
Cassandra: Efficient Enforcement of Sequential Execution for
Cryptographic Programs

Ali Hajiabadi∗
ETH Zürich

Zürich, Switzerland
ahajiabadi@ethz.ch

Trevor E. Carlson
National University of Singapore

Singapore, Singapore
tcarlson@comp.nus.edu.sg

Abstract

Constant-time programming is a widely deployed approach to
harden cryptographic programs against side channel attacks. How-
ever, modern processors often violate the underlying assumptions
of standard constant-time policies by transiently executing unin-
tended paths of the program. Despite many solutions proposed,
addressing control flow misspeculations in an efficient way without
losing performance is an open problem.

In this work, we propose Cassandra, a novel hardware/soft-
ware mechanism to enforce sequential execution for constant-time
cryptographic code in a highly efficient manner. Cassandra ex-
plores the radical design point of disabling the branch predictor and
recording-and-replaying sequential control flow of the program.
Two key insights that enable our design are that (1) the sequen-
tial control flow of a constant-time program is mostly static over
different runs, and (2) cryptographic programs are loop-intensive
and their control flow patterns repeat in a highly compressible
way. These insights allow us to perform an upfront branch analysis
that significantly compresses control flow traces. We add a small
component to a typical processor design, the Branch Trace Unit, to
store compressed traces and determine fetch redirections according
to the sequential model of the program. Despite providing a strong
security guarantee, Cassandra counterintuitively provides an av-
erage 1.85% speedup compared to an unsafe baseline processor,
mainly due to enforcing near-perfect fetch redirections.

CCS Concepts

• Security and privacy→ Hardware attacks and countermea-

sures; Cryptography.

Keywords

Cryptography, constant-time programming, speculative execution,
hardware/software co-design

ACM Reference Format:

Ali Hajiabadi and Trevor E. Carlson. 2025. Cassandra: Efficient Enforce-
ment of Sequential Execution for Cryptographic Programs. In Proceedings

of the 52nd Annual International Symposium on Computer Architecture (ISCA

’25), June 21–25, 2025, Tokyo, Japan. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3695053.3731048

∗This work was done while the author was at the National University of Singapore.

This work is licensed under a Creative Commons Attribution 4.0 International License.
ISCA ’25, Tokyo, Japan

© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1261-6/2025/06
https://doi.org/10.1145/3695053.3731048

1 Introduction

Protecting cryptographic programs has always been a major con-
cern since they are the primary programs that process secrets.
While the underlying cryptographic schemes provide strong levels
of security to prevent secret extraction through cryptanalysis, their
implementations can still be vulnerable to various side channel
attacks. Constant-time programming is a widely deployed approach
to protect cryptographic programs against timing and memory
side channels and it is the de facto coding discipline to write high-
assurance cryptographic code [2, 7, 54, 86]. Constant-time prin-
ciples mandate the absence of secret dependent control flow and
data flow. In other words, the attacker-visible observations of the
execution must be independent of the confidential inputs of the
program [3].

Unfortunately, speculative execution of modern processors vi-
olates standard constant-time principles that assume instructions
are executed sequentially. After the advent of Spectre [35], several
speculative execution attacks have demonstrated the ability to leak
secrets from verified constant-time programs by transiently declas-
sifying and leaking confidential states [67, 80]. For example, recent
attacks have demonstrated powerful adversaries that can manip-
ulate the Branch Prediction Unit (BPU) and precisely control the
paths executed by the victim and leak secrets from a constant-time
AES implementation [80]. More extensive studies on the constant-
time implementation of cryptographic programs demonstrate that
most popular libraries leak secrets under speculative execution
semantics [4]. Hence, it is essential to find a solution that funda-
mentally eliminates the speculative execution attack surface in
cryptographic programs.

Existing defenses to protect constant-time programs, both on
the hardware level [15, 18, 24, 42, 62] and the software level [5, 11,
17, 21, 23, 45, 47, 52, 56, 73–75, 78], deploy a restrictive approach to
prevent or limit speculative execution of instructions, diminishing
the benefits of speculative, high-performance processors.

While naively disabling data flow speculation shows negligible
performance impact for cryptographic programs, addressing con-
trol flow speculation is still a major issue for high-performance
processors. In this work, we investigate a new, radical design point
to strictly enforce sequential execution for cryptographic programs,
namely recording-and-replaying. This mechanism disables branch
prediction altogether, and instead, redirects fetch based on the
upfront recorded sequential control flow traces. This design en-
sures that instruction fetch is always redirected according to the
sequential execution model of the program, as assumed by standard
constant-time policies. However, this idea has twomajor challenges:

https://doi.org/10.1145/3695053.3731048
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3695053.3731048

ISCA ’25, June 21–25, 2025, Tokyo, Japan Ali Hajiabadi and Trevor E. Carlson

Challenge 1: Dynamic control flow traces change based on
the program input; pre-computing control flow traces for all pos-
sible inputs in general-purpose applications is challenging, if not
infeasible.

Challenge 2: Control flow traces can be huge and storing/load-
ing these traces in the processor would incur high overheads. In the
worst case, it can show a similar slowdown as a processor without
a branch predictor which stalls fetch until the branch is resolved.

In this work, we discuss two key insights from constant-time
cryptographic programs that overcome these challenges:

Insight 1: Sequential control flow of constant-time programs
are constant with respect to confidential inputs. In addition, public
parameters of cryptographic programs are specified by standards
or determined by the algorithm (e.g., the key length, number of
encryption rounds, etc.). Hence, reusing just a single control flow
trace over different runs of a program can be sufficient. However,
control flow traces can still be extremely large (up to millions of
decisions per static branch in our evaluated programs). As men-
tioned in Challenge 2, storing and communicating a huge number
of decisions per branch is not efficient, and a solution is needed.

Insight 2: Most operations in cryptographic programs are in
loops and they repeat the same operations over time. Detecting
the repeating patterns of branch decisions would help to allow
the storage of smaller, compressed patterns, and once loaded, the
processor can replay the same pattern in the future.

Leveraging these insights, we proposeCassandra, a hardware/so-
ftwaremechanism to enforce sequential execution for cryptographic
programs and remove the control flow speculation attack surface
within these programs. To the best of our knowledge, Cassandra
is the first mechanism that takes advantage of the key characteris-
tics of cryptographic applications, and counterintuitively, improves

performance. The main artifacts of Cassandra are twofold:
(1) Branch analysis (§4). We perform an extensive branch anal-

ysis of cryptographic programs and devise a trace compression tech-
nique that significantly compresses branch traces. Our approach
is inspired by DNA sequencing techniques that detect frequent
and unknown patterns of nucleotides in large DNA sequences [44].
The average size of our new compressed traces is just 20 entries in
BearSSL, OpenSSL, and post-quantum crypto primitives.

(2) Microarchitecture (§5). We propose a new processor design
that (1) communicates compressed branch traces to the processor,
and (2) uses branch traces for fetch redirections while avoiding
accessing and updating the branch predictor. We add a small, new
component to the frontend, called the Branch Trace Unit (BTU), that
efficiently stores and decompresses dynamic branch information.

Additionally, we provide a detailed security analysis and dis-
cussion on how to deploy Cassandra in conjunction with other
defenses for a comprehensive Spectre mitigation (§6). Cassandra
guarantees sequential execution for cryptographic programs that
adhere to a constant-time policy and can be easily integrated with
other solutions that block Spectre attacks that violate software iso-
lation (i.e., provide secure speculation for a sandboxing policy [22]).

The main contributions of Cassandra are as follows:

• Introducing a novel recording-and-replaying mechanism to
strictly enforce sequential execution for constant-time crypto-
graphic programs;

1 uint8 decrypt(uint8 m, uint8 *skey)
2 {
3 uint8 state = m; //m and state are secret
4 for (int i = 0; i < num_rounds; i++)
5 state = decrypt_ct(state, skey[i]);
6 uint8 d = declassify(state); //d is public
7 return leak(d);
8 }

Listing 1: Constant-time decryption of m. Misspeculation and

skipping the for loop can directly leak the secret m.

• Performing a detailed branch analysis and trace compression
technique, inspired by DNA sequencing methods, that signifi-
cantly compresses branch traces;
• Proposing an efficient design of Cassandra that communicates
branch traces with the hardware and enforces branch directions
of a sequential execution model;
• Achieving a 1.85% speedup over an unsafe baseline proces-
sor—delivering performance gains instead of slowdowns—while
reducing power consumption by 2.73% and incurring only a
1.26% area overhead.

2 Background

2.1 Constant-Time Programming

Modern implementations of cryptographic applications deploy
constant-time principles to harden programs against traditional side
channels that exploit secret dependent behaviors of the program.
Constant-time principles satisfy confidential input indistinguisha-
bility to remove timing, cache, and memory side channels [3]. In
other words, constant-time principles assume an adversary can ob-
serve the program counter, memory access patterns, and operands
of variable-time instructions, and they guarantee all attacker-visible
traces of a program are independent from the confidential inputs
of the program [3, 12].

Standard constant-time policies provide security for a sequential
execution model, i.e., all instructions are executed in a sequential
order specified by the architectural states of the program. However,
Spectre attacks have demonstrated the ability to leak secrets from
constant-time programs in modern processors that use a speculative
execution model [4, 67, 68, 80, 81]. For example, Listing 1 shows a
constant-time decryption of confidential input m. Sequential exe-
cution of the code dictates that the secret state is declassified (line
6) only after all decryption rounds are completed, after which any
subsequent leak (line 7) is allowed. However, in a speculative execu-
tion model, the for loop can be skipped due to misspeculation and
directly leak the confidential input m before executing all decryption
rounds, hence, violate constant-time policies of the program.

2.2 Speculation Primitives

Speculative execution can be triggered through different sources in
modern processors, referred to as speculation primitives. Specula-
tion primitives can be categorized into control flow and data flow
primitives [10, 12].

Control flow speculation. The Branch Prediction Unit (BPU)
in modern processors predicts the next PC after control flow in-
structions and fetches instructions speculatively from the predicted

Cassandra: Efficient Enforcement of Sequential Execution for Cryptographic Programs ISCA ’25, June 21–25, 2025, Tokyo, Japan

path. Control flow prediction allows the processor to avoid frontend
stalls for cases where resolving control flow conditions depends on
long latency operations. Prior attacks have demonstrated leaks via
three general primitives in the BPU:
PHT The Pattern History Table (PHT) predicts conditional di-

rect branches (e.g., cmp [reg],0; je L) with two possible
outcomes of Taken and Not-Taken (e.g., Spectre-v1 [35]).

BTB The Branch Target Buffer (BTB) predicts indirect branches
(e.g., jmp [reg]) to determine the target address of next
instruction (e.g., Spectre-v2 [35]).

RSB The Return Stack Buffer (RSB) predicts the target address
of return instructions. While returns can considered as indi-
rect branches, processors use the RSB to determine return
addresses (e.g. Spectre-RSB [36] and RetBleed [77]).

Note, that commodity microarchitectures might have multiple com-
ponents that speculate on a specific type of branch. For example,
GadgetSpinner [13] demonstrates that the Loop Stream Detector
(LSD) in Intel CPUs also speculates on loop conditional branches.
However, we use the aforementioned primitives to represent gen-
eral classes of primitives (i.e., the LSD speculation falls into the
PHT primitive). Throughout this paper, we refer to all control flow
instructions (direct, indirect, and return) as branches.

Data flow speculation. Modern processors deploy mechanisms
for speculative execution of loads. Prior attacks demonstrated two
primitives that can leak:
STL Store-to-load forwarding (STL) allows a load to forward data

from a prior same-address store before all prior stores are
resolved, without sending a request to the memory (e.g.,
Spectre-v4 [29]).

PSF Predictive store forwarding (PSF) allows a younger load to
forward data from an unresolved store before the load and
store addresses are resolved (e.g., Spectre-PSF [11]).

Mitigating control flow speculation poses higher overheads com-
pared to data flow. Our experiments in §7.2 show that naively
addressing data flow speculation in cryptograhic programs incurs
negligible performance overhead (less than 1%). Hence, we only
focus on addressing control flow speculation in an efficient way.

2.3 Evolution of Hardware Defenses for Spectre

Early defenses for speculative execution attacks focus only on
data caches as the transmission channel, similar to the original
Spectre-v1 [34, 50, 51, 60, 61, 79]. More comprehensive defenses,
like STT [82] and NDA [76], propose mechanisms to prevent leaks
from a more comprehensive list of transmission channels. These so-
lutions implement dynamic taint tracking to restrict the execution
or data propagation for instructions that are tainted by specula-
tively loaded data. While this approach protects sandboxed pro-
grams [22], they fail to protect constant-time programs, where
secrets are loaded non-speculatively (see line 3 in Listing 1).

Recent Spectre defenses for constant-time programs extend prior
solutions to protect non-speculative secrets as well [15, 18, 24, 42,
62]. Most hardware-only defenses for constant-time programs in-
troduce additional slowdown compared to the sandboxed cases.
This is mainly because they must protect not only speculatively
loaded data but also all values that are already loaded in the reg-
isters, as any of them can potentially be secret. In this paper, our

goal is to strictly enforce sequential execution for cryptographic
code and avoid the additional overhead of prior solutions. To the
best of our knowledge, our approach is the first that exploits the
key characteristics of cryptographic code to improve performance
compared to an unprotected baseline, while providing a sequential
security guarantee.

Motivating example: DOLMA [42] shows that protecting non-
cryptographic programs under a sandboxing policy incurs a 10.2%
performance overhead, rising to 22.3% across all applications when
extended to a constant-time policy; this trend holds for all hardware-
based defenses. Cassandra, however, efficiently protects constant-
time programs and allows the CPU to select more efficient defenses
for other applications which better fit their threat model.

3 Threat Model

Cassandra eliminates the possibility of transient execution ex-
clusively for cryptographic code that adheres to the sequential
constant-time policy. Cassandra does not provide protection for
software isolation (i.e., sandboxing policy [22]). Existing lightweight
isolation techniques [28, 57, 64] or secure speculation mechanisms
for sandboxing [24, 42, 76, 82] can be integrated with Cassandra
to prevent transient leaks of non-crypto code as well.

We considerMeltdown-type attacks [9, 40, 63, 71, 72] out of scope.
These attacks exploit the transient execution upon exceptions and
CPU faults, which are efficiently mitigated in recent CPUs via
microcode updates [30]. Additionally, non-speculative control flow
attacks [19, 25, 55] are out of scope; constant-time programs are
inherently safe against such attacks.

4 Branch Analysis of Constant-Time

Cryptographic Programs

In this section, we investigate the practicality of a recording-and-
replaying solution for cryptographic programs to enforce sequential
execution. In §4.1, we discuss the key insights that enable our
proposed solution, and in §4.2, we detail our branch analysis.

4.1 Key Insights

We discuss two key insights that are directly derived from funda-
mental characteristics of constant-time cryptographic programs.

Insight 1: Sequential control flow of constant-time programs is

independent of confidential inputs and is determined by the algo-

rithm and its implementation, which are known before execution.

As we discussed in §2.1, constant-time principles assume that
the entire control flow trace and accessed memory addresses are
leaked [3]. Hence, the dynamic control flow of the program is re-
quired to be independent from confidential inputs. On the other
hand, public parameters of the cryptographic programs are speci-
fied by standards or determined by the underlying scheme and its
implementation, e.g., the key length, array sizes, number of encryp-
tion rounds, etc. As a result, the sequential and dynamic control
flow of these programs is known before execution and does not
change during runtime. This enables us to pre-compute sequential
branch traces and enforce them during runtime, instead of using
the BPU to predict the branch directions.

ISCA ’25, June 21–25, 2025, Tokyo, Japan Ali Hajiabadi and Trevor E. Carlson

Executable

Raw Traces

PC𝟏 PC𝟐 !!! PC𝒏

Aggregation

Vanilla Traces

PC1×𝒄𝟏 !!! PCn×𝒄𝒏

k-mers Traces

𝒑𝟏×𝒄𝟏 !!! 𝒑𝒎×𝒄𝒎

𝒑𝟏 = {PC𝒊×𝒄𝒊 &&& PC𝒋×𝒄𝒋}
&&&

𝒑𝒎 = {PC𝒌×𝒄𝒌 &&& PC𝒍×𝒄𝒍}

k-mers
Counting

Branch Trace
Collection

1

2 3

Figure 1: Branch analysis overview in Cassandra. Traces are

per static branch.

While branch traces of cryptographic programs can be computed
before execution, they can still be prohibitively large and incur
penalties to load them in the CPU. Our Insight 2 enables us to
significantly compress the branch traces; fitting the entire trace of
most branches into a single entry of a small structure in the CPU.

Insight 2: Sequential control flow of cryptographic programs is

highly regular and loop-intensive, allowing for significant com-

pression of control flow traces.

Most operations and transformations of constant-time crypto-
graphic programs occur in loops (like Listing 1); standard constant-
time policies allow one to wrap the operations in loops if the loop
count is public. Hence, this insight enables us to detect the repeat-
ing patterns of each branch and only communicate this pattern
with the CPU to repeatedly replay.

Example: ChaCha20 [46] is a stream cipher that starts with
an internal state 𝑆 as a 4 × 4 matrix of 32-bit values, consisting of
the secret key (256-bit), the nonce (96-bit), a counter (32-bit), and a
128-bit constant, totaling 64 bytes. The encryption of the plaintext
𝑃 proceeds in four steps: (1) The internal state 𝑆 is initialized, and
state 𝐾 is initialized with a copy of 𝑆 . (2) State 𝐾 is transformed 10
times using the 𝐷𝑜𝑢𝑏𝑙𝑒𝑅𝑜𝑢𝑛𝑑 function (two rounds of additions,
XORs, and rotations); totaling 20 rounds of transformation. (3) Each
element of 𝐾 is added to the corresponding element of 𝑆 . (4) The
first 64 bytes of plaintext 𝑃 are XORed with 𝐾 . These steps are
repeated until the entire plaintext is encrypted. Notably, all control
flow decisions, such as loop counts, calls, and returns, are static and
determined by the algorithm, with all operations wrapped in loops.

4.2 Detailed Branch Analysis

In this section, we investigate branches in different constant-time
cryptographic programs from BearSSL [54], OpenSSL [48] and post-
quantum crypto (PQC) programs: Kyber [37] and SPHINCS+ [69].
We consider all types of branches: conditional direct branches,
unconditional indirect branches, returns, etc. To collect branch
traces, we use Intel Pin [43] and record the branch target at each
execution of a branch. Figure 1 shows an overview of our branch
analysis steps. In the first step (step 1 in Figure 1), we collect the
raw traces for each static branch. In this trace, we capture all the
target PCs of a branch (i.e., the branch outcome) in the order they
are executed (we log the next PC for not-taken cases). Here is an
example of raw trace of a loop branch 𝐵𝑅0 with loop count of four:

𝑃𝐶1 · 𝑃𝐶1 · 𝑃𝐶1 · 𝑃𝐶1 · 𝑃𝐶0
where 𝑃𝐶1 is the taken path of the branch and 𝑃𝐶0 is the next PC
after 𝐵𝑅0 (i.e., the not-taken path).

Table 1: Branch analysis of cryptographic programs. 𝑘-mers
trace size is the sum of trace size and its pattern set size.

Program
Vanilla trace size 𝑘-mers 𝑘-mers

trace size compression rate
Avg Max Avg Max Avg Max

RSA-2048 221,619.8 24,340,548 35.0 2,312 18,677.0 1,622,703.2
EC_c25519 965,261.6 51,538,410 7.9 134 321,607.7 17,179,470.0
DES 1,483,319.9 24,000,000 7.9 34 494,420.7 8,000,000.0
AES-128 163.2 1,530 7.6 50 43.8 510.0
ChaCha20 175.8 752 35.5 561 40.9 250.7
Poly1305 45.0 600 14.9 134 8.7 200.0
SHA-256 3,350.5 31,736 10.7 70 1,077.6 10,578.7
curve25519 19,375.0 128,700 4.3 18 3,479.2 17,000.0
chacha20 24,500.0 32,000 3.0 3 8,166.7 10,666.7
sha256 440.0 44,316 25.8 803 42.2 5,539.5
kyber512 738,074.1 34,620,000 5.3 24 89,705.1 2,304,000.0
kyber768 1,177,127.1 69,195,000 5.6 54 143,300.9 4,608,000.0
sphincs-shake-128s 3,097,903.5 90,110,880 20.5 348 1,019,536.1 30,036,960.0
sphincs-haraka-128s 1,863,707.0 59,244,320 24.5 544 599,537.1 19,748,106.7
sphincs-sha2-128s 298,160.1 5,300,746 24.6 389 42,948.7 1,766,834.0

All 637,425.5 90,110,880 19.9 2,312 163,370.7 30,036,960.0

BearSSL OpenSSL Post-Quantum Crypto (PQC)

The next step of the analysis builds the vanilla traces that are a
more compact format of the raw traces (step 2). In this format, we
aggregate the branch outcomes that are repeating and replace them
with the repeated outcome PC and number of repetitions (this is
also known as a run-length encoding). Here is the vanilla trace of
branch 𝐵𝑅0 discussed earlier:

𝑃𝐶1 × 4 · 𝑃𝐶0 × 1
Vanilla traces are the baseline traces that we use for analysis

and compression. Table 1 shows that the average size of vanilla
traces per branch is 637,425 in our evaluated programs, and the
maximum size is 90,110,8801. Communicating these large traces
with the hardware can incur high efficiency overheads. However, we
expect these traces to be represented by fewer elements according
to Insight 2; we only need to detect the repeating outcome patterns
of each static branch. We aim to devise a generic approach that can
detect the repeating patterns in a given vanilla trace.

Question: How does one detect the repeating patterns and their
frequency in a vanilla trace?

Detecting repeating, unknown patterns in large traces has been
the focus of many domains, like database mining [1] and DNA
sequencing [6, 44]. For example, two problems in DNA sequencing
that can be useful are finding tandem repeats [6] and 𝑘-mers count-
ing [44]. A tandem repeat in a DNA sequence is two or more con-
tiguous copies of a pattern of nucleotides. Finding tandem repeats
has many applications, like individual identification and tracing
the root of an outbreak. 𝑘-mers also refer to a substring of size 𝑘 of
a given DNA sequence. Counting the frequency of 𝑘-mers is useful
in genome assembly and sequence alignment.

4.2.1 𝑘-mers Counting and Traces. In this work, we deploy the
𝑘-mers counting technique for pattern repeat detection (step 3).
The reason for this choice is that our experiments with the state-
of-the-art tools show that 𝑘-mers counting tools are much faster
to analyze large traces (up to millions) compared to others (e.g.,
the TRF tool [6] for tandem repeat finding) and also they are more
configurable. We use scikit-bio Python library [65] in our analysis
which allows us to define a custom alphabet for DNA sequences,

1Here, size refers to the number of elements in a trace, not storage size.

Cassandra: Efficient Enforcement of Sequential Execution for Cryptographic Programs ISCA ’25, June 21–25, 2025, Tokyo, Japan

Algorithm 1: 𝑘-mers Branch Compression
Input: DNA sequence 𝑠𝑒𝑞
Output: 𝑘-mers trace 𝐾 and pattern set 𝑃

1 𝑢𝑛𝑢𝑠𝑒𝑑_𝑙𝑒𝑡𝑡𝑒𝑟𝑠 ← 𝑎𝑙𝑝ℎ𝑎𝑏𝑒𝑡 \ unique_letters(𝑠𝑒𝑞)
2 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑙𝑒𝑛 ←∞
3 while len(𝑠𝑒𝑞) < 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑙𝑒𝑛 do

4 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑙𝑒𝑛 = len(𝑠𝑒𝑞)
5 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒.clear()
6 for 𝑘 ← 2 to𝑚𝑎𝑥_𝑘 do

7 𝑓 𝑟𝑒𝑞𝑠 ← count_kmers(𝑠𝑒𝑞, 𝑘)
8 foreach 𝑘𝑚𝑒𝑟 ∈ 𝑓 𝑟𝑒𝑞𝑠 do
9 if 𝑓 𝑟𝑒𝑠 [𝑘𝑚𝑒𝑟] > 1 ∧ Size(𝑘𝑚𝑒𝑟) ≤ 𝑚𝑎𝑥_𝑘 then

10 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 [𝑘𝑚𝑒𝑟] ← (𝑘 × 𝑓 𝑟𝑒𝑞𝑠 [𝑘𝑚𝑒𝑟])/𝑙𝑒𝑛 (𝑠𝑒𝑞)
11 end

12 end

13 end

14 𝑚𝑜𝑠𝑡_𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑡_𝑘𝑚𝑒𝑟 ← max(𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒)
15 𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑡_𝑘𝑚𝑒𝑟𝑠.insert(𝑚𝑜𝑠𝑡_𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑡_𝑘𝑚𝑒𝑟)
16 𝑙𝑒𝑡𝑡𝑒𝑟 ← 𝑢𝑛𝑢𝑠𝑒𝑑_𝑙𝑒𝑡𝑡𝑒𝑟𝑠.pop()
17 𝑠𝑒𝑞.replace_and_merge(𝑚𝑜𝑠𝑡_𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑡_𝑘𝑚𝑒𝑟, 𝑙𝑒𝑡𝑡𝑒𝑟)
18 end

19 𝐾 ← 𝑠𝑒𝑞

20 𝑃 ← 𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑡_𝑘𝑚𝑒𝑟𝑠

while most other tools only consider four letters A, C, G, T; some
branches can have more than four outcomes (e.g., a return can
jump to more than four callsites). Additionally, 𝑘-mers counting
tools allow configuring the algorithm parameters which is useful
to enforce starting with smaller and more frequent patterns and
then continuing to larger patterns if necessary. This is beneficial
to reduce the storage requirement as much as possible. However,
note that we use the 𝑘-mers counting just as a demonstration and
our compression results do not depend on a specific tool.

Before the 𝑘-mers counting step of our analysis, we transform
vanilla traces to their equivalent DNA sequences. For example,
vanilla trace of branch 𝐵𝑅1 of this form:

𝑃𝐶0 × 2 · 𝑃𝐶1 × 5 · 𝑃𝐶0 × 2 · 𝑃𝐶1 × 5 · 𝑃𝐶2 × 3
is transformed to this DNA sequence: 𝐴𝐶𝐴𝐶𝐺 .

Algorithm 1 shows a simplified version of the technique that
we use to build 𝑘-mers traces. The input of the algorithm is the
equivalent DNA sequence of a vanilla trace. The core of the algo-
rithm is the 𝑐𝑜𝑢𝑛𝑡_𝑘𝑚𝑒𝑟𝑠 procedure (line 7) that takes 𝑘 and DNA
sequence 𝑠𝑒𝑞 as input and builds a frequency map of all the existing
𝑘-mers and their frequency. Algorithm 1 continues compressing
the sequence with the most frequent pattern (i.e., has the high-
est coverage in the sequence, lines 14-17) until the length of the
compressed sequence stops reducing (line 3). Finally, the output of
the algorithm is the compressed DNA sequence 𝐾 and the set of
detected patterns 𝑃 (lines 19-20).

As the final step, we re-transform the DNA 𝑘-mers patterns back
to the PC traces. We refer to the result as the 𝑘-mers representa-
tion; 𝑘-mers representation consists of the 𝑘-mers trace 𝐾 and its
transformed pattern set 𝑃 . For example, here is the 𝑘-mers trace of
branch 𝐵𝑅1 that we discussed earlier:

𝑝0 × 2 · 𝑝1 × 1
where the pattern set is:

𝑃 = {𝑝0 : 𝑃𝐶0 × 2 · 𝑃𝐶1 × 5, 𝑝1 : 𝑃𝐶2 × 3}
Table 1 shows the average and maximum size of 𝑘-mers repre-

sentation (sum of trace 𝐾 size and pattern set 𝑃 size). The average

Algorithm 2: Trace Generation Procedure
Input: Input binary 𝑏𝑖𝑛_𝑖𝑛, 𝑖𝑛𝑝1, 𝑖𝑛𝑝2
Output: Updated binary 𝑏𝑖𝑛_𝑜𝑢𝑡 with traces and hint information

1 𝑡𝑟𝑎𝑐𝑒𝑠.clear()
2 𝑢𝑛𝑖𝑞𝑢𝑒_𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠 ← detect_static_branches(𝑏𝑖𝑛_𝑖𝑛) A
3 foreach 𝑏𝑟𝑎𝑛𝑐ℎ ∈ 𝑢𝑛𝑖𝑞𝑢𝑒_𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠 do
4 [𝐾1, 𝑃1] ← generate_kmers_traces(𝑏𝑟𝑎𝑛𝑐ℎ,𝑏𝑖𝑛_𝑖𝑛, 𝑖𝑛𝑝1)
5 [𝐾2, 𝑃2] ← generate_kmers_traces(𝑏𝑟𝑎𝑛𝑐ℎ,𝑏𝑖𝑛_𝑖𝑛, 𝑖𝑛𝑝2)
6 𝑖𝑠_𝑖𝑛𝑝𝑢𝑡_𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 ← diff (𝐾1, 𝐾2)
7 if ¬𝑖𝑠_𝑖𝑛𝑝𝑢𝑡_𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 then
8 𝑡𝑟𝑎𝑐𝑒𝑠.insert([𝑏𝑟𝑎𝑛𝑐ℎ,𝐾1, 𝑃1])
9 end

10 end

11 𝑏𝑖𝑛_𝑜𝑢𝑡 ← embed_information(𝑏𝑖𝑛_𝑖𝑛, 𝑡𝑟𝑎𝑐𝑒𝑠)
12 Procedure generate_kmers_traces(𝑏𝑟𝑎𝑛𝑐ℎ, 𝑏𝑖𝑛, 𝑖𝑛𝑝)
13 𝑅 ← collect_raw_traces(𝑏𝑟𝑎𝑛𝑐ℎ,𝑏𝑖𝑛, 𝑖𝑛𝑝) B
14 𝑉 ← transform_to_vanilla_traces(𝑅) C
15 𝐷𝑁𝐴_𝑠𝑒𝑞 ← transform_to_DNA(𝑉) D
16 [𝐾, 𝑃] ← kmers_compression(𝐷𝑁𝐴_𝑠𝑒𝑞) E
17 return [𝐾, 𝑃]

𝑘-mers size per static branch is 19.9 and the maximum size is 2,312.
Compared to vanilla trace sizes, our compression leads to an average
compression rate of 163,371× and a maximum rate of 30,036,960×.
Note, that the results presented in Table 1 exclude the branches that
always have a single target (i.e., their vanilla trace size is already 1).

Example: Toy-AES-2. Figure 2 illustrates theCassandra branch
analysis for a toy example that encrypts data in three encryption
rounds with key and plaintext length of two. In the first step, raw
traces are collected per static branch (step 1). For instance, BR6 is
a loop branch with a loop count of two: it executes BR7 twice and
then executes the fall-through path, PC7. In the next step, vanilla
traces are generated (step 2). After transforming vanilla traces into
equivalent DNA sequences (step 3), we perform our 𝑘-mers branch
compression technique and generate the 𝑘-mers traces and pattern
sets (step 4).

4.3 Automatic Trace Generation Procedure

We provide an automatic procedure to generate branch traces for a
given binary of a constant-time cryptographic application. Algo-
rithm 2 shows the steps of this procedure (steps A - E).

Step A identifies all static branches that appear during the exe-
cution (line 2) and stores them in the 𝑢𝑛𝑖𝑞𝑢𝑒_𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠 set. Steps B
- E generate 𝑘-mers traces for each branch, as we explained in §4.2.

Note, that in lines 4 and 5, we generate 𝑘-mers traces twice with
two different inputs to detect branches that their traces change
depending on the input. For example, stream loops in stream ciphers,
like ChaCha20, accept input plaintexts of an arbitrary length. The
program processes each block of the plaintext in a loop (i.e., the
stream loop). The vanilla trace of the stream loop is in the form of
𝑃𝐶1×𝑛 ·𝑃𝐶0×1, where𝑛 is the length of the input2. However, all the
other branches are wrapped inside this loop and repeat. Hence, they
have valid 𝑘-mers traces. For branches that their trace depends on
the input, we stall the fetch until the branch resolves3; this incurs a
negligible penalty since they are not frequent and quickly resolve.

2In addition, some branches in post-quantum crypto primitives have random traces
that change in different runs, e.g., two branches in rejection sampling of Kyber.
3In general, if traces are not available for a crypto branch, we redirect fetch only if the
branch direction is resolved.

ISCA ’25, June 21–25, 2025, Tokyo, Japan Ali Hajiabadi and Trevor E. Carlson

k-mers
Counting

BR6: T
BR7: A
BR2: G	×	2
BR3: G
BR1: C	×	2
BR4: A
BR5: C

BR6: AC
BR7: A
BR2: CTCT
BR3: G
BR1: TGTG
BR4: A
BR5: C

DNA Sequences

4

BR6: BR7	$	BR7	$	PC7
BR7: PC3	$	PC3	
BR2: BR3	$	BR3	$	BR3	$	PC4	$	BR3	$	BR3	$	BR3	$	PC4
BR3: PC1	$	PC1	$	PC1	$	PC1	$	PC1	$	PC1	
BR1: BR2	$	BR2	$	BR2	$	BR5	$	BR2	$	BR2$	BR2	$	BR5
BR4: PC1	$	PC1	
BR5: BR6	$	BR6	

Raw Traces

BR6: BR7	×	2 $	PC7	×	1
BR7: PC3	×	2	
BR2: BR3	×	3 $	PC4	×	1 $	BR3	×	3 $	PC4 ×	1
BR3: PC1	×	6
BR1: BR2	×	3 $	BR5	×	1 $	BR2	×	3 $	BR5 ×	1
BR4: PC1	×	2
BR5: BR6	×	2

Vanilla Traces

k-mers Pattern Sets
BR6: {T: BR7	×	2 $	PC7	×	1}
BR7: {A: PC3	×	2}
BR2: {G: BR3	×	3 $	PC4	×	1}
BR3: {G: PC1	×	6}
BR1: {C: BR2	×	3 $	BR5	×	1}
BR4: {A: PC1	×	2}
BR5: {C: BR6	×	2}

Branch
Trace

Collection

1

Aggregation 2

DNA
Encoding

3

k-mers Traces
PC1

BR1
PC2
PC3
BR2
BR3

PC4
BR4

BR5
PC5
PC6
BR6
BR7
PC7

void Sbox(q){
//no branches
return;

}
void encrypt(skey, q){

for (i=0; i<3; i++){
Sbox(q);
//shiftRows,mixCols,AddKey

}
Sbox(q);
//shiftRows,AddKey
return;

}
void main(){

for (i=0; i<2; i++)
c[i] = encrypt(skey, q[i]);

}

Toy-AES-2

Figure 2: Cassandra branch analysis workflow example. Note, that the branches are analyzed separately and traces are

generated per static branch; DNA sequences of branches are independent from each other.

Finally, once all branches are analyzed, the input binary is in-
strumented with the 𝑘-mers traces and their hint information to
facilitate their access during execution (line 11, see §5.2 for the
details of trace representations and their communication with the
hardware). We discuss the runtime overhead of the one-time trace
generation procedure for all applications in §7.5.

5 Design of Cassandra

To efficiently implement Cassandra in hardware, we need to (1)
communicate the branch traces prepared by our analysis with the
hardware on demand, and (2) design a specialized unit, called Branch
Trace Unit (BTU), in the fetch stage to determine the branch direc-
tions based on the sequential branch traces. The BTU is designed
similarly to Trace Caches [58, 59] and Schedule Caches [49] in prior
work, with two key differences: (1) traces are determined before
execution in Cassandra and no dynamic trace selection method-
ology is used. (2) In case of a trace miss in the BTU , the frontend
stalls until the trace becomes available, while prior works would
switch to a normal, speculative fetch procedure.

In §5.1, we present an overview of Cassandra design, and in §5.2
and §5.3, we provide the details for Cassandra implementation.

5.1 Overview

Figure 3 shows an overview of the Cassandra microarchitecture.
When a branch is fetched, two possible scenarios occur depending
on whether the branch belongs to a cryptographic program, or
it is a non-crypto branch. In the former scenario, the fetch unit
queries the BTU to determine the next PC (step 1), and in the latter
scenario, the BPU predicts the next PC (step 2). The Pattern Table

and the Trace Cache are the two sub-components of the BTU that
(1) determine the next PC for each branch and (2) keep track of the
progress within the trace. In cases that a trace fits in one entry of
the Trace Cache, it will rotate to keep replaying the trace. However,
if the trace does not fit in one entry then the head element of the
entry is removed when the branch commits, and the entire entry
shifts and prefetches the upcoming parts of the trace at the back of
the entry (step 3). Finally, when a branch misses in the BTU , one of
the entries is evicted and a checkpoint of its progress is taken in the
Checkpoint Table. This checkpoint allows to resume the execution

Branch Trace Unit

Trace Cache

Checkpoint Table

Pattern Table

Branch
Prediction Unit

1

 0

Execution

Commit

Fetch + ICache
Decode1

2

3

Crypto fetch
flow

Crypto Commit
flow

Non-crypto
fetch flow

Crypto PC Range

Figure 3: Overview of Cassandra microarchitecture. Crypto

branches do not access or update the BPU.

of the evicted branch when it reappears in the future. In §5.3, we
discuss the details of our microarchitecture.

5.2 Trace Representation and Communication

We use the output of Algorithm 1 to prepare the branch traces.
Traces consist of two parts per static branch: (1) the pattern set
built from the𝑘-mers patterns 𝑃 , which stores all the possible branch
outcomes, and (2) the branch trace built from the 𝑘-mers trace 𝐾 .
Figure 4(a) shows the structure of each element in the pattern set.
Each pattern element has a 12-bit target offset (the signed difference
between the branch PC and the target PC) and the number of its
repetitions (8-bit). In cases where the number of repetitions exceeds
8 bits, the element is duplicated in a way that the sum of the two
elements is equal to the original number:

𝛿 (𝐵𝑅0) × 300→ 𝛿 (𝐵𝑅0) × 255 · 𝛿 (𝐵𝑅0) × 45
We use a compact form to store the patterns in cases where patterns
overlap. For example, if two patterns in a trace are 𝐴𝐶𝑇 and 𝐶𝑇𝐴,
then the output pattern set is 𝐴𝐶𝑇𝐴.

Figure 4(b) shows the structure of each element in the branch
trace. The first two fields, pattern index and pattern size, specify
the corresponding pattern from the pattern set. For example, if
the corresponding pattern of a trace element is 𝐶𝑇 and the entire
pattern set is 𝐴𝐶𝑇𝐴, then the pattern index is 1 (indices start from
0) and the pattern size is 2. Pattern counter is equal to the sum of
the repetitions of the corresponding pattern elements and the trace

Cassandra: Efficient Enforcement of Sequential Execution for Cryptographic Programs ISCA ’25, June 21–25, 2025, Tokyo, Japan

(b) Trace Element

4-bit 8-bit 16-bit4-bit

Pattern
index

Pattern
size

Pattern
counter

Trace counter

(a) Pattern Element

12-bit 8-bit

𝛿(Target PC) #repetitions

(c) Checkpoint Element

Trace index Latest pattern
counter Latest trace counter

12-bit

8-bit 16-bit

Original pattern
counter Original trace counter

Figure 4: Elements in the Branch Trace Unit (BTU). Each

entry of the Pattern Table, Trace Cache, andCheckpoint Table,
consisting of 16 elements and corresponds to a static branch.

counter specifies the total number of times that the pattern needs
to be repeated before advancing to the next trace element.

A special End of Trace marker is used to denote the end of each
trace. This allows the processor to repeat the trace whenever it
reaches the end of the trace. We store traces in data pages and
embed hints for each static branch:

(1) Single-targetmark. A significant portion of branches always
jump to a single target (e.g., "call sbox <pc>"), and we mark such
branches as single-target and do not need to store and communicate
traces for them (e.g., 79% of static branches in RSA are single-target);
we only need to embed its single target within the hint information
(i.e., a PC offset pointing to the branch’s target). This implementation
ensures that no BTU resources are used for single-target branches
and no trace miss would occur as well.

(2) Traces Virtual Address offset (Δ). If the branch ismultiple-

target, then Δ points to the data page address holding branch traces.
(3) Short-trace mark. We mark the branches when their traces

are smaller than 16 (i.e., they fit in one entry of the BTU). This will
allow us to avoid additional accesses to bring traces to the BTU and
only repeat the trace once loaded.

Embedding hint information. A general approach to inform
the hardware about the hints is to insert a special hint instruction
before each branch. Hint instructions are only decoded and do not
use the ALUs; prior work has used hint instructions for x86 [33]
and RISC-V ISAs [27]. An alternative solution is to re-purpose some
of the previously-ignored prefix bytes in x86, in the same way that
XRELEASE [41] was implemented, to embed the hint information
for each branch (similar to prior work [85]). Fourteen bits can be
sufficient per static branch to embed single-target mark (1 bit),
address offset (12 bits), and short-trace mark (1 bit). We opt to
use the latter solution in this work because hint instructions still
consume critical frontend resources, even though not executed.
Moreover, inserting hint instructions might not provide backward
compatibility with older processors.

Crypto PC range. We also use a new status register that specify
PC ranges for crypto code, called the Crypto PC Ranges register, to
avoid the penalties of waiting until hint information is decoded.
Note, that crypto branches that hit in the BTU do not require hint
information; only rare cases where traces miss in the BTU require
decoding hint information to load traces.

5.3 Details of the Microarchitecture

The BTU consists of three main components:
• Pattern Table (PAT) holds the pattern sets of branches and each
entry consists of 16 pattern elements (see Figure 4(a));
• Trace Cache (TRC) holds the branch traces and each entry con-
sists of 16 trace elements (see Figure 4(b));
• Checkpoint Table (CPT) always holds the latest valid position
of the branch trace, i.e., the committed progress of the trace.
Each entry is only one checkpoint element (see Figure 4(c)).
CPT is stored in data pages which keeps the checkpoints for all
branches to handle the BTU evictions and interrupts.

In addition, the CPT keeps the original counts of the first element of
the TRC (head of the trace); this helps the BTU to insert a refreshed
version of the element at the back of the TRC entry for repetition
(see the commit flow for the details of the CPT updates).

All three tables are direct-mapped tables, indexedwith the branch
PC, and they are fully inclusive of each other. The BTU uses an
LRU replacement policy to evict an entry.

Crypto fetch flow. Once a crypto branch is fetched, the fetch
unit queries the BTU to determine the next PC (step 1 in Figure 3).
If the branch is marked as single-target, then the next PC is already
known by the hint information and there is no need for a BTU

lookup. Formultiple-target branches, BTU looks up the first element
of the TRC to find the appropriate pattern element in the PAT

which provides the next PC. Upon each BTU lookup, the pattern
counter of the first element in the TRC is decremented. Whenever
the pattern counter reaches zero, we advance to the next pattern
element by decrementing the trace counter and updating the pattern
counter based on the new pattern element. As we will explain in the
crypto commit flow, the first element of the trace is removed only
when the enforced branch direction is committed. Hence, there
is a possibility that the trace counter of the first element is zero
(i.e., we need to advance to the next element) but the branch is
not committed yet. In this case, the BTU needs to lookup the next
element in the TRC entry. In the worst case that all 16 elements
of the TRC are looked up and not committed (i.e., trace counter is
zero in all of them), then the BTU waits until the first element is
removed. We did not encounter this scenario in our simulations
since crypto branches resolve before all elements are looked up.

Non-crypto fetch flow. For non-crypto branches, we use the
BPU to determine the next PC (step 2). However, to prevent specu-
lative fetch redirections to the crypto code we perform an integrity
check to prevent fetch redirection if the predicted target is part of
the crypto code (using the Crypto PC Ranges register). In this case,
we wait for the branch to resolve before taking the branch.

Crypto commit flow. Once a crypto branch commits (step 3),
if the trace counter of the first element in the corresponding TRC
entry is zero, then the first element is removed and all the other
elements are shifted. To fill the last element of the TRC entry, two
cases can happen:
(1) if the branch is marked as short-trace, a refreshed version of

the removed element is inserted at the back of the entry;
(2) if the trace is larger than the TRC entry, we prefetch the up-

coming elements and insert at the back of the entry. If the
last element is an End of Trace marker, we restart from the
beginning of the trace.

ISCA ’25, June 21–25, 2025, Tokyo, Japan Ali Hajiabadi and Trevor E. Carlson

Additionally, when a crypto branch commits, the latest pattern
counter and trace counter are checkpointed in the CPT . This allows
the processor to resume the execution when it is interrupted (e.g.,
in context switches). Trace index in the checkpoint element (see
Figure 4(c)) points to the latest trace element that the execution
needs to resume from.

Trace evictions in the BTU . Once a trace is evicted from the
TRC, the corresponding entries in the PAT and CPT are evicted
as well. Before evicting the CPT entry, the checkpoint element is
updated with the latest counters and trace index and is stored in
the memory. This allows the CPU to resume the execution when
the evicted branch reappears.

Recovery for ROB Squashes. While Cassandra guarantees
no branch mispredictions for crypto branches, ROB squashes can
still occur due to other reasons (e.g., non-crypto mispredictions
or interrupts), and Cassandra needs to recover in cases where
the crypto branches are squashed. Whenever a crypto branch is
squashed, we undo the actions of the crypto fetch flow; the pattern
counter and trace counter of the first elements are incremented
according to the checkpointed counters in the CPT .

6 Security Analysis

In this section, we aim to provide a detailed analysis of Cassandra’s
security and precisely identify its protection scope. We discuss prac-
tical deployment and additional considerations to comprehensively
block Spectre-type leaks.We explain the preliminaries in §6.1 before
discussing Cassandra’s security in §6.2.

6.1 Preliminaries

Below, we provide the required background and the terminology
used for the security analysis of Cassandra.

6.1.1 Security Policies. Traditionally, developers relied on sequen-
tial program execution to enforce security policies in two main
application domains: (1) high-assurance cryptography and (2) isola-
tion of untrusted code [12]. We briefly discuss the security policies
required in these domains.

Security policy for high-assurance cryptography. As we
discussed in §2.1, cryptographic programs deploy constant-time

programming to ensure that attacker-visible observations (also re-
ferred to as leakage model) of the program do not depend on secrets.
The leakage model of constant-time programs captures the control
flow, accessed memory addresses, and operands of variable-time
instructions (notated as J · Kct leakage model4).

Security policy for software isolation. For software isolation
(also referred to as sandboxing), a host application needs to ensure
that untrusted guest code cannot access the host’s memory out-
side an authorized range (e.g., eBPF in Linux kernel). A common
leakage model assumes an adversary observing all architectural
computation and accesses, including register file contents (J · Karch
leakage model). Thus, this security policy requires preventing out-
of-bounds memory accesses during execution.

6.1.2 Spectre Vulnerabilities. Before the advent of Spectre, software-
level tools assumed a sequential (architectural) execution model
(notated as J · Kseq execution model) to enforce either constant-time
4We borrow the notation and terminology from prior work [12, 22].

load 𝑟1, 𝑠𝑒𝑐𝑟𝑒𝑡
load 𝑟2, 𝑝𝑢𝑏𝑙𝑖𝑐

branch

leak 𝑟1

transient
flow

leak 𝑟2

sequential
flow

branch

load 𝑟1, 𝑠𝑒𝑐𝑟𝑒𝑡
leak 𝑟1

transient
flow

process 𝑝𝑢𝑏𝑙𝑖𝑐

sequential
flow

(a) Transient Register Leak (b) Transient Memory Leak

Register leak gadget

R2 R1

M1

Register leak gadget

Memory leak gadget

Figure 5: (a) Transient register leak, (b) transient memory

leak. Both cases are constant-time during sequential execu-

tion, but violated during transient execution.

or isolation policies. However, modern CPUs follow a speculative
execution model (notated as J · Kspec execution model) that can tran-
siently execute instructions from unintended paths of the program.
Figure 5 shows transient leaks of the programs that are secure with
respect to a sequential execution model.

Sequential execution of both examples in Figure 5 are constant-
time (i.e., they are secure according to a J · Kseqct contract5). Never-
theless, the code in Figure 5(a) presents a transient leak of register
𝑟1 (through a register leak gadget R2) which contains secret data
that never leaks during sequential execution. Similarly, Figure 5(b)
transiently accesses a secret memory region and leaks the value
loaded in register 𝑟2 (through memory leak gadget M1).

Moreover, Figure 5(b) demonstrates that the speculative execu-
tion model of CPUs can violate software isolation policies as well
through transient execution of memory leak gadgets; it leaks a
memory location through M1 gadget which is not accessed during
sequential execution (i.e., it is secure against a J · Kseqarch contract).

After the advent of Spectre, many software tools were developed
to capture speculative execution semantics and extend constant-
time policies to potentially transient program paths [5, 11, 17, 21, 23,
45, 47, 52, 56, 73–75, 78]. However, we argue that software should
only consider sequential (non-speculative) semantics, with hard-
ware ensuring no additional leaks beyond those intended by the
software. The rationale for this argument is that reasoning about
transient execution at the software level requires complete microar-
chitectural knowledge, which is not public for widely deployed
CPUs, making such protections vulnerable to unknown speculation
mechanisms. Moreover, software protections lack the performance
flexibility of hardware mechanisms, relying on costly measures
like fences to block potential transient leaks. Hence, we present
Cassandra as a CPU enhancement that allows developers to write

high-assurance cryptographic code using the standard set of constant-

time programming rules, without requiring additional programming

effort and software-level considerations regarding speculation.

6.2 Security Analysis of Cassandra

The security goal of Cassandra is to guarantee that (1) all executed
paths after crypto branches are on the sequential path, and (2)
all crypto leak gadgets execute on the sequential path. In other
words, (1) all outgoing edges from BR1 in Figure 6 must follow
the sequential (non-speculative) flow of the program, and (2) all
incoming edges to M1 and R1 are on the sequential path.

5The combination of a leakage model 𝛽 and an execution model 𝛼 expresses a J · K𝛼𝛽
contract that governs the attacker-visible observations of a program during execution.

Cassandra: Efficient Enforcement of Sequential Execution for Cryptographic Programs ISCA ’25, June 21–25, 2025, Tokyo, Japan

Table 2: Security analysis of all possible control flow scenarios in Cassandra (see Figure 6).

Scenario Transition ‡ Execution flow Cassandra mechanism

1 BR1 R1 branch1 · leak 𝑟1 Encforcing sequential flow via looking up pre-computed sequential branch traces (BTU)
2 BR1 M1 branch1 · load 𝑟2, 𝑎𝑑𝑑𝑟𝐴 · leak 𝑟2 Encforcing sequential flow via looking up pre-computed sequential branch traces (BTU)
3 BR1 R2 branch1 · leak 𝑟4 Encforcing sequential flow via looking up pre-computed sequential branch traces (BTU)
4 BR1 M2 branch1 · load 𝑟3, 𝑎𝑑𝑑𝑟𝐵 · leak 𝑟3 Encforcing sequential flow via looking up pre-computed sequential branch traces (BTU)
5 BR2 M1 branch2 · load 𝑟2, 𝑎𝑑𝑑𝑟𝐴 · leak 𝑟2 Encforcing sequential flow via integrity checks upon non-crypto branches
6 BR2 R1 branch2 · leak 𝑟1 Sequential flow via integrity checks; however, 𝑟1 is already declassified by the crypto code
7 BR2 R2 branch2 · leak 𝑟4 Speculative flow; this is allowed in non-crypto code and J · Kseqarch contract
8 BR2 M2 branch2 · load 𝑟3, 𝑎𝑑𝑑𝑟𝐵 · leak 𝑟3 Speculative flow; out of scope (i.e., software isolation)

‡ A : crypto code, B : non-crypto code. 𝐴 𝐵: sequential flow, 𝐴 𝐵: speculative flow, 𝐴 𝐵: don’t care flow.

Figure 6 illustrates all possible scenarios that capture the execu-
tion of both crypto code (secure against the J · Kseqct contract) and
non-crypto code (secure against the J · Kseqarch contract) and their in-
teraction in a Cassandra-enabled processor. We will discuss these
scenarios to explain Cassandra’s security and protection scope
(crypto gadgets are highlighted as blue and non-crypto gadgets
are highlighted as orange). Our security analysis is summarized in
Table 2, indicating Cassandra mechanisms for each scenario.

Scenarios 1 and 2 (BR1 M1 R1): These are the scenar-
ios where crypto leak gadgets execute after a crypto branch (i.e.,
leakage of register 𝑟1 and memory 𝑎𝑑𝑑𝑟𝐴 after branch1). Cassan-
dra guarantees sequential execution for these scenarios by looking
up the sequential control flow trace of branch1.

Scenario 3 (BR1 R2): This is the scenario where a non-
crypto register leak gadget executes after a crypto branch (i.e.,
leakage of register 𝑟4 after branch1). Cassandra guarantees se-
quential execution for this scenario by looking up the sequential
control flow trace of branch1. Note, that the leakage of 𝑟4 is in-
tentional, as its content should already have been declassified (i.e.,
made public) before transitioning to unsafe, non-crypto code.

Scenario 4 (BR1 M2): This is the scenario where a non-
crypto memory leak gadget executes after a crypto branch (i.e.,
leakage of memory 𝑎𝑑𝑑𝑟𝐵 after branch1). Cassandra guarantees
sequential execution for this scenario by looking up the sequential
trace of branch1.

Scenario 5 (BR2 M1): This is the scenario where a crypto
memory leak gadget executes after a non-crypto branch (i.e., leak-
age of memory 𝑎𝑑𝑑𝑟𝐴 after branch2). While a Cassandra-enabled
processor predicts the outcome of non-crypto branches, we per-
form an integrity check to not speculatively redirect fetch to crypto
code (discussed in §5.3 in the non-crypto fetch flow). Cassandra
guarantees sequential execution for this scenario by stalling fetch
until the non-crypto branch resolves.

Scenario 6 (BR2 R1): This is the scenario where a crypto
register leak gadget executes after a non-crypto branch (i.e., leakage
of register 𝑟1 after branch2). Cassandra guarantees sequential
execution for this scenario similar to scenario 5 through integrity
checks. Note, that the content of register 𝑟1 is public since crypto
programs declassify registers before transitioning to unsafe, non-
crypto code. In other words, transient execution of this scenario
would not have leaked any secrets as well.

Scenario 7 (BR2 R2): This is the scenario where a non-
crypto register leak gadget executes after a non-crypto branch (i.e.,
leakage of register 𝑟4 after branch2).Cassandra allows speculative
execution for this scenario. Note, that transient execution of this

Sequential control flow Speculative control flow

1
2

7
4

leak 𝑟1
R1

8

load 𝑟2, 𝑎𝑑𝑑𝑟!
leak 𝑟2

M1
load 𝑟3, 𝑎𝑑𝑑𝑟"
leak 𝑟3

M2

leak 𝑟4
R2

branch1
BR1

branch2
BR2

3

5

6

Crypto code ()⟦		⟧!"
#$%. Non-crypto code ()⟦		⟧&'!(

#$%.

Don’t care control flow

Figure 6: All possible control flows in a Cassandra-enabled

processor. Cassandra guarantees that (1) all outgoing edges

from BR1 follow the sequential flow, and (2) all incoming

edges to M1 and R1 are on the sequential path.

scenario does not violate software isolation guarantees of the non-
crypto code (i.e., it still satisfies the J · Kseqarch contract).

Scenario 8 (BR2 M2): This is the scenario where a non-
crypto memory leak gadget executes after a non-crypto branch
(i.e., leakage of memory 𝑎𝑑𝑑𝑟𝐵 after branch2). Cassandra allows
speculative execution for this scenario. However, transient execu-
tion of this scenario can violate software isolation guarantees of
the non-crypto code. Preventing this leakage is out of the scope
of Cassandra. Since violating software isolation can potentially
leak arbitrary memory locations (e.g., secret keys), we expect a Cas-
sandra-enabled system to provide a level of isolation for crypto
applications (e.g., through lightweight isolation techniques that
prevent Spectre [57, 64]). Ideally, Cassandra can be integrated
with a defense that provides secure speculation for sandboxing
policy (e.g., STT [82], DOLMA [42], and Levioso [24]) to compre-
hensively block Spectre-type attacks for both constant-time and
software isolation. Integration of Cassandra with other defenses
is straightforward; the only consideration is that crypto branches
do not induce a speculation window, and only speculatively loaded
data under the speculation window of non-crypto branches need
protection (i.e., scenario 8).

Formal security analysis. We provide a formalization of Cas-
sandra in an extended version of this paper [26], where we demon-
strate an interesting use of hardware-software contracts [22]. While
hardware-software contracts are mostly used to infer contracts for
existing defenses, we provide contract-informed hardware semantics

with a J · Kseqct contract in mind as a clean-slate design (i.e., all fetch

ISCA ’25, June 21–25, 2025, Tokyo, Japan Ali Hajiabadi and Trevor E. Carlson

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

kyber512

kyber768

sphincs-haraka-128s

sphincs-sha2-128s

sphincs-shake-128s

chacha20

curve25519
sha256

AES_CTRCBC_ct

ChaCha20_ct
DES_ct

EC_c25519_i31

ECDSA_i31

ModPow_i31

MultiHash

Poly1305_ctmul

RSA_i62

SHA-256
SHAKE

TLS PRF

geomean

PQC OpenSSL BearSSL All

N
o

rm
al

iz
ed

Ex

ec
u

ti
o

n
T

im
e

UnsafeBaseline Cassandra Cassandra+STL SPT

Figure 7: Execution time of different designs normalized to the Unsafe Baseline. A higher bar means higher slowdown.

Table 3: gem5 configuration for simulation.

Pipeline 8 F/D/I/C width, 192/114 LQ/SQ entries, 512 ROB
entries, 96 IQ entries, 280/332 RF (INT/FP), LTAGE BPU

BTU 16 PAT /TRC/CPT entries (1.74 KiB storage)

L1 DCache 48 KB, 64 B line, 12-way, 5-cycle latency
L1 ICache 32 KB, 64 B line, 8-way, 5-cycle latency
L2 Cache 1280 KB, 64 B line, 16-way, 14-cycle latency
L3 Cache 30 MB, 64 B line, 16-way, 40-cycle latency

directions strictly follow the contract trace). Hence, the contract sat-
isfaction proof for J · Kseqct is a direct result of our contract-informed
semantics. We show that our key innovations in trace compres-
sion and microarchitecture enable a performant implementation of
Cassandra’s semantics for cryptographic applications.

7 Evaluation

7.1 Experimental Setup

Simulation. We implement Cassandra on top of the gem5 OoO
core implementation and evaluate the design using Syscall Emula-
tion (SE) mode and x86 ISA. Table 3 shows the system configuration
(a Golden-Cove-like microarchitecture [53]). We useMcPAT 1.3 [38]
and CACTI 6.5 [39] to investigate the power and area impacts.

Workloads. We evaluate test applications from the BearSSL [54]
and OpenSSL [48] libraries, alongside reference implementations of
two post-quantum crypto programs: Kyber [37] and SPHINCS+ [69].
For the applications with more than 1B instructions, we used Sim-
Point [66] to generate representative regions for practical simula-
tion time-frames (an average of 6 SimPoints per application and
50M instructions per region). In §7.3, we evaluate the SpectreGuard
synthetic benchmarks [20] as a mix of crypto and non-crypto code.
Moreover, we used gem5 itself to collect branch traces for Cassan-
dra, however, other tools can be used as well (e.g., Intel Pin [43]
and DynamoRIO [8]).

7.2 Cryptographic Benchmarks Performance

We evaluate four different designs in this section:

• Unsafe Baseline: unprotected baseline OoO processor, vulnera-
ble to control flow and data flow speculation;
• Cassandra: our design; addressing control flow speculation;

• Cassandra+STL: an extension of Cassandra that addresses
data flow speculation as well; it always sends a request to mem-
ory even if there is a load-store address match, and also restricts
the dependents of bypassing loads until prior stores resolve,
similar to prior work [15, 42];
• SPT : a prior hardware-only defense [15]. We use their proposed
settings for the Spectre attack model.

Figure 7 shows normalized execution time of the evaluated appli-
cations with different designs. Cassandra improves performance
compared to the Unsafe Baseline by 1.85% on average. This is mainly
because of the elimination of prediction for crypto branches, and as
a result, no ROB squashes and penalties occur due for mispredicting
crypto branches.

In addition, the results show that extending Cassandra to pro-
tect data flow speculation (i.e.,Cassandra+STL) achieves a speedup
of 1.14%, which demonstrates that Cassandra can still improve
performance due to easy-to-resolve address computations in crypto
primitives.

Finally, SPT shows a 12.07% slowdown compared to the Unsafe
Baseline, and a 14.21% slowdown compared to the Cassandra.
SPT has low overheads for some applications, but the overheads
can be significantly higher, up to a 59.8% slowdown for OpenSSL
chacha20, while Cassandra improves performance by 14.7% for
OpenSSL sha256 compared to the Unsafe Baseline.

7.3 Synthetic Benchmarks Performance

In this section, we aim to compare Cassandra with ProSpeCT , the
state-of-the-art secure speculation for constant-time programs.

Implementation. ProSpeCT annotates secret memory regions, and
only blocks speculative execution of an instruction if it is about to
leak a secret. We implement ProSpeCT in gem5 and block execution
under two conditions: (1) the instruction is speculative (i.e., there
is an older, unresolved control inducer), and (2) the instruction is
about to process a secret (i.e., one or more operands are tainted).
Destination registers of loads from secret memory regions are taint
sources that are propagated during execution. Also, we declassify
all registers at the end of crypto primitives.

Workloads. We evaluate the synthetic benchmark from Spectre-
Guard [20], which is a mix of non-crypto, (s)andboxed code, and
(c)rypto code (s/c indicates the fraction of each part). We evalu-
ate two crypto primitives: (1) HACL* chacha20 [86] (similar to

Cassandra: Efficient Enforcement of Sequential Execution for Cryptographic Programs ISCA ’25, June 21–25, 2025, Tokyo, Japan

0.0% 0.0% 0.1% 0.1% 0.8%
2.5%

4.6%
8.0%

12.6%
15.0%

-0.2% -0.4% -0.7% -0.5% -2.8% -0.6% -1.1% -3.3% -3.7%
-6.7%-10%

-5%
0%
5%

10%
15%
20%

90s/10c

75s/25c

50s/50c

25s/75c

all-c
rypto

90s/10c

75s/25c

50s/50c

25s/75c

all-c
rypto

HACL* chacha20 curve25519-donna

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

T
im

e
O

ve
rh

ea
d

ProSpeCT Cassandra+ProSpeCT

(public stack) (secret stack)

Figure 8: Execution time of ProSpeCT and Cassandra, nor-

malized to the respective Unsafe Baseline of each benchmark.

Negative numbers mean speedup. The stack is marked as

public in chacha20, and secret in curve25519.

ProSpeCT), and (2) curve25519-donna [16]6. The main difference
between these two crypto primitives is that chacha20 does not spill
secret variables to the stack, while curve25519 spills both secret
and public variables to the stack which means we need to label the
stack as a secret memory region7.

We evaluate two designs: (1) ProSpeCT [18], and (2) Cassan-
dra+ProSpeCT . Since Cassandra only enforces sequential execu-
tion for crypto branches, we still leave ProSpeCT enabled alongside
Cassandra to prevent transient memory leaks of annotated secret
regions during the non-crypto component (i.e., senario 8 in Fig-
ure 6). Although ProSpeCT is not specifically designed as a general
solution for software isolation since non-crypto applications do not
have a clear notion of secret annotation similar to crypto applica-
tions, and all architecturally out-of-bounds memory accesses are
confidential. Figure 8 shows the performance impacts of ProSpeCT
and Cassandra+ProSpeCT .

Both ProSpeCT and Cassandra have marginal impact on the per-
formance for all benchmark configurations of chacha20 (Cassandra
shows 2.8% improvement and ProSpeCT has only 0.8% slowdown
for the all-crypto case). However, ProSpeCT experiences a sig-
nificant slowdown for curve25519; ProSpeCT incurs a slowdown
between 2.5% and 15.0% when increasing the crypto fraction of the
workload. Interestingly, Cassandra provides more speedup when
increasing the crypto fraction of the workload, from 0.6% to 6.7%.
The main reasons for Cassandra’s improvements are: (a) Cassan-
dra does not induce any control flow speculation for the crypto
component that benefits from always-correct fetch redirections
(i.e., no penalties for crypto branch mispredictions and squashing
cycles), and (b) it does not restrict the execution for the crypto com-
ponent, unlike ProSpeCT that needs to label the stack as secret for
more complex primitives like curve25519 and restrict speculative
execution of the instructions that potentially process secrets.

Summary. Our experiments demonstrate that the worst-case
for Cassandra is marginal/no performance improvement while
ProSpeCT can experience significant slowdown for complex crypto
applications. In addition, ProSpeCT ’s performance relies on (i) man-
ual programming efforts to precisely annotate secret memory re-
gions, and (ii) how variables are handled with respect to stack spills

6We use the secret annotations provided in https://github.com/proteus-core/prospect/
7Note that we use a different setup and compiler compared to ProSpeCT which impacts
the stack spills; we use the Clang v14.0.4 compiler for an x86 target, while ProSpeCT
uses riscv-gnu-toolchain for a RISC-V target.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100
%
110

%

Unsafe Baseline

Cassandra

Unsafe Baseline

Cassandra

A
re

a
Po

w
er

Instruction Fetch Unit Renaming Unit Load Store Unit
Execution Unit Branch Trace Unit

Figure 9: Power and area of Cassandra, normalized to the

total power and area of the Unsafe Baseline.

which is not trivial to manually isolate secret and public variables.
ProSpeCT requires a compiler pass to be aware of secret/public an-
notations when spilling values to the stack to limit the performance
overheads. In addition, the compiler might need to co-locate secrets
in memory to avoid slowdown due to caching effects [18]. On the
other hand, Cassandra does not need any programming effort or
new compiler passes to achieve its full performance potential.

7.4 Power and Area Impacts

Figure 9 shows the power and area of Cassandra compared to
Unsafe Baseline. The results show that Cassandra can reduce the
power consumption compared to the Unsafe Baseline by 2.73%. The
reason is that crypto branches avoid accessing and updating the
BPU and access BTU as a smaller and simpler unit (see the reduction
in Instruction Fetch Unit). Our results confirm that Cassandra will
not add power overheads, nevertheless, the benefits might not be
as high when combined with non-crypto workloads. Finally, BTU
has an area overhead of 1.26%.

7.5 Upfront Trace Generation Runtime

We have evaluated the analysis time for each step of the trace gener-
ation procedure (steps A - E in Algorithm 2). We use Intel Pin [43]
for dynamic analysis and gathering raw traces. Branch detection A
is executed once per application and it takes 388 seconds on average.
Steps B - E are executed per branch. The results show that collect-
ing raw traces (step B) takes 14 seconds on average per branch and
𝑘-mers compression (step E) takes only 3 seconds.

8 Discussion

Q1: Does Cassandra handle branches influenced by public

parameters? Constant-time rules mandate all branches to be inde-
pendent of confidential inputs. However, they can depend on public
information. In §4.3, we discussed how to handle branches that their
traces change in different runs (e.g., stream loops in stream ciphers).
In addition, some branches are influenced by public parameters of
the primitive that are specified by standards and underlying algo-
rithms which do not change during execution. Hence, Cassandra
would still generate traces for such branches. However, in some
cases, different recommended modes exist for the same application
(e.g., key sizes of 128, 192, and 256 for AES). One possible solution
for these cases is to generate separate traces for each mode and
embedding all of them in the binary. A status register is set to spec-
ify the mode before execution and when combined with the hint
information it allows accessing the proper traces. An alternative
solution is to generate separate binaries for each mode.

Q2: Who will provide branch traces and when? Traces need
to be re-generated after each compilation only if PCs change. We

https://github.com/proteus-core/prospect/

ISCA ’25, June 21–25, 2025, Tokyo, Japan Ali Hajiabadi and Trevor E. Carlson

believe developers can generate traces for recommended modes
(e.g., AES-128/192/256) and embed hint information in binaries
using our automated tool (§4.3). However, users can also generate
traces for legacy binaries of cryptographic programs they intend to
run on a Cassandra-enabled processor with the same procedure.

Q3: What are the benefits and limitations of Cassandra

only handling single-target branches? As we discussed in §5.2,
many branches in cryptographic programs are single-target (they al-
ways jump to the same target). Cassandra’s branch analysis marks
single-target branches and does not consume the BTU entries for
such branches. A lightweight version of Cassandra, called Cas-
sandra-lite, can only support single-target branches and stall fetch
for multi-target branches until they resolve (i.e., Cassandra-lite
does not need to implement a BTU). Our evaluations show that
Cassandra-lite incurs 2.7%, 6.7%, and 4.7% slowdown over Cassan-
dra in BearSSL, OpenSSL, and PQC programs, respectively. Some
workloads see significant slowdowns (22% for OpenSSL sha256, 8%
for kyber512) since limiting Cassandra to single-target branches
diminishes benefits for conditional branches and returns, where
even BPUs struggle. However, Cassandra ensures equal or better
performance across complex, widely used applications via near-
perfect control-flow (e.g., 14.5% speedup for OpenSSL sha256 over
an Unsafe Baseline using the BPU). While Cassandra-lite performs
better than SPT , it lacks Cassandra’s performance reliability and
improvement and it introduces high overhead for key applications
like OpenSSL sha256 and kyber512.

Q4: How are interrupts handled? In Cassandra, the OS does
not need to store/reload the BTU content during timer interrupts,
however, it will flush the BTU if there is a context switch between
two different crypto applications (note, that the BTU content is not
secret and it is not required to flush it if there is context switch with
a non-crypto application). To assess the upper-bound performance
impact of flushing the BTU , we flush the BTU at the frequency of
250Hz [32]; this reduces the performance improvement of Cassan-
dra from 1.85% to only 1.80%.

Q5: Does the Branch Trace Unit (BTU) introduce a new

timing side channel? BTU only contains and caches the sequential
control flow trace of the program; constant-time principles assume
that this trace is already leaked (e.g., ICache has the same leakage),
and they guarantee it is completely independent from secrets.

9 Related Work

In this section, we summarize prior work that provide protection
for constant-time code against speculative execution attacks. We
categorize these solutions into three classes: (1) hardware-only
defenses, (2) software-level defenses, and (3) hardware/software
co-designed defenses.

(1) Hardware-only defenses. Prior works have investigated
hardware defenses to protect constant-time programs [15, 42]. These
defenses are complex to design as they need to track speculation
taints in all potential microarchitectural components which can also
incur high performance overheads due to limited knowledge about
the running applications and their security policy. Cassandra only
adds a small structure (i.e., BTU), which has better performance
and consumes less power compared to the baseline, with modest
modifications in the microarchitecture.

(2) Software-level defenses. To harden programs on existing
CPUs, compiler passes have been developed that take the specula-
tive execution model of CPUs into account and insert protections
as needed [14, 68, 84]. However, software-level defenses usually
result in prohibitive slowdowns. Serberus [45] is a compiler mitiga-
tion that relies on existing enforcement mechanisms in the CPUs
to mitigate all known speculation primitives. Serberus introduces
a 21% slowdown on average, and a 8% slowdown on large-buffer
benchmarks (8KB buffers). In our evaluation results, a buffer size
of 4KB is used in the synthetic benchmark, and the default buffers
in BearSSL tests (e.g., ChaCha20 uses a 400B buffer) [54].

(3) Hardware/software co-designed defenses. Similar to Cas-
sandra, some prior defenses propose hardware/software modifi-
cations for efficient Spectre defenses [18, 20, 24, 62, 70, 81]. For
example, ProSpeCT [18] manually annotates secrets in the pro-
gram and blocks speculative execution for instructions that process
secrets. We provide a detailed comparison with Cassandra in §7.3.

Profile-guided branch analysis. There have been proposals
to use runtime profiles of applications to eliminate branch mis-
predictions [31, 33, 83]. These techniques mainly target datacen-
ter applications because they have large code footprints and fre-
quent branch mispredictions. For example, Whisper [33] proposes
a profile-guided approach that provides hints per static branch to
help the branch predictor avoid mispredictions. However, the goal
of these works is to build approximately accurate branch histories
for better prediction, but still rely on speculation.

10 Conclusion

In this work, we propose Cassandra, a novel hardware/software
mechanism to enforce sequential execution for constant-time cryp-
tographic programs. To achieve this, we perform upfront branch
analysis to significantly compress sequential branch traces which
allows an efficient communication with the hardware. During exe-
cution, the processor uses the sequential branch traces to determine
fetch directions and to avoid accessing the branch predictor. More-
over, Cassandra can be easily integrated with other mechanisms
for software isolation and guaranteeing secure speculation for sand-
boxed programs. Despite providing a strong security guarantee,
Cassandra counterintuitively improves performance by 1.85%.

Acknowledgments

We thank the anonymous reviewers for their insightful comments,
which contributed to enhancing the final version of this paper. We
also thank Arash Pashrashid and Kaveh Razavi for their valuable
discussions and feedback.

References

[1] Rakesh Agrawal and Ramakrishnan Srikant. 1995. Mining sequential patterns.
In IEEE International Conference on Data Engineering (ICDE).

[2] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Arthur Blot, Benjamin
Grégoire, Vincent Laporte, Tiago Oliveira, Hugo Pacheco, Benedikt Schmidt, and
Pierre-Yves Strub. 2017. Jasmin: High-assurance and high-speed cryptography.
In ACM Conference on Computer and Communications Security (CCS).

[3] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Dupressoir, and
Michael Emmi. 2016. Verifying Constant-Time Implementations. In USENIX

Security Symposium.
[4] Gilles Barthe, Marcel Böhme, Sunjay Cauligi, Chitchanok Chuengsatiansup,

Daniel Genkin, Marco Guarnieri, David Mateos Romero, Peter Schwabe, David

Cassandra: Efficient Enforcement of Sequential Execution for Cryptographic Programs ISCA ’25, June 21–25, 2025, Tokyo, Japan

Wu, and Yuval Yarom. 2024. Testing side-channel security of cryptographic im-
plementations against future microarchitectures. In ACM Conference on Computer

and Communications Security (CCS).
[5] Gilles Barthe, Sunjay Cauligi, Benjamin Grégoire, Adrien Koutsos, Kevin Liao,

Tiago Oliveira, Swarn Priya, Tamara Rezk, and Peter Schwabe. 2021. High-
assurance cryptography in the Spectre era. In IEEE Symposium on Security and

Privacy (SP).
[6] Gary Benson. 1999. Tandem repeats finder: a program to analyze DNA sequences.

Nucleic Acids Research (1999).
[7] Daniel J Bernstein, Tanja Lange, and Peter Schwabe. 2012. The security impact

of a new cryptographic library. In International Conference on Cryptology and

Information Security in Latin America (LATINCRYPT).
[8] Derek Bruening and Saman Amarasinghe. 2004. Efficient, transparent, and

comprehensive runtime code manipulation. Ph.D. Dissertation, Massachusetts

Institute of Technology, Department of Electrical Engineering (2004).
[9] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz Lipp, Marina

Minkin, Daniel Moghimi, Frank Piessens, Michael Schwarz, Berk Sunar, et al.
2019. Fallout: Leaking data on meltdown-resistant CPUs. In ACM Conference on

Computer and Communications Security (CCS).
[10] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin Von Berg,

Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, and Daniel Gruss. 2019. A
systematic evaluation of transient execution attacks and defenses. In USENIX

Security Symposium.
[11] Sunjay Cauligi, Craig Disselkoen, Klaus v Gleissenthall, Dean Tullsen, Deian

Stefan, Tamara Rezk, and Gilles Barthe. 2020. Constant-time foundations for
the new Spectre era. In ACM Conference on Programming Language Design and

Implementation (PLDI).
[12] Sunjay Cauligi, Craig Disselkoen, Daniel Moghimi, Gilles Barthe, and Deian

Stefan. 2022. SoK: Practical Foundations for Software Spectre Defenses. In IEEE

Symposium on Security and Privacy (SP).
[13] Yun Chen, Ali Hajiabadi, and Trevor E Carlson. 2024. GadgetSpinner: A new tran-

sient execution primitive using the Loop Stream Detector. In IEEE International

Symposium on High-Performance Computer Architecture (HPCA).
[14] Rutvik Choudhary, Alan Wang, Zirui Neil Zhao, Adam Morrison, and Christo-

pher W Fletcher. 2023. Declassiflow: A Static Analysis for Modeling Non-
Speculative Knowledge to Relax Speculative Execution Security Measures. In
ACM Conference on Computer and Communications Security (CCS).

[15] Rutvik Choudhary, Jiyong Yu, Christopher Fletcher, and Adam Morrison. 2021.
Speculative Privacy Tracking (SPT): Leaking Information From Speculative Exe-
cution Without Compromising Privacy. In IEEE/ACM International Symposium

on Microarchitecture (MICRO).
[16] curve25519-donna 2008. curve25519-donna. https://code.google.com/archive/p/

curve25519-donna/. Accessed 05-04-2024.
[17] Lesly-Ann Daniel, Sébastien Bardin, and Tamara Rezk. 2021. Hunting the haunter-

efficient relational symbolic execution for Spectre with haunted relse. In Network

and Distributed Systems Security (NDSS).
[18] Lesly-Ann Daniel, Marton Bognar, Job Noorman, Sébastien Bardin, Tamara

Rezk, and Frank Piessens. 2023. ProSpeCT: Provably Secure Speculation for
the Constant-Time Policy. In USENIX Security Symposium.

[19] Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-Ghazaleh, ECE, and Dmitry Pono-
marev. 2018. BranchScope: A new side-channel attack on directional branch
predictor. In ACM International Conference on Architectural Support for Program-

ming Languages and Operating Systems (ASPLOS).
[20] Jacob Fustos, Farzad Farshchi, and Heechul Yun. 2019. SpectreGuard: An efficient

data-centric defense mechanism against Spectre attacks. In ACM/IEEE Design

Automation Conference (DAC).
[21] Marco Guarnieri, Boris Köpf, José F Morales, Jan Reineke, and Andrés Sánchez.

2020. Spectector: Principled detection of speculative information flows. In IEEE

Symposium on Security and Privacy (SP).
[22] Marco Guarnieri, Boris Köpf, Jan Reineke, and Pepe Vila. 2021. Hardware-

software contracts for secure speculation. In IEEE Symposium on Security and

Privacy (SP).
[23] Shengjian Guo, Yueqi Chen, Peng Li, Yueqiang Cheng, Huibo Wang, Meng Wu,

and Zhiqiang Zuo. 2020. SpecuSym: Speculative symbolic execution for cache tim-
ing leak detection. In ACM/IEEE International Conference on Software Engineering

(ICSE).
[24] Ali Hajiabadi, Archit Agarwal, Andreas Diavastos, and Trevor E Carlson. 2024.

Levioso: Efficient Compiler-Informed Secure Speculation. In ACM/IEEE Design

Automation Conference (DAC).
[25] Ali Hajiabadi and Trevor E Carlson. 2024. Conjuring: Leaking Control Flow via

Speculative Fetch Attacks. In ACM/IEEE Design Automation Conference (DAC).
[26] Ali Hajiabadi and Trevor E Carlson. 2025. Cassandra: Efficient Enforcement of

Sequential Execution for Cryprographic Programs (Extended Version). arXiv
preprint arXiv:2406.04290 (2025).

[27] Ali Hajiabadi, Andreas Diavastos, and Trevor E Carlson. 2021. NOREBA: a
compiler-informed non-speculative out-of-order commit processor. In ACM In-

ternational Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS).

[28] Mathé Hertogh, Manuel Wiesinger, Sebastian Österlund, Marius Muench, Na-
dav Amit, Herbert Bos, and Cristiano Giuffrida. 2023. Quarantine: Mitigating
Transient Execution Attacks with Physical Domain Isolation. In International

Symposium on Research in Attacks, Intrusions and Defenses (RAID).
[29] Jann Horn. 2018. speculative execution, variant 4: speculative store bypass.
[30] intel-affected-cpus [n. d.]. Affected Processors: Guidance for Security Issues

on Intel Processors. https://software.intel.com/content/www/us/en/develop/
articles/software-security-guidance/secure-coding/mitigate-timing-side-
channel-crypto-implementation.html. Accessed 20-11-2023.

[31] Daniel A Jiménez, Heather L Hanson, and Calvin Lin. 2001. Boolean formula-
based branch prediction for future technologies. In International Conference on

Parallel Architectures and Compilation Techniques (PACT).
[32] KConfig 2024. Linux Timer Interrupt Frequency Configuration. https:

//github.com/torvalds/linux/blob/5be63fc19fcaa4c236b307420483578a56986a37/
kernel/Kconfig.hz. Accessed 20-08-2024.

[33] Tanvir Ahmed Khan, Muhammed Ugur, Krishnendra Nathella, Dam Sunwoo,
Heiner Litz, Daniel A Jiménez, and Baris Kasikci. 2022. Whisper: Profile-guided
branch misprediction elimination for data center applications. In IEEE/ACM

International Symposium on Microarchitecture (MICRO).
[34] Khaled N Khasawneh, Esmaeil Mohammadian Koruyeh, Chengyu Song, Dmitry

Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. 2019. SafeSpec: Ban-
ishing the spectre of a meltdown with leakage-free speculation. In ACM/IEEE

Design Automation Conference (DAC).
[35] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas,

Mike Hamburg, Moritz Lipp, StefanMangard, Thomas Prescher, Michael Schwarz,
and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Execution. In
IEEE Symposium on Security and Privacy (SP).

[36] Esmaeil Mohammadian Koruyeh, Khaled N. Khasawneh, Chengyu Song, and
Nael Abu-Ghazaleh. 2018. Spectre Returns! Speculation Attacks using the Return
Stack Buffer. In USENIX Workshop on Offensive Technologies (WOOT).

[37] Kyber 2020. Kyber - Cryptographic suite for algebraic lattices. https://pq-crystals.
org/kyber/index.shtml. Accessed 20-08-2024.

[38] Sheng Li, Jung Ho Ahn, Richard D Strong, Jay B Brockman, Dean M Tullsen, and
Norman P Jouppi. 2013. The McPAT framework for multicore and manycore ar-
chitectures: Simultaneously modeling power, area, and timing. ACM Transactions

on Architecture and Code Optimization (TACO) (2013).
[39] Sheng Li, Ke Chen, Jung Ho Ahn, Jay B Brockman, and Norman P Jouppi. 2011.

CACTI-P: Architecture-level modeling for SRAM-based structures with advanced
leakage reduction techniques. In IEEE/ACM International Conference on Computer-

Aided Design (ICCAD).
[40] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,

Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. 2018. Meltdown: Reading Kernel Memory from User
Space. In USENIX Security Symposium.

[41] Lock Elision 2021. Hardware Lock Elision Overview. https://www.intel.
com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-
8/hardware-lock-elision-overview.html. Accessed 23-11-2023.

[42] Kevin Loughlin, Ian Neal, Jiacheng Ma, Elisa Tsai, Ofir Weisse, Satish
Narayanasamy, and Baris Kasikci. 2021. DOLMA: Securing Speculation with the
Principle of Transient Non-Observability. In USENIX Security Symposium.

[43] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:
building customized program analysis tools with dynamic instrumentation. In
ACM Conference on Programming Language Design and Implementation (PLDI).

[44] Guillaume Marçais and Carl Kingsford. 2011. A fast, lock-free approach for
efficient parallel counting of occurrences of k-mers. Bioinformatics (2011).

[45] Nicholas Mosier, Hamed Nemati, John C Mitchell, and Caroline Trippel. 2024.
Serberus: Protecting Cryptographic Code from Spectres at Compile-Time. In IEEE

Symposium on Security and Privacy (SP).
[46] Yoav Nir and Adam Langley. 2018. ChaCha20 and Poly1305 for IETF Protocols.

https://www.rfc-editor.org/rfc/rfc8439.
[47] Oleksii Oleksenko, Bohdan Trach, Mark Silberstein, and Christof Fetzer. 2020.

SpecFuzz: Bringing spectre-type vulnerabilities to the surface. In USENIX Security

Symposium.
[48] OpenSSL 2024. OpenSSL - TLS/SSL and crypto library v3.2.2. https://github.com/

openssl/openssl/tree/openssl-3.2.2. Accessed 20-08-2024.
[49] Shruti Padmanabha, Andrew Lukefahr, Reetuparna Das, and Scott Mahlke. 2017.

Mirage cores: The illusion of many out-of-order cores using in-order hardware.
In IEEE/ACM International Symposium on Microarchitecture (MICRO).

[50] Arash Pashrashid, Ali Hajiabadi, and Trevor E Carlson. 2022. Fast, robust and ac-
curate detection of cache-based spectre attack phases. In IEEE/ACM International

Conference on Computer-Aided Design (ICCAD).
[51] Arash Pashrashid, Ali Hajiabadi, and Trevor E Carlson. 2023. HidFix: Efficient

mitigation of cache-based Spectre attacks through hidden rollbacks. In IEEE/ACM

International Conference on Computer Aided Design (ICCAD).
[52] Emmanuel Pescosta, Georg Weissenbacher, and Florian Zuleger. 2021. Bounded

model checking of speculative non-interference. In IEEE/ACM International Con-

ference On Computer Aided Design (ICCAD).

https://code.google.com/archive/p/curve25519-donna/
https://code.google.com/archive/p/curve25519-donna/
https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/secure-coding/mitigate-timing-side-channel-crypto-implementation.html
https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/secure-coding/mitigate-timing-side-channel-crypto-implementation.html
https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/secure-coding/mitigate-timing-side-channel-crypto-implementation.html
https://github.com/torvalds/linux/blob/5be63fc19fcaa4c236b307420483578a56986a37/kernel/Kconfig.hz
https://github.com/torvalds/linux/blob/5be63fc19fcaa4c236b307420483578a56986a37/kernel/Kconfig.hz
https://github.com/torvalds/linux/blob/5be63fc19fcaa4c236b307420483578a56986a37/kernel/Kconfig.hz
https://pq-crystals.org/kyber/index.shtml
https://pq-crystals.org/kyber/index.shtml
https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-8/hardware-lock-elision-overview.html
https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-8/hardware-lock-elision-overview.html
https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-8/hardware-lock-elision-overview.html
https://www.rfc-editor.org/rfc/rfc8439
https://github.com/openssl/openssl/tree/openssl-3.2.2
https://github.com/openssl/openssl/tree/openssl-3.2.2

ISCA ’25, June 21–25, 2025, Tokyo, Japan Ali Hajiabadi and Trevor E. Carlson

[53] Popping the Hood on Golden Cove 2021. Popping the Hood on Golden Cove.
https://chipsandcheese.com/2021/12/02/popping-the-hood-on-golden-cove/.

[54] Thomas Pornin. 2018. BearSSL - Constant-Time Crypto Library. https://www.
bearssl.org. Accessed 22-11-2023.

[55] Ivan Puddu, Moritz Schneider, Miro Haller, and Srdjan Čapkun. 2021. Frontal
Attack: Leaking Control-Flow in SGX via the CPU Frontend. In USENIX Security

Symposium.
[56] Zhenxiao Qi, Qian Feng, Yueqiang Cheng, Mengjia Yan, Peng Li, Heng Yin, and

Tao Wei. 2021. SpecTaint: Speculative Taint Analysis for Discovering Spectre
Gadgets. In The Network and Distributed System Security Symposium (NDSS).

[57] Charles Reis, AlexanderMoshchuk, and Nasko Oskov. 2019. Site isolation: Process
separation for websites within the browser. In USENIX Security Symposium.

[58] Eric Rotenberg, Steve Bennett, and James E Smith. 1996. Trace cache: a low latency
approach to high bandwidth instruction fetching. In IEEE/ACM International

Symposium on Microarchitecture (MICRO).
[59] Eric Rotenberg, Quinn Jacobson, Yiannakis Sazeides, and Jim Smith. 1997. Trace

processors. In IEEE/ACM International Symposium on Microarchitecture (MICRO).
[60] Gururaj Saileshwar and Moinuddin K Qureshi. 2019. CleanupSpec: An "undo"

approach to safe speculation. In IEEE/ACM International Symposium on Microar-

chitecture (MICRO).
[61] Christos Sakalis, Stefanos Kaxiras, Alberto Ros, Alexandra Jimborean, and Mag-

nus Själander. 2019. Efficient invisible speculative execution through selective
delay and value prediction. In ACM/IEEE International Symposium on Computer

Architecture (ISCA).
[62] Michael Schwarz, Moritz Lipp, Claudio Canella, Robert Schilling, Florian Kargl,

and Daniel Gruss. 2020. ConTExT: A Generic Approach for Mitigating Spectre..
In The Network and Distributed System Security Symposium (NDSS).

[63] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian Stecklina,
Thomas Prescher, andDaniel Gruss. 2019. ZombieLoad: Cross-privilege-boundary
data sampling. In ACM Conference on Computer and Communications Security

(CCS).
[64] Martin Schwarzl, Pietro Borrello, Andreas Kogler, KentonVarda, Thomas Schuster,

Michael Schwarz, and Daniel Gruss. 2022. Robust and scalable process isolation
against Spectre in the cloud. In European Symposium on Research in Computer

Security (ESORICS).
[65] scikit-bio 2014. scikit-bio Python Library. https://scikit.bio/docs/latest/index.html.

Accessed 23-11-2023.
[66] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder. 2002. Au-

tomatically characterizing large scale program behavior. In ACM International

Conference on Architectural Support for Programming Languages and Operating

Systems (ASPLOS).
[67] Basavesh Ammanaghatta Shivakumar, Jack Barnes, Gilles Barthe, Sunjay Cauligi,

Chitchanok Chuengsatiansup, Daniel Genkin, Sioli O’Connell, Peter Schwabe,
Rui Qi Sim, and Yuval Yarom. 2023. Spectre declassified: Reading from the right
place at the wrong time. In IEEE Symposium on Security and Privacy (SP).

[68] Basavesh Ammanaghatta Shivakumar, Gilles Barthe, Benjamin Grégoire, Vincent
Laporte, Tiago Oliveira, Swarn Priya, Peter Schwabe, and Lucas Tabary-Maujean.
2023. Typing High-Speed Cryptography against Spectre v1. In IEEE Symposium

on Security and Privacy (SP).
[69] SPHINCS+ 2020. SPHINCS+ - Stateless hash-based signatures. https://sphincs.

org/. Accessed 20-08-2024.
[70] Mohammadkazem Taram, Ashish Venkat, and Dean Tullsen. 2019. Context-

sensitive fencing: Securing speculative execution via microcode customization.
In ACM International Conference on Architectural Support for Programming Lan-

guages and Operating Systems (ASPLOS).
[71] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank

Piessens, Mark Silberstein, Thomas F Wenisch, Yuval Yarom, and Raoul Strackx.
2018. Foreshadow: Extracting the keys to the Intel SGX kingdom with transient
out-of-order execution. In USENIX Security Symposium.

[72] Stephan Van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro Frigo, Giorgi
Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2019. RIDL:
Rogue in-flight data load. In IEEE Symposium on Security and Privacy (SP).

[73] Marco Vassena, Craig Disselkoen, Klaus von Gleissenthall, Sunjay Cauligi,
Rami Gökhan Kıcı, Ranjit Jhala, Dean Tullsen, and Deian Stefan. 2021. Au-
tomatically eliminating speculative leaks from cryptographic code with blade.
ACM Symposium on Principles of Programming Languages (POPL) (2021).

[74] Guanhua Wang, Sudipta Chattopadhyay, Arnab Kumar Biswas, Tulika Mitra,
and Abhik Roychoudhury. 2020. KLEESpectre: Detecting information leakage
through speculative cache attacks via symbolic execution. ACM Transactions on

Software Engineering and Methodology (TOSEM) (2020).
[75] Guanhua Wang, Sudipta Chattopadhyay, Ivan Gotovchits, Tulika Mitra, and

Abhik Roychoudhury. 2019. oo7: Low-overhead defense against spectre attacks
via program analysis. IEEE Transactions on Software Engineering (2019).

[76] Ofir Weisse, Ian Neal, Kevin Loughlin, Thomas F Wenisch, and Baris Kasikci.
2019. NDA: Preventing speculative execution attacks at their source. In IEEE/ACM
International Symposium on Microarchitecture (MICRO).

[77] Johannes Wikner and Kaveh Razavi. 2022. RETBLEED: Arbitrary Speculative
Code Execution with Return Instructions. In USENIX Security Symposium.

[78] Meng Wu and Chao Wang. 2019. Abstract interpretation under speculative exe-
cution. In ACM Conference on Programming Language Design and Implementation

(PLDI).
[79] Mengjia Yan, Jiho Choi, Dimitrios Skarlatos, Adam Morrison, Christopher

Fletcher, and Josep Torrellas. 2018. InvisiSpec: Making speculative execution
invisible in the cache hierarchy. In IEEE/ACM International Symposium on Mi-

croarchitecture (MICRO).
[80] Hosein Yavarzadeh, Archit Agarwal, Max Christman, Christina Garman, Daniel

Genkin, Andrew Kwong, Daniel Moghimi, Deian Stefan, Kazem Taram, and Dean
Tullsen. 2024. Pathfinder: High-Resolution Control-Flow Attacks Exploiting the
Conditional Branch Predictor. In ACM International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS).
[81] Jiyong Yu, Lucas Hsiung, Mohamad El’Hajj, and Christopher W Fletcher. 2019.

Data Oblivious ISA Extensions for Side Channel-Resistant and High Performance
Computing. In The Network and Distributed System Security Symposium (NDSS).

[82] Jiyong Yu, Mengjia Yan, Artem Khyzha, Adam Morrison, Josep Torrellas, and
Christopher W Fletcher. 2019. Speculative taint tracking (STT) a comprehensive
protection for speculatively accessed data. In IEEE/ACM International Symposium

on Microarchitecture (MICRO).
[83] Siavash Zangeneh, Stephen Pruett, Sangkug Lym, and Yale N Patt. 2020. Branch-

Net: A convolutional neural network to predict hard-to-predict branches. In
IEEE/ACM International Symposium on Microarchitecture (MICRO).

[84] Zhiyuan Zhang, Gilles Barthe, Chitchanok Chuengsatiansup, Peter Schwabe, and
Yuval Yarom. 2023. Ultimate SLH: Taking Speculative Load Hardening to the
Next Level. In USENIX Security Symposium.

[85] Zirui Neil Zhao, Houxiang Ji, Mengjia Yan, Jiyong Yu, Christopher W Fletcher,
Adam Morrison, Darko Marinov, and Josep Torrellas. 2020. Speculation invari-
ance (InvarSpec): Faster safe execution through program analysis. In IEEE/ACM

International Symposium on Microarchitecture (MICRO).
[86] Jean-Karim Zinzindohoué, Karthikeyan Bhargavan, Jonathan Protzenko, and

Benjamin Beurdouche. 2017. HACL*: A verified modern cryptographic library.
In ACM Conference on Computer and Communications Security (CCS).

https://chipsandcheese.com/2021/12/02/popping-the-hood-on-golden-cove/
https://www.bearssl.org
https://www.bearssl.org
https://scikit.bio/docs/latest/index.html
https://sphincs.org/
https://sphincs.org/

	Abstract
	1 Introduction
	2 Background
	2.1 Constant-Time Programming
	2.2 Speculation Primitives
	2.3 Evolution of Hardware Defenses for Spectre

	3 Threat Model
	4 Branch Analysis of Constant-Time Cryptographic Programs
	4.1 Key Insights
	4.2 Detailed Branch Analysis
	4.3 Automatic Trace Generation Procedure

	5 Design of Cassandra
	5.1 Overview
	5.2 Trace Representation and Communication
	5.3 Details of the Microarchitecture

	6 Security Analysis
	6.1 Preliminaries
	6.2 Security Analysis of Cassandra

	7 Evaluation
	7.1 Experimental Setup
	7.2 Cryptographic Benchmarks Performance
	7.3 Synthetic Benchmarks Performance
	7.4 Power and Area Impacts
	7.5 Upfront Trace Generation Runtime

	8 Discussion
	9 Related Work
	10 Conclusion
	Acknowledgments
	References

