Mutlu, and Yale N Patt. 2016. Continuous runahead: Trans-
parent hardware acceleration for memory intensive workloads. In International
Symposium on Microarchitecture (MICRO ’16). https://doi.org/10.1109/MICRO.
2016.7783764

[19] John L Henning. 2006. SPEC CPU2006 benchmark descriptions. ACM SIGARCH
Computer Architecture News 34, 4 (2006), 1–17. https://doi.org/10.1145/1186736.
1186737

[20] Yasuo Ishii, Mary Inaba, and Kei Hiraki. 2009. Access map pattern matching
for data cache prefetch. In International Conference on Supercomputing (ICS ’09).
https://doi.org/10.1145/1542275.1542349

[21] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for life-
long program analysis & transformation. In International Symposium on Code Gen-
eration and Optimization (CGO ’04). https://doi.org/10.1109/CGO.2004.1281665

[22] Sheng Li, Jung Ho Ahn, Richard D Strong, Jay B Brockman, Dean M Tullsen,
and Norman P Jouppi. 2013. The McPAT framework for multicore and many-
core architectures: Simultaneously modeling power, area, and timing. ACM
Transactions on Architecture and Code Optimization (TACO) 10, 1 (2013), 5.

https://doi.org/10.1145/2445572.2445577
[23] Mikko H Lipasti, Christopher B Wilkerson, and John Paul Shen. 1996. Value

locality and load value prediction. In International conference on Architectural
support for programming languages and operating systems (ASPLOS ’96). https:
//doi.org/10.1145/248208.237173

[24] Salvador Petit Marti, Julio Sahuquillo Borras, Pedro Lopez Rodriguez, Rafael Ubal
Tena, and Jose Duato Marin. 2009. A complexity-effective out-of-order retirement
microarchitecture. IEEE Trans. Comput. 58, 12 (2009), 1626–1639. https://doi.org/
10.1109/TC.2009.95

[25] José F Martínez, Jose Renau, Michael C Huang, and Milos Prvulovic. 2002.
Cherry: Checkpointed early resource recycling in out-of-order microproces-
sors. In International Symposium on Microarchitecture (MICRO ’02). https:
//doi.org/10.1109/MICRO.2002.1176234

[26] Daniel S McFarlin and Craig Zilles. 2015. Branch vanguard: Decomposing branch
functionality into prediction and resolution instructions. In International Sym-
posium on Computer Architecture (ISCA ’15). https://doi.org/10.1145/2749469.
2750400

[27] Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N Patt. 2003. Runahead
execution: An alternative to very large instruction windows for out-of-order pro-
cessors. In International Symposium on High-Performance Computer Architecture
(HPCA ’09). https://doi.org/10.1109/HPCA.2003.1183532

[28] Vlad Petric, Anne Bracy, and Amir Roth. 2002. Three extensions to register
integration. In International Symposium on Microarchitecture (MICRO ’02). 37–47.
https://doi.org/10.1109/MICRO.2002.1176237

[29] Eric Rotenberg and Jim Smith. 1999. Control independence in trace processors.
In International Symposium on Microarchitecture (MICRO ’99). https://doi.org/10.
1109/MICRO.1999.809438

[30] Benjamin T Sander, William A Hughes, Sridhar P Subramanian, and Teik-Chung
Tan. 2003. Stride based prefetcher with confidence counter and dynamic prefetch-
ahead mechanism. US Patent 6,571,318.

[31] Niranjan Soundararajan, Saurabh Gupta, Ragavendra Natarajan, Jared Stark,
Rahul Pal, Franck Sala, Lihu Rappoport, Adi Yoaz, and Sreenivas Subramoney.
2019. Towards the adoption of local branch predictors in modern out-of-order
superscalar processors. In International Symposium on Microarchitecture (MICRO
’19). https://doi.org/10.1145/3352460.3358315

[32] Andrew Waterman, Yunsup Lee, David A Patterson, and Krste Asanovic. 2011.
The RISC-V instruction set manual, volume I: Base user-level ISA. EECS Depart-
ment, UC Berkeley, Tech. Rep. UCB/EECS-2011-62 116 (2011).

https://doi.org/10.1109/L-CA.2012.8
https://doi.org/10.1109/L-CA.2012.8
https://doi.org/10.1109/WWC.2001.990739
https://doi.org/10.1145/2830772.2830800
https://doi.org/10.1145/2830772.2830800
https://doi.org/10.1109/MICRO.2016.7783764
https://doi.org/10.1109/MICRO.2016.7783764
https://doi.org/10.1145/1186736.1186737
https://doi.org/10.1145/1186736.1186737
https://doi.org/10.1145/1542275.1542349
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1145/2445572.2445577
https://doi.org/10.1145/248208.237173
https://doi.org/10.1145/248208.237173
https://doi.org/10.1109/TC.2009.95
https://doi.org/10.1109/TC.2009.95
https://doi.org/10.1109/MICRO.2002.1176234
https://doi.org/10.1109/MICRO.2002.1176234
https://doi.org/10.1145/2749469.2750400
https://doi.org/10.1145/2749469.2750400
https://doi.org/10.1109/HPCA.2003.1183532
https://doi.org/10.1109/MICRO.2002.1176237
https://doi.org/10.1109/MICRO.1999.809438
https://doi.org/10.1109/MICRO.1999.809438
https://doi.org/10.1145/3352460.3358315

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Branch Dependent Code Detection Pass
	4 Noreba Microarchitecture
	4.1 Branch Dependencies Flow
	4.2 OoO-Commit Flow
	4.3 Branch Misprediction Flow
	4.4 Precise Exception Handling
	4.5 Noreba Multi-Core

	5 Experimental Setup
	6 Experimental Results
	6.1 Performance Evaluation
	6.2 Power and Area Overheads

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

