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Abstract

Single-core performance remains crucial for mitigating the serial
bottleneck in applications, according to Amdahl’s Law. However,
hard-to-predict branches pose significant challenges to achieve high
Instruction-Level Parallelism (ILP) due to frequent pipeline flushes.
In typical processors, when a branch is mispredicted, subsequent in-
structions are indiscriminately flushed, including potentially useful
instructions that will be invariably executed in the future, known
as Control-Independent (CI) instructions. While existing CI pro-
posals are effective at leveraging idiomatic control flow structures,
these techniques overlook more general reconvergence scenarios.
Our analysis reveals that due to the program’s dynamic execution
behavior, the redirected instruction stream can reconverge with not
only the last squashed stream, but also several preceding streams.
On average, 10% (and up to 31%) of reconvergence opportunities
are overlooked if we only consider the interactions between the
last squashed instruction stream and the current one.

In this paper, we introduce Multi-Stream Squash Reuse, which
discovers execution reuse opportunities from several previously
squashed streams. We use tagged rename mapping to enable pair-
wise comparisons between any two program execution states to
identify data reuse. Our proposal achieves average improvements
in IPC of 2.2% (SPECint2006), 0.8% (SPECint2017) and 2.4% (GAP)
and maximum gains of 8.9% (astar), 6.1% (bc) and 4.0% (cc) from
SPECint2006 and GAP benchmark suites.
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1 Introduction

Instruction-Level Parallelism (ILP) measures a processor’s ability
to execute multiple instructions simultaneously and make forward
progress quickly. To ensure the processor backend is fully utilized,
the Instruction Fetch Unit (IFU) must accurately predict the dy-
namic instruction stream well ahead of branch resolution, which
typically occurs tens of cycles later. Therefore, tens to hundreds of
instructions may enter the backend before branch resolution deter-
mines a misprediction. Branch prediction quality is crucial to ensure
high pipeline utilization. However, branches whose outcomes are
not dependent on program control history but are determined by
data in memory are known to be hard-to-predict (H2P) by modern
branch predictors [13, 16]. This can be challenging for branches
whose outcomes are dynamically generated by the program, as they
can be inherently random and difficult to predict with high accu-
racy. As the instruction windows of modern out-of-order processors
grow deeper, H2P branches pose a significant bottleneck for design
scaling. The inability of the IFU to predict long and accurate instruc-
tion streams can cause a significant fraction of execution cycles to
be wasted on instructions that are ultimately squashed [29].

Control-Independent (CI) processors [1, 4, 5, 7, 8, 11, 15, 17, 19,
20, 23, 24, 30] complement speculative instruction fetch by mitigat-
ing branch misprediction penalties, focusing on avoiding redun-
dant re-execution of useful work completed along the squashed
path. These solutions leverage the observation that programs often
branch into divergent paths and later reconverge to a common
path [22]. Instructions lying on the reconverged path are known
as Control-Independent instructions, which will be invariably exe-
cuted regardless of the outcome of the diverging branch and may
contain useful execution results. Existing CI techniques generally
adopt one of two strategies: selective flushing, which preserves CI
instructions in the pipeline and re-dispatches or repairs incorrectly
executed ones; or squash reuse, which reuses useful execution re-
sults from the mispredicted path to the correct path. However, these
approaches tend to focus on idiomatic reconvergence like if-else
and if-then-else structures and do not adequately address more gen-
eral forms of reconvergence where the current fetch stream may
reconverge with not only the last mispredicted stream, but also any
previously mispredicted streams.

In this paper, we propose Multi-Stream Squash Reuse, an effi-
cient mechanism that simultaneously tracks multiple past squashed
streams and performs squash reuse—low-cost reuse of execution
results from the wrong path to the correct path. To identify data
dependencies, we introduce Rename Mapping Generation, which
assigns a version ID to each architectural-to-physical register map-
ping, which we call RGIDs, to track register integrity on all execu-
tion paths. Additionally, we propose hardware extensions to the
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Fetch and Rename stage to perform reconvergence detection, reuse
tests and memory violation checking mechanisms. We list the main
contributions of the work below.

e We introduce Multi-Stream Squash Reuse, a general reconver-
gence detection and reuse scheme to allow reconvergence
between non-neighboring streams.

e We highlight the challenges in existing proposals to sup-
port multi-stream reconvergence and provide quantitative
comparisons with previous approaches.

e We propose our novel Rename Mapping Generation mecha-
nism to check data dependencies and perform data reuse.

o We demonstrate the design advantages of our approach by
comparing it with other squash reuse schemes.

e We evaluate the performance of our work using the gem5
simulator and assess hardware complexities by running phys-
ical synthesis on critical logic components.

The remainder of this paper is organized as follows. Section 2
provides an overview of Control-Independent (CI) architectures,
analyzes the limitations of existing CI proposals and highlights
how our solution addresses these challenges. Section 3 presents our
microarchitectural extensions to the Fetch and Rename stages, dis-
cusses the mechanisms required to detect both register and memory
dependency violations, and provides detailed design comparisons
with previous work on squash reuse [5, 24, 30], highlighting the
novelties and advantages of our approach. Section 4 describes our
evaluation methodology and performance results, along with area,
timing and power estimations for two critical logic components.
We show average improvements in IPC of 2.2%, 0.8% and 2.4% on
SPECint2006, SPECint2017 and GAP benchmarks and maximum
gains of 8.9%, 6.1% and 4.0% on astar from SPECint2006, bc and cc
from GAP, respectively.

2 Motivation

In this section, we first provide an overview of Control-Independent
(CI) architectures, discussing their benefits and limitations. Next, we
motivate the multi-stream reconvergence using a microbenchmark
and compare our solution with existing techniques.

2.1

In a program’s control flow structure, a reconvergence point is the
first instruction where all paths from a branch eventually merge,
also referred to as the post-dominator with respect to that branch [9].
Instructions after the reconvergence point are executed regardless
of the branch outcome, forming what is known as the Control Inde-
pendent (CI) region. Conversely, instructions before the reconver-
gence point form the Control Dependent (CD) region. If instructions
in the CI regions are also Data Independent (DI)—i.e., their source
registers are not modified in the CD regions—they become candi-
dates for reuse, known as CIDI instructions.

Previous work has shown that a large fraction of hard-to-predict
(H2P) branches reconverge within 64 instructions [6, 20]. As a result,
CI architectures [1, 4, 11, 14, 20, 31] have been proposed to capture
control independence by identifying CIDI instructions and applying
various optimizations, which can generally be classified into two
categories: selective flushing and squash reuse. The former architec-
ture aims to avoid unnecessary re-fetching and re-execution, by
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holding CI instructions in the instruction window, while the latter
one flushes all instructions on the wrong path but saves execution
bandwidth by reusing valid results from the wrong-path execution
to the correct one during re-fetching. We pursue the latter class of
optimization, squash reuse, for efficiency and reduced complexity.

One of the first works, Dynamic Instruction Reuse [30] pro-
posed three schemes to identify squash reuse by operand values,
architectural register names and dependence chains. Register In-
tegration [24] identifies squash reuse by physical register names
and a purposeful mapping mechanism to the last data reference,
called integration. However, these solutions store reuse information
in tables, which comes with limitations including table conflicts
and serialized accesses. Dynamic Control Independence [5] em-
ploys a dual-ROB design to track squashed instructions. However,
only a single squashed stream can be tracked simultaneously and
incurs overhead from fully associative PC matching to identify
reconvergence.

2.2 Multi-Stream Reconvergence

// hash: A hash function generating pseuso-random number
2 // calcl, calc2: Compute-intensive function calls
int arr[SIZE], to, t1, t2;
for (i = @ ; i < SIZE; i++) {
int data2 = hash(i);
int datal = hash(data2);
Bri:
if (datal & ox1) {
Br2:

if (data2 & ox2) {
data2 = calcl(data2);

3
M1:
datal = calcl(datal);
}
M2:
// Potential CIDI operations
t0 = calc2(i);
t1 = calc2(datal);
t2 = calc2(data2);
arr[i] = to + t1 + t2;

2}

Listing 1: Program illustrating multiple squashed streams.

In this section, we use an example microbenchmark to highlight
the benefits of tracking multiple squashed instruction streams and
demonstrate the advantages of our approach over two prior works
on squash reuse: Register Integration [24] (table-based reuse) and
Dynamic Control Independence [5] (queue-based reuse).

2.2.1 Control-Independent Data-Independent (CIDI) Operations.
We use a code example shown in Listing 1 to demonstrate CIDI
operations. Code label M2 is a reconvergence point with respect
to Br1, as both the taken and not-taken paths of Br1 lead to the
execution of code beyond M2. However, not every instruction after
M2 that has been executed on the squashed path can be safely
reused. For example, data1 is modified along the taken path of Br1.
Therefore, the computation of the temporary variable t1, which
takes data1l as input, becomes Data-Dependent (DD) on the branch
outcome of Br1, and its result cannot be reused. In contrast, the
result of t@ can be readily reused, as its computation depends solely
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Figure 1: Illustration of Multi-stream reconvergence with
respect to Listing 1. (a) software-induced multi-stream. (b)
hardware-induced multi-stream.

on the loop iteration variable i, which is Data-Independent (i.e.,
not modified in the branch body of Br1).

In addition, t2 also presents an opportunity for reuse. When
the outer branch Br1 is mispredicted but the inner branch Br2
is correctly predicted and evaluates to be not-taken, the body of
Br2 does not appear on the dynamic execution stream, and data2
remains unmodified within the scope of Br1. In other words, al-
though data?2 is statically CIDD since it is potentially modified
within the body of Br1, it can be dynamically CIDI under specific
execution paths, hence enabling reuse. In general, the presence of
CIDI instructions allows for partial reuse of computation executed
on the wrong path, such as the computation for arr[i], where
intermediate results t@ and t2 may be reused.

2.2.2  Multi-Stream Reconvergence Demonstration. We classify two
distinct types of multi-stream reconvergence: software-induced and
hardware-induced. Listing 1 illustrates a nested branch structure,
consisting of an outer branch Br1 and an inner branch Br2. The
inputs to Br1 and Br2 are datal and data2, respectively—pseudo-
random values generated using a hash function. As a result, both
Br1 and Br2 are expected to be frequently mispredicted.

Figure 1(a) illustrates software-induced multi-stream reconver-
gence. Initially, Br1 is mispredicted, followed by the misprediction
of Br2. This sequence of misprediction events results in two distinct
squashed streams, S1 and S2, where S1 has fetched and executed
code beyond label M2, while S2 has fetched and executed beyond
label M1. Subsequently, the corrected path of Br2, denoted as C1,
can reconverge onto S2 at M1, the immediate post-dominator of
Br2. However, an additional opportunity for squash reuse arises
from S1, the more distant misprediction. By recording only the last
squashed stream, previous works will miss the second reconver-
gence point, resulting in suboptimal reuse. Crucially, the potential
for reuse from multiple squashed streams depends on the control
flow structure, which we refer to as software-induced multi-stream
reconvergence.

Moreover, multi-stream squash reuse can also occur due to the
dynamic execution behavior seen by the hardware. In modern su-
perscalar processors, while branch prediction in the frontend is
performed in order, branch resolution in the backend can occur
out of order. To demonstrate out-of-order branch resolution, con-
sider the same code example in Listing 1. We construct a scenario
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Figure 2: Overhead of maintaining poison vectors. The com-
plete poison vector for path Br2-Br3-M3 must be partially
obtained from stream S2 and S3.

where Br2 is resolved faster than Br1 in the processor backend
by making datal dependent on data2 (as shown on line 5 of List-
ing 1). When the result of data2 becomes available, the backend
can execute Br2 and determine its direction, while datal is still
being processed, preventing Br1 from executing. Consequently, a
younger, spurious branch misprediction on Br2 may occur before
an older, encompassing branch misprediction on Br1.

Figure 1(b) illustrates the outcome of out-of-order branch reso-
lution. The spurious misprediction of Br2 produces the squashed
stream S3, while the overriding misprediction of Br1 generates the
squashed stream S4 and the corrected stream C2. As C2 is fetched, it
can reconverge with either S3 or S4, depending on which squashed
stream has already executed past M2, the post-dominator of Br1. If
only the most recent squashed stream, S4, is considered, reuse op-
portunities are lost when S3 has already reached M2 but S4 has not.
Since this scenario results from the processor’s dynamic execution
behavior, we classify this type of multi-stream reconvergence as
hardware-induced.

2.2.3 Comparison with Previous Work. We compare our work with
two existing techniques, Register Integration (RI) [24] and Dynamic
Control Independence (DCI) [5], as discussed in Section 2.1. RI uti-
lizes a table-based approach to store squashed instructions, indexing
and tagging them by instruction PC. However, a low-associativity
table leads to conflicts, while high associativity quadratically in-
creases reuse comparisons, making it timing-infeasible—a challenge
identified in the original paper. The problem of table conflicts is
compounded by the natural clustering of instruction footprints, as
code blocks tend to occupy contiguous memory regions. When two
code blocks have overlapping indexes, conflicts can extend across
multiple sets, causing widespread replacements. We present the
impact of table conflicts in Section 2.2.4.

On the other hand, earlier works like DCI employ a queue-based
approach (dual-ROB) to store squashed instructions. However, this
approach is limited to a single squashed stream, making it less
effective in complex control flows that require tracking multiple
squashed streams to identify reconvergence and reuse opportunities.
Tracking multiple squashed streams by means of poison vectors
introduces additional challenges in managing data dependencies,
and solving this problem by creating additional ROB replicas is
not a scalable solution. Specifically, the poison vector marks reg-
isters updated within control-dependent regions, allowing only
control-independent instructions whose source registers remain
unpoisoned to be reused. For example, in Figure 2, to enable the
corrected stream at point H to reconverge at M1, registers along
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Nested-Mispred Linear-Mispred
Multi-Stream | Register Multi-Stream | Register
Squash Reuse | Integration || Squash Reuse | Integration
Single Stream / Way 2.4% -0.1% 6.5% 1.7%
Two Streams / Ways 14.3% 1.9% 16.7% 6.2%
Four Streams / Ways 23.4% 17.9% 19.7% 16.4%

Table 1: Runtime performance improvements of two microbenchmark variations on Multi-Stream Squash Reuse and Register
Integration over baseline with no squash reuse. Multi-Stream Squash Reuse enabled for 1, 2, and 4 squashed streams. Register

Integration enabled for associativity of 1, 2 and 4 ways.

both the Br1-M1 path and the Br1-Br2-H path must be poisoned.
The challenge compounds when H attempts to reconverge at M2 and
M3, requiring additional poison vectors for paths Br2-Br3-M2 and
Br2-Br3-M3. Notably, for the last poison vector, register updates
must be obtained partially from squashed stream S2 and the re-
mainder from squashed stream S3, necessitating inspection across
multiple streams. Essentially, to ensure correct poisoning of all
registers between any two diverging paths, poison vectors must
be maintained not only for the diverging paths themselves, but
also for the segments between neighboring branches. In the single-
stream squash reuse case, there is only one branch, eliminating the
need to distinguish segments within a squashed stream. In contrast,
multi-stream squash reuse involves 2N segments! for N squashed
streams, significantly increasing complexity and control overhead.
On the other hand, the complexity of our method remains inde-
pendent of the number of squashed streams, as we will detail in
Section 3.

2.24 Quantitative Studies. To quantitatively evaluate the benefits
of multi-stream squash reuse, we execute two variations of a mi-
crobenchmark derived from Listing 1. In the first variation, Br1
depends on datal and Br2 depends on data2. As explained in Sec-
tion 2.2.2, datal becomes available sooner than data2 due to data
dependencies. Consequently, Br2 triggers a branch misprediction
event before Br1, creating a nested misprediction. We refer to this
variation as nested-mispred. In the second variation, we swap line 8
and line 10 in Listing 1, modifying the dependencies so that Br1 and
Br2 depend on data2 and datal, respectively. In this case, branch
mispredictions on Br1 and Br2 occur in order. We call the second
variation linear-mispred.

To evaluate the performance benefits of tracking multiple past
squashed streams, we run both microbenchmark variations on our
proposed hardware solution and our implementation of Register
Integration (RI). For our approach, we vary the search depth from
one to four past squashed streams, each containing up to 64 in-
structions, to determine reconvergence and enable squash reuse.
The detailed design and architecture of our proposed solution are
presented in Section 3. For RI, we use a reuse table with 64 sets
and vary set associativity across one-way, two-way and four-way
configurations, aligning the total number of reuse entries with our
work.

As shown in table 1, both microbenchmarks demonstrate perfor-
mance gains beyond a single squashed stream, ranging from 2.4% to
14.3% for nested-mispred and 6.5% to 16.7% for linear-mispred. This

1Br‘1-M1, Br1-Br2, Br2-H, Br2-Br3, Br3-M2, Br3-M3 in Figure 2

suggests that a significant portion of squash reuse opportunities
arises from non-neighboring squashed streams, highlighting an ad-
vantage over Dynamic Control Independence (DCI), which tracks
only a single squashed stream. Notably, nested-mispred exhibits
smaller gains when reusing a single squashed stream compared to
linear-mispred, indicating that a larger fraction of reuse occurs with
more distant streams. This aligns with the fact that nested-mispred
experiences more hardware-induced out-of-order branch resolu-
tions, whereas linear-mispred predominantly resolves branches
in order. As a result, nested-mispred requires tracking more past
streams to accommodate its nesting behavior, potentially across
multiple loop iterations. Consequently, as the number of enabled
squash streams increases from two to four, performance gains for
nested-mispred improve further, reaching 23.4%.

Comparing our work with Register Integration (RI), we observe
that RI achieves a speedup only at a higher associativity level (four
way) for both microbenchmarks. Figure 3 presents the reuse table
replacement frequencies, showing that low associativity results
in frequent replacements, reducing opportunities for instruction
reuse. At four-way associativity, fewer replacements occur, leading
to speedups of 17.9% and 16.4% for the two benchmarks, respectively.
However, our approach still outperforms R], as it eliminates table
conflicts and leverages reconvergence information to index into
queue structures that store squashed instructions.

Nested-Mispred
2ways

Linear-Mispred

1way | 2ways

1way 4 ways 4 ways

==— EBE—

Figure 3: Replacement frequency in the RI table. Light shad-
ing indicates low replacement, dark shading indicates high
replacement.

2.2.5 Profiling Multi-Stream Reconvergence on Larger Benchmarks.
We profile selected benchmarks from SPECint2006, 2017 and GAP
to categorize different reconvergence types. We identify software-
induced reconvergence as merging onto the squashed path of an
elder branch, and hardware-induced reconvergence as merging onto
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Figure 4: Breakdown of reconvergence types. A significant
portion of reconvergence occurs between non-neighboring
squashed streams.

the squashed path of a younger branch. When merging occurs onto
the squashed path of its own diverging branch, we refer to it as
simple reconvergence. As shown in Figure 4, most GAP benchmarks
exhibit simple reconvergence. However, several SPECint2006 and
SPECint2017 benchmarks with high branch misprediction rates
show that a significant portion of reconverging instructions require
the processor to track at least two or more squashed streams in
order to perform reconvergence, as indicated by the combined
fractions of software-induced and hardware-induced multi-stream
reconvergence, ranging from 15% (mcf) to 43% (omnetpp).

3 Design

In this section, we present the design of our multi-stream squash
reuse mechanism. We first explain Rename Mapping Generation ID
(RGID), the central component that enables multi-stream squash
reuse. Next, we use a walkthrough example to illustrate the process
of instruction reuse with RGIDs. Then we introduce the core ar-
chitecture and the hardware extensions implemented at the Fetch
and Rename stages to enable reconvergence detection and squash
reuse. After that, we detail key logic components responsible for
reconvergence detection and squash reuse. Finally, we address the
limitations of previous work, highlighting the advantages of our
approach.

3.1 Rename Mapping Generation ID

In conventional out-of-order processors, the register renaming al-
gorithm assumes an in-order instruction stream arrival. Therefore,
true dependencies can be resolved by examining if a younger in-
struction’s source registers are referenced by any elder instructions’
destination registers. However, as we revisit squashed streams that
contain instructions that are yet to be executed but have been
renamed in the past, identifying and maintaining correct data de-
pendencies is critical to ensuring correct functionality.

We address this challenge by tagging every new mapping with
a unique Rename Mapping Generating ID (RGID). For each archi-
tectural register, we maintain a global counter that tracks the next
RGID, incrementing it whenever the register is renamed. During re-
convergence, the RGIDs of all source registers in the newly fetched
instruction are compared with those of its squashed counterpart
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in the squashed stream. If all RGIDs match, it confirms that the
source register values in the current execution state are identical
to those from the squashed instruction’s previous execution. To
ensure that the execution result stored in the destination physical
register remains intact, we delay freeing physical registers for exe-
cuted instructions until we are certain that the instruction will not
be reused?. Therefore, we can directly map the new instruction’s
destination register to the last physical register it was mapped to
and set the instruction as completed immediately in the rename
stage. In this scenario, it is not required to allocate a new RGID, but
the RGID of the squashed instruction is forwarded to the reusing
instruction, allowing subsequent instructions to observe updated
RGIDs for that architectural register and perform the reuse test
correctly. We show an efficient implementation of the reuse test
logic in Section 3.5.

To keep track of the latest RGIDs associated with each archi-
tectural register and to support recovery, RGIDs are updated to-
gether with the register alias table (RAT)—a structure that maintains
the most updated architectural-to-physical register mapping. RAT
checkpoints are taken at regular intervals to prepare for pipeline
recovery. When a pipeline flush occurs, we use a combination of
checkpoint restoration and rollbacks from squashed instructions in
ROB to recover the precise register mapping and RGID states.

Note that the global RGID counters are not checkpointed nor
recovered, as these counters do not represent execution states, but
serve the purpose of uniquely identifying mappings, both on the
correct path and the wrong path.

In addition to register dependency violations, data violations can
also manifest as memory order violations. To allow the reuse of load
instructions, additional memory hazard tests must be performed.
The detailed hardware extensions implementing this check are
discussed in Section 3.8. In addition, store instructions do not update
the register file or have register consumers, but their execution is
crucial for detecting read-after-write violations. Therefore, we do
not attempt reuse for store instructions.

3.2 Walkthrough

In this section, we use a walkthrough example to demonstrate
our solution. Refer to the code snippet on the left side of Figure 5.
Assume that instruction I1 is a hard-to-predict (H2P) branch that
is taken when register t@ equals zero. The taken path of I1 jumps
to I5 (the if condition) while the not-taken path falls through to
12 (the else condition) and then jumps to I7. Instructions I7 to I9
form the reconvergence path, which is a CI region with respect to
the branch at I1.

The second (middle) and third (right) tables in Figure 5 show
the dynamic events generated during the execution of this snippet
and the corresponding RAT/RGID updates, respectively. The RGID
is updated whenever a corresponding architectural register is re-
named. However, as we will demonstrate later, the RGID update
policy differs between instructions reused from past executions and
those newly renamed to physical registers from the Free List.

When branch instruction I1 is encountered by the IFU the first
time, it is predicted to be taken and jumps to I5. When I5 is re-
named, the destination register a2 is mapped to physical register

2The detailed policies for freeing physical registers are discussed in Section 3.3.
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RAT with RGID
- - State Label al a2
PC label Code Snippet PC label Dynamic Insn Event pn RGID pn RGID
I1 j I5 if t0== I1 j I5 if t0== I1 predicttakento I5 s1 p11 0 p22 0
12 a2 = a2 >»> 1 15 a2 = a2 >> 2 rename s2 pi1 0 p22->p32 021
I3 a2 = a2 + 1 16 a2 = a2 -1 rename s3 pii 0 p32-2p42 122
I4 j 17 17 al = al + 1 rename sS4 3p11-)p21 021 p42 2
I5 a2 = a2 >> 2 I8 al = al > 1 rename S5 p21-2p31 132 p42 2
16 a2 = a2 -1 I9 a2 = a2 >»> 1 rename S6 p31 2 p42->p52 23
_ I1 mispredicts, s7

7 =S al +1 redirectto I2 (Restore s1) i g he 9
18 al = al > 1 12 a2 = a2 >»> 1 rename S8 pi1 0 p22->p62 024
I9 a2 = a2 >»> 1 13 a2 = a2 + 1 rename s9 pii 0 p622p72 4935
I4 j 17 unconditonal jump s10 piil 0 p72 5

17 al = al +1 reuse dst reg S11 pi1-2p21 021 p72 5

I8 al = al > 1 reuse dst reg s12 p21-2p31 132 p72 5

I9 a2 = a2 >»> 1 rename S13 p31 2 p72->p82 5-36

Figure 5: If-then-else example demonstrating RGID mechanisms. Left: Code snippet of the if-then-else example. Middle:
Dynamic event trace executed by the processor. Right: RAT and RGID updates for each corresponding step in the middle table.

p32 at @, and its RGID is updated from 0 to 1. Subsequent spec-
ulative instructions I6 to I9 are renamed at @ through @, each
receiving a new physical register and a new RGID. These RGIDs are
obtained from a global array of RGID registers that track the next
available RGID for each architectural register. Later, when a branch
misprediction on I1 is triggered after the latent register result t@
is resolved, the processor is redirected to I2. At this point, the RAT
and RGIDs are restored to state S1 (labeled in the first column of
the right-hand table).

As the first instruction after branch misprediction, 12, reaches
the Rename stage, no reusable instruction is available since the new
instruction stream has not reconverged. Therefore, a new RGID
is assigned at @. Specifically, RGID 4 is obtained by incrementing
the global RGID register which was previously at 3 for register a2
at state S6. The global RGID is not incremented from the current
value at state S8 in the RAT, as doing so would cause aliasing with
S2. @ performs the same RGID assignment policy as € to @.

When instruction I7 is fetched again, a reconvergence point is
detected. The Rename stage compares the instructions renamed on
the squashed path (from state S4 to S6) with those on the recon-
verged path to identify squash reuse opportunities. At €, the RGIDs
of source register al are compared between states S4 and S11. Since
both values are 0, this indicates that a1 has not been modified since
its last execution and its data remains valid. Therefore, its previous
mapping to p21 can be reused, and the RGID is updated from 0
to 1 to match S4. No new RGID assignment is required since the
mapping at S11 and S4 is identical. Similarly, at @), the RGID of a1
at state S5 and S12 are both 1, allowing reuse of its mapping to p31.

Finally, we illustrate a case at @ where a data violation is de-
tected, requiring instruction re-execution. When comparing the
RGIDs of source register a2 of instruction I9 between state S6 and
$13, a mismatch is identified (2 vs 5), indicating that the value of a2
has changed. Consequently, the source operand at S13 is stale, and
the instruction must be re-executed. Semantically, because instruc-
tion I9 depends on I3 which is in the Control Dependent region,
19 must be re-executed.

3.3 Overall Architecture

To implement our solution for multi-stream squash reuse in hard-
ware, we add new microarchitectural components to the Fetch and

Rename stage. We add pipelined reconvergence detection logic in
the Instruction Fetch Unit (IFU) to compare the instruction streams
between the currently fetching one and the one that was previ-
ously squashed. We also extend the Rename stage to test for data
integrity and perform squash reuse. No other significant changes
are required for the rest of the processor.

3.3.1 Extensions to the Fetch Stage. During normal pipeline oper-
ations (refer to Figure 6), the IFU predicts the instruction stream
at basic block granularity, such as one described in a previous
work [21]. Each prediction block fetches a continuous block of in-
structions defined by a start pc and an end pc, where the end pc
is always a control flow instruction with a taken branch or the
instruction that reaches the 32-byte fetch limit. We assume an IFU
design with an overriding predictor scheme such as the one de-
scribed in XiangShan [33]. The Fetch Target Queue (FTQ) is an IFU
structure that stores the prediction blocks and deallocates one once
all branches within the block are either retired or squashed. These
retired, non-speculative branches are used to train the branch pre-
dictor. We extend the functionality of the FTQ to include two new
interfaces: (1) dumping squashed prediction blocks upon branch
misprediction and (2) detecting an overlap between an active block
and the squashed blocks to identify a reconvergence point.

When the Branch Resolution Unit (BRU) detects a branch mis-
prediction during the execution stage in the processor backend, all
instructions following the mispredicted branch are immediately
squashed. However, instead of invalidating these younger FTQ en-
tries after the mispredicted branch, we move these entries into
Wrong-Path Buffers (WPBs). This two-dimensional buffer is respon-
sible for tracking the program’s wrong path that was previously
sent to the processor backend and used to compare with the cor-
rected stream to identify the reconvergence point. Each squashed
stream occupies one WPB and a round-robin replacement policy
is used to select the next WPB for writing. Further analysis on
choosing the optimal buffer size is presented in Section 4.

The IFU continues to monitor the new instruction stream as long
as at least one WPB contains valid entries and a reconvergence
point has not yet been identified. We use Left Aligner and Right
Aligner logic to detect range overlaps between the new prediction
block and any one of the past prediction blocks in the WPB. Detailed
explanations on the aligner logic and reconvergence point detection
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Figure 6: Overall architectural extensions (shown below the dashed lines) introduced in the Fetch and Rename stages for
reconvergence detection and reuse test. NLP: Next-Line Predictor. BPU: Branch Prediction Unit. RAT: Register Alias Table.

are presented in Section 3.4. Once a reconvergence point is identi-
fied, the IFU computes the offset of the reconvergent instruction
from the start of the squashed stream (one after the mispredicted
branch). This offset is communicated to the Rename stage to locate
the first instruction to perform the reuse test. Subsequently, the IFU
monitors the fetching stream against the squashed stream to detect
any divergence. When a mismatch is found, a termination signal
is sent to the Rename stage to stop the reuse test. Note that the CI
pipeline happens in parallel with the main fetch-decode-rename
pipeline, thus incurring no extra pipeline delay.

It is possible for multiple reconvergence points to be detected
within the WPBs. In such cases, we select the most recently up-
dated WPB and the reconvergence point closest to the mispredicted
branch. This strategy is chosen because the most recently squashed
instruction stream is more likely to contain instructions whose
source registers remain unmodified by intermediate executions.

3.3.2  Extensions to the Rename Stage. At the Rename stage, when
no upcoming reconvergence is signaled by the IFU, it operates like
a conventional register renaming stage. Each destination register is
mapped to a new physical register that is obtained via the register
Free List. Additionally, each architectural register’s Rename Map-
ping Generation ID (RGID) is updated. The RGIDs are checkpointed
together with the Register Alias Table (RAT) used for recovering
from pipeline flushes. When a branch misprediction occurs, the Re-
name stage recovers its RAT by using a combination of checkpoint
restoration and rollback [7]. Similar to the WPBs in the Fetch stage,
a two-dimensional Squash Log is introduced in the Rename stage to
facilitate squash reuse. Each stream in the Squash Log mirrors the
instruction sequence of its corresponding WPB in the IFU, but oper-
ates at instruction granularity rather than fetch-block granularity.
Upon a branch misprediction, the Squash Log updates a selected
stream with relevant information about the squashed instruction
sequence—such as execution status, source and destination RGIDs,
and the destination physical register. These updates may come from
both the ROB and/or the Rename stage itself, depending on the
implementation of where such metadata is bookkept. Each Squash
Log contains a single squashed stream and begins with the same

squashed instruction as its corresponding WPB. If the length of
the squashed stream is longer than the capacity of the Squash Log,
younger squashed instructions are discarded. When a reconver-
gence point is detected by the IFU, it sends the reconvergence
offset—measured from the beginning of the squashed instruction
stream—to the Rename stage. This offset is used to initialize the
starting position of the corresponding stream in the Squash Log
for reuse tests. From this point onwards, the Squash Log operates
in lockstep with the incoming instruction stream, comparing each
subsequent instruction with the next entry in the Squash Log.

To prevent the physical register from being remapped to another
instruction before reconvergence occurs, the physical registers oc-
cupied by the squashed (and executed) instructions are not freed
immediately upon squashing but reserved unless one of the follow-
ing conditions is true: (1) The squashed instruction holding on to
the physical register is not yet executed by the time misprediction
occurred, thus no reuse can be done. (2) No reconvergence point
was detected after a fixed timeout. (3) The squashed instruction
failed the reuse test and thus no reuse will occur. (4) The reconver-
gence stream has diverged. (5) If no free register is available in the
Free List, the least recent stream’s Squash Log is freed and phys-
ical registers are reclaimed. The last condition is an optimization
when the processor is experiencing high register pressure, holding
physical registers in the Squash Log may adversely affect perfor-
mance on the correct path. We assume the physical registers can
be returned to the Free List with the same bandwidth as they are
allocated during renaming. Therefore, the instructing renaming
process remains unaffected by any delays in register freeing due to
squash reuse. Deadlock may occur if all physical registers are being
held in the Squash Log, and the next incoming instruction is stalled
waiting for registers to be freed. However, in practice, the Squash
Log is much smaller than the number of physical registers (a total
of 64 entries in our default configuration). Therefore, the system
guarantees some registers will be freed and become available after
the head of ROB is retired.

If no reconvergence is detected in the IFU after a fixed number of
instructions (here we use 1024), the wrong-path buffer is invalidated.
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Figure 7: Architectural modifications in the Fetch stage.

The invalidation signal is also sent to the Rename stage to clear the
Squash Log and free up physical registers.

A reserved null RGID value is used to indicate that a destination
register is not reusable. This can occur when the register is non-
renameable or when an RGID overflow happens. To minimize the
frequency of RGID overflows and enable recovery, a global RGID
reset is triggered either when all Squash Logs become unoccupied
or when RGID overflow events have accumulated more than eight
times during new RGID assignment. Upon a global RGID reset,
the Fetch and Rename stages temporarily suspend the acceptance
of new squashed streams until a fixed number of instructions—
equal to the size of the ROB—have been committed. This temporary
halt ensures that no squashed instruction carrying an outdated
RGID (from before the reset) enters the Squash Logs and incorrectly
performs a reuse test against newer RGIDs assigned after the reset.

3.4 Reconvergence Detection

In order to detect a reconvergence point in the IFU (see Figure 7),
we identify the first basic block overlap between @), the one cur-
rently being fetched by the IFU with @), all basic blocks in the
2-dimensional Wrong-Path Buffers (WPBs) (here we show only
one stream). Since each WPB entry represents a contiguous block
of instructions—either ending with a taken branch or reaching
the maximum block size of 32B—we can safely detect overlaps by
comparing the start and end pc of each entry, without needing to
compare individual instructions. More precisely, when the IFU pro-
duces a prediction block with a range that begins at start pcpeqq
and ends at end pcpe,q (inclusive), we perform a fully associative
check with all entries in the WPB, expressed as start pc,,,, and
end pc,,pp. As the detection logic spans multiple cycles, the critical
path is not affected by this new logic. An overlap is found when
the following condition is true:

start pepeqq <= end pc.ypp && end pepeqq >= start peyypp

We use left aligner and right aligner modules (shown in @)
to evaluate the conditions above and generate two masks: one to
indicate if the current start pc is equal to or smaller than some end
pc in the WPB, and another to indicate if the current end pc is equal
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to or larger than some start pc in the WPB. These two bit-masks are
bit-wise ANDed together to generate a final bit-mask, @), indicating
which entries in the WPB the current prediction block overlaps with.
If multiple WPB entries overlap with the current prediction block,
we take the first overlapped entry using a priority encoder. Lastly,
the exact reconvergence PC is the maximum between start pcpeqq
and start pc,,pp of the selected WPB entry. To further improve
timing performance, we optionally restrict the WPB code span to a
single physical page. The WPB records bits 12-1 of the program
counter (with bit 0 always zero in the RISC-V architecture), while a
single Virtual Page Number (VPN) register holds the upper 36 bits,
assuming an sv48 RISC-V architecture. To detect the reconvergence
point, the VPN of the current prediction block and WPB’s VPN are
compared in parallel with range overlap comparison to determine
the final outcome, as shown in ). The extra storage required for
WPB in the Fetch stage is summarized in Table 2.

3.5 Reuse Test

src4 RGID-SL
src4 RGI-Current

v

Reg CMP ‘ ’RGIDCMP ‘

Free List —

| » dst4
" reused
reuse
F © H
src4 reuse dst4 RGID
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Figure 8: Reuse test for the fourth instruction in the 6-wide
renaming logic. Areg: Architectural register. Preg: Physical
register. SL: Squash Log.

In this section, we describe the logic that performs the reuse
test at the Rename stage. To determine if an instruction can be
reused, its source register RGIDs are compared pairwise with its
squashed counterpart. However, as the Rename stage performs
register renaming for multiple instructions per cycle, it is crucial
to identify the intra-group dependencies to make sure the most
up-to-date RGIDs are used for the reuse test. For example, if the
second instruction depends on the first, the reuse test for the second
instruction must acquire the latest RGID of the first instruction’s
destination register, rather than reading from the RAT. Importantly,
this dependency resolution is already part of the normal register
rename process. We describe how the reuse test can be performed
in parallel with register renaming to avoid introducing additional
critical paths. Refer to Figure 8, we show the register rename process
that already existed in current processors (highlighted in grey) and
our reuse test logic. For simplicity, we illustrate only the logic for
processing the fourth instruction, and assume only one source
register for that instruction.

At @, to determine the source physical register for the fourth in-
struction, the Rename stage must identify the most recent physical
register to which the corresponding source architectural register
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was renamed. This mapping may either come from one of the pre-
ceding three instructions within the same issue bundle, or from
earlier cycles, with the most up-to-date mapping maintained in the
Register Alias Table (RAT). To select the correct physical register
among these sources, the Reg CMP logic compares the architectural
destination registers of the preceding three instructions against the
architectural source register of the current instruction to detect the
most recent match. Based on this comparison, Mux1 selects the
appropriate physical register for the source operand of the fourth
instruction. The renaming process for other instructions is identical,
except that to resolve the dependency of the nth instruction, we
require examining the destination register for all n-1 preceding
instructions, which is the critical path in the renaming logic.

In parallel, when reconvergence occurs, we perform an RGID
comparison, RGID CMP, between the current instruction, src4
RGID-Current, obtained from the RAT, and its counterpart from the
squash log, src4 RGID-SL. However, as src4 RGID-SL may have
a more updated value from renaming previous instructions 1 to 3,
we reuse the output of Reg CMP to select the most updated source.
If the most recent instruction that writes to the same architectural
register passes the reuse test, it implies a match between the RGID
of the current instruction’s source register and the corresponding
entry in the Squash Log. This is true because the earlier instruction
reuses the destination register’s RGID from the Squash Log, and no
subsequent instruction has modified the RGID for that architectural
register. By leveraging this transitive property, the design avoids
a long dependency chain—waiting for the previous instruction’s
RGID to become available before performing the RGID CMP for
the current instruction. Instead, the necessary proxy information is
whether previous instructions 1 to 3 have performed squash reuse
successfully, as shown at @.

Subsequently, the result of the reuse test for instruction 4 is
sent as input to the rename process of the next instruction. While
this introduces a dependency chain for subsequent reuse tests, its
impact on timing delay will be overshadowed by the longer critical
path, the Reg CMP in the next instructions’ renaming process. This
is because the next instruction must resolve an additional register
dependency that spans instruction 1 through 4.

Lastly, at (), depending on whether instruction 4 has performed
squash reuse successfully, the RGID for its destination register is
either reused from the Squash Log or newly allocated. RGID updates
for all instructions in the issue bundle are updated to the Register
Alias Table (RAT) at the end of the current cycle, along with the
corresponding physical register mappings. We provide hardware
synthesis results for the reuse test logic in Section 4.1.3.

3.6 Additional Storage for Architectural
Extension

We summarize the additional storage requirements for the major
structures in our implementation of the multi-stream squash reuse
mechanism in Table 2. Both the Wrong-Path Buffer (WPB) and the
Squash Log require three pointers for their operation: a Stream Read
Pointer to read the currently active stream once reconvergence is
located, an Entry Read Pointer to access the next entry within that
stream, and a Stream Write Pointer to allocate the new stream. Each
WPB entry stores the instruction stream’s PCs at block granularity,
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Table 2: Additional storage required for squash reuse scheme.
N:Number of streams; M: Number of WPB entries per stream;
P: Number of Squash Log entries per stream.

Structures Fields Bits
Stream Read Pointer | log2(N) bits
Stream Write Pointer | log2(N) bits
-Path
Wrong-Pat Entry Read Pointer log2(M) bits
Buffer
Virtual Page Number N streams
36 bits (PC[47:12])
Entri N streams x
nines M fetch blocks
Valid 1 bit
;‘i ;‘g;géiﬁh Start PC 11 bits (PC[11:1])
Y |EndPC 11 bits (PC[11:1])
Stream Read Pointer | log2(N) bits
Stream Write Pointer | log2(N) bits
Squash Log Entry Read Pointer log2(P) bits
Entri N streams x
s P instructions
Valid 1 bit
Squash Log Source Register . .
Entry RGIDs 3 registers x6 bits
Destination 1 ister x6 bit
Register RGID register s
Destination 1 ister x8 bit
Physical Register register s
(3 source registers +
Bfi;e?;}geOrB) Register RGIDs 1 destination register) x
6 bits x256 entries
Register Alas || g0 0 e o
Table (RAT) 64 arch-registers
RAT checkpoints x6 bits
x32 checkpoints
Agtdol;;m;al (4x6x256+64x6+64%6x32)
& = 18,816 bits = 2.30KB
(Constant)
Additional 2xlog2(N) + log2(M) + (1+11+11)xNxM + 36xN
Storage 2xlog2(N) + log2(P) + (1+3x6+1x6 + 8)xNxP
(Variable) = (23xM + 33xP + 36)xN + log2(M=xPxN"4) bits

using Start PC and End PC to define the range. Each Squash Log en-
try stores the RGIDs of the source and destination registers, as well
as the destination physical register for each squashed instruction.
The Squash Log does not store PCs, as the selected stream in both
the WPB and the Squash Log corresponds to the same instruction
sequence, and the IFU sends control signals to the Rename stage to
indicate the beginning and end of reuse tests. The Re-Order Buffer
(ROB) stores the RGIDs of all source and destination registers to
support the population of the Squash Log during branch mispredic-
tion events. In our calculation, we set the ROB size to be 256 entries,
matching the size of the physical register file. Additionally, to main-
tain RGID updates and rollback, the RAT and the RAT checkpoints
are extended to include RGID states for each architectural register.
In a typical configuration of 4 squashed streams (N=4), 16 WPB
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entries (M=16) and 64 squash log entries (P=64), the aggregated
storage required is 3.53KB (constant: 2.30KB, variable: 1.23KB).
Note that the calculations presented in Table 2 account only
for register bit storage and do not include the resources required
for combinational logic. A more detailed evaluation of combina-
tional delays, power consumption, and overall area is provided in
Section 4.1.3, which includes synthesis results for the two critical
logic components discussed in the previous sections: reconvergence
detection in the IFU and the reuse test logic in the Rename stage.

3.7 Improvements Over Previous Work

In this section, we describe the major improvements over previ-
ous work on squash reuse. Our work shares the same spirit with
Dynamic Instruction Reuse (DIR) [30], Register Integration (RI) [24]
and Dynamic Control Independence (DCI) [5], as we all opportunis-
tically reuse execution results from the squashed stream as the
corrected instruction stream arrives at the Rename stage. DIR and
RI stores squashed instructions in table structures but differ in their
table access mechanisms, reuse metadata and maintenance policies,
while both DCI and our work preserve the instruction order of the
squashed stream in queue structures. We first detail three key dif-
ferences of our work with DIR and RI and illustrate the limitations
of storing reuse information in table formats. Next, we explain the
similarities and improvements over DCL

3.7.1 Tracking Temporal Reference. In DIR, three variations of
squash reuse are proposed. Squashed results are saved in the Reuse
Buffer and the reuse is tested using one of the three schemes, by
matching every table entry with the PC and: a) input values to each
source register b) source registers’ architectural names c) the dy-
namic dependency chain. For schemes b and c, since the squashed
instruction stream can have multiple dynamic instructions match-
ing the same entry in the Reuse Buffer, only one execution result
can be saved when using this previous work. Refer to the left figure
in Figure 9, we say DIR cannot distinguish temporal references of
the same architectural register at different execution contexts due
to table conflicts. In the RGID method, however, temporal refer-
ences are resolved by the unique Generation ID, allowing multiple
execution outcomes to be tracked. Moreover, in DIR’s method c,
each architectural register’s dependency chain is recorded using
an auxiliary Register Source Table (RST). However, as the RST is
indexed by the architectural register, only one dependency can be
tracked and there cannot be two destination registers of the same
architectural name, i.e. write-after-write false dependencies cannot
be resolved, limiting the opportunities for reuse. RGIDs, which form
the basis of our multi-stream solution, have no such restrictions.

3.7.2 Transitive Invalidation Overhead. To ensure data integrity,
both previous works, DIR and RI, require careful table maintenance.
Whenever a physical destination register is remapped or a Reuse
Buffer (RB) entry is evicted without being reused, any other RB
entries that reference the destination register of this entry will also
need to be evicted. However, the eviction of these RB entries can
induce further evictions, a process we call transitive invalidation.
Refer to the middle figure in Figure 9, in RI, when an entry is
invalidated, a chain of dependent instructions will also need to
be invalidated, which is an expensive operation. In our work, the
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invalidation is done implicitly and lazily. When an architectural
register is remapped, its RGID is updated. This implicitly broadcasts
the invalidation event to all entries in the Squash Log. As entries
in the Squash Log undergo reuse tests, they detect their integrity
and are discarded.

3.7.3 Serialized Table Access. Register Integration (RI) attempts to
solve the inability to resolve temporal reference in DIR by match-
ing the physical register names to distinguish different execution
contexts. However, since physical registers are used as both values
and keys for the Reuse Buffer, this results in N serialized accesses
to the Reuse Buffers in highly associative implementations, a prob-
lem that was identified in the original paper. Refer to the right
figure in Figure 9. In a given cycle, all N instructions may depend
on their preceding instructions, and the reuse test for the current
instruction can only be performed when the previous instruction
has already accessed the table and acquired the physical register. RI
tackles the long logical dependence by using a set-associative cache
and accessing W possible reusable entries for every instruction in
parallel, where W is the associativity. However, such a method is
not scalable in terms of both pipeline width and Reuse Buffer (RB)
associativity. Notably, RI acknowledged that the intra-dependency
resolution could alternatively be handled by storing dependency
chains in traces. However, concrete solutions to this challenge were
deemed out of scope for their work.

3.7.4 Relationship with DCI. DCI is the first queue-based squash
reuse proposal which uses a dual-ROB approach to retain squashed
instruction streams. Our Squash Log in the Rename stage is similar
to DCIL. A key improvement over DCI is the observation that limit-
ing reuse to only the immediate past stream can result in missed
opportunities for detecting reconvergence and enabling squash
reuse, when such opportunities require inspecting multiple past
squashed streams. In this sense, DCI can be viewed as a special case
of our approach, when the number of squashed streams to consider
is one. Nonetheless, as discussed in detail in Section 2.2.3, naively
extending DCI to support multiple streams introduces challenges
due to the increased complexity of managing and reconstructing
multiple segments of poison vectors. In contrast, our RGID scheme
enables comparison between any two execution contexts without
requiring knowledge of the exact execution path that led to those
points. Moreover, we enhance the reconvergence detection mecha-
nism from DCI’s PC-based associative search, to a more scalable
block-based range search, utilizing existing structures in the Fetch-
Target-Queue (FTQ).

3.8 Handling Memory Order Violations

Besides register dependencies, memory dependencies, which are
identified by memory addresses rather than register names, require
dedicated hazard checking logic in addition to the use of RGIDs. We
are interested in two kinds of memory order violations: (1) store-to-
load hazard where a younger load obtains older data from memory
before the logically preceding store performs its write to the same
memory address, (2) load-to-load hazard which happens in multi-
core systems, where a logical snoop request is sent in between
two loads, but the younger load has already obtained older data
and is not re-executed. We provide an analysis of these two cases
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Figure 9: Comparison of DIR / RI vs RGID mechanisms. Left: Illustration of temporal reference. Mid: Illustration of transitive

invalidation. Right: Illustration of serialized table access.

separately, summarize the requirements to identify these violations
and propose mechanisms to fix them.

3.8.1 Store-to-Load Hazard. We assume a store-to-load hazard
checking mechanism similar to XiangShan [33], where every issu-
ing store instruction checks the Load Queue (LDQ) for any younger
executed load. If a younger load is executed before an older store
with an overlapping address, a store-to-load violation is detected.
As a result, the load and all dependent instructions are re-executed.
However, in our design, when a store is executed, the violating load
might have already been squashed and no longer exists in the LDQ,
thus evading the search by the store. Later, when the squashed
load is bypassed, the old data is reused, causing memory violation.
Therefore, we need to monitor the store addresses during the period
between when loads are squashed and their reuse.

3.8.2 Load-to-Load Hazard. A load-to-load hazard occurs when a
younger load is speculatively executed, and a snoop request arrives
before an older load is executed, all acting on the same address.
If no load-to-load checking is done, the older load would obtain
more updated data than the younger load, leading to a program
inconsistency. Load-to-load hazards are checked by an older load
to determine if any younger executed loads have read the same
address and if any targeted snoop requests have occurred since
those younger loads were executed. However, in our design, since
a younger completed load might have already moved to the Squash
Log, we cannot track such snoop requests. Therefore, similar to
store-to-load hazards, we need to additionally track the incoming
snoop addresses that hit those loads in the Squash Log.

3.8.3 Additional Hazard Checking Mechanism. As described in the
previous section, two additional sources need to be monitored in
order to perform memory hazard checking for executed load in-
structions in the Squash Log: the executed store addresses and the
snooped addresses. If any squashed load matches either of these
addresses, it must be invalidated. Since eager invalidation is expen-
sive, we instead propose a Bloom filter approach [25, 26]. Every
interested memory address is used to update the Bloom filter that

is logically maintained in the Rename stage. Subsequently, when
squashed load instructions are tested for reuse in the Rename stage,
their addresses (recorded in the Squash Log) are also checked in par-
allel against the Bloom filter. Once hit in the Bloom filter, a potential
memory hazard is identified and the load must be re-executed. The
Bloom filter is reset together with squash log invalidation.

An alternative solution is to re-execute all load instructions
and compare their latest data with the value being reused, similar
to the load verification mechanism in NoSQ [28]. If the values
match, the load and all reused dependent instructions are considered
successfully executed. Otherwise, the load has forwarded incorrect
data to its dependents and a pipeline flush must be performed,
together with Squash Log invalidation. In our evaluation, we choose
to implement the latter mechanism for simplicity.

3.9 Compatibility with Other Extensions and
Architectures

We discuss the compatibility of our design with two architectural
extensions: multiple-block fetching [27] and micro-op cache [32].

3.9.1 Multiple-Block Fetching. In a multiple-block fetching scheme,
the IFU predicts and fetches two instruction blocks per cycle instead
of one. As aresult, up to two discontiguous fetch blocks are available
for processing every cycle. Since reconvergence may occur in either
block, reconvergence detection must be performed for both blocks
when they are fetched. To support this, our reconvergence detection
logic must be duplicated, enabling both blocks to be compared with
all the Wrong-Path Buffers (WPBs) in parallel, where each block is
a contiguous sequence of instructions.

3.9.2 Micro-op Cache. The micro-op cache [32] is an essential
component in the CISC architecture, designed to improve instruc-
tion decode throughput and reduce the power overhead of de-
coding complex, variable-length instructions. As modern proces-
sors adopt decoupled branch prediction and instruction fetching
pipelines [18, 21], the speculative instruction stream is generated in
the branch prediction pipeline—prior to the instruction fetch stage
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Figure 10: IPC improvements for different multi-stream configurations on SPECint2006, SPECint2017 and GAP benchmarks.

where the micro-op cache is accessed. Therefore, the reconvergence
detection mechanism, which operates within the branch predic-
tion pipeline, functions independently of the instruction fetch and
decode mechanisms in the instruction fetch pipeline.

4 Evaluation

We implement our architecture in the gem5 [3] microarchitecture
simulator. We use gem5’s O3CPU, an out-of-order CPU model with
detailed modeling of instruction Fetch, Decode, Rename, Execution,
and Commit stages. We leverage gem5’s execution-driven model to
simulate speculative paths and model WPBs, RGIDs, and execution
reuse mechanisms. The detailed CPU configuration is listed in
Table 3. We select benchmarks from the SPECint2006, 2017 suites
that have a branch misprediction rate of more than 3% and collect
program hotspots using SimPoints [10]. The results are computed
by taking the weighted sum of the cluster weights and the CPIs of
each checkpoint. We also run benchmarks from the GAP [2] suite
with -g 12 -n 128.

Table 3: gem5 Baseline Configuration.

Fetch block size 32B
Frontend Nextline Predictor Bimodal

Main Branch Predictor | TAGE-SC-L 64K

Pipeline stages 5 stages

Decode/Rename Width | 8

Reorder buffer (ROB) 256 entries

Backend | Reservation 64-entry 4xALU +
stations (RVS) 2xBRU + 64-entry 2xLSU
96-entry Load queue

Load-Store Queue (LSQ) 96-entry Store queue

Physical Register File 256 physical registers

DCache 64KB, 4-way associative,

Memory 3-cycle data laten(?y .

L2 2MB, 8-way associative,
12-cycle data latency
16GBPS,

DRAM 120-cycle data latency

4.1 Evaluation Results

4.1.1  Overall Performance Trend. Figure 10 shows the IPC improve-
ments for different squash stream configurations. Major improve-
ments are observed for gobmk and astar from SPECint2006, leela

from SPECint2017 and most GAP benchmarks except pr. With a
minimal configuration of 1 stream and 16 WPB entries, we ob-
served an average speed-up of 1.0%, 0.3% and 1.0% for SPECint 2006,
2017 and GAPs, with maximum speed-ups seen on astar (3.3%) and
bfs (2.7%). The relatively low performance improvement is due to
WPB’s inability to contain the entire squash stream at 16-entry
capacity. A WPB with 64 entries strikes a good balance between
performance and hardware overhead. At the 1 stream x64 entry con-
figuration, we see astar and most GAP benchmarks have doubled
the IPC improvements.

To determine the appropriate number of streams to track, we
analyze the stream distance, defined as the number of intermediate
squash events between a squashed stream and the currently fetched
stream at the point of reconvergence. As shown in Figure 11, over
50% of reconvergences occur between neighboring streams, and
90% to 95% occur within a distance of three streams. Based on this
analysis, we configure the processor to track up to 4 streams.

We perform an upper-bound study to show the maximal gain
for a large WPB configuration. In the 4 streams x1024 entries con-
figuration, gobmk, astar and bc show additional gains of 2.3%, 2.0%
and 3.2% IPC improvement.

The limited performance impact observed in mcf, omnetpp and
the slight negative impact in xz can be attributed to two factors:
(1) mcf and omnetpp are highly memory bottlenecked benchmarks,
hence reusing execution results provides limited benefits, as the
latency reduction is overshadowed by long-latency cache miss
events; (2) frequent memory order violations are observed in xz
from SPECint2017 suite. Since our technique enables the reuse of
load instructions executed far in the past, a store to the same address

‘ Wstreamdistance 1 ~ BEstreamdistance2  Ostreamdistance3  @stream distance >3 ‘
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Figure 11: Reconvergence stream distance breakdown. Most
reconvergence occurs within four squashed streams.
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Figure 12: IPC improvements comparing Register Integration (RI) with Multi-Stream Squash Reuse solution (RGID) across

different configurations on GAP benchmarks.

Table 4: Post-synthesis complexity reports.

Reconvergence Detection

Power / mW

WPB Size Logic Levels | Area / um? @07V
4x16 13 2682 1.508
4x32 19 5283 2.984
4%x64 20 10369 5.909

Reuse Test (64-entry Squash Log)
Power / mW

Pipeline Width | Logic Levels | Area / ym?

@ 0.7V
4 28 3201 3.039
6 32 4803 4.333
3 41 6256 5.509

may happen, causing the reused loads to violate memory order
dependencies. Such memory violation events can incur additional
pipeline flushes and degrades performance.

4.1.2  Quantitative Comparison With Previous Work.

We evaluate two prior squash reuse designs, Register Integration
(RI) [24] (table-based reuse) and Dynamic Control Independence
(DCI) [5] (queue-based reuse) on the GAP benchmark suite. For RI,
we implement the table-based physical register indexing scheme
and study various configurations of the set-associative reuse table,
varying the number of ways (1, 2, and 4) and the number of sets (64
and 128). For DCI, we measure its effectiveness by configuring our
multi-stream squash reuse implementation to track only a single
squashed stream. To enable a fair comparison, we match hardware
resources with Rl in terms of the total number of squashed entries.
Specifically, we vary the number of squashed streams (1, 2, and 4)
and the number of entries per stream of the Squash Log (64 and
128). The size of the WPB in the IFU is set to one-fourth of the
Squash Log stream size, assuming that each basic block contains
four instructions on average. We call our work RGID in Figure 12
to distinguish it from RIL

As shown in Figure 12, we observe that our approach outper-
forms RI on bc, bfs and cc, while achieving comparable performance
on pr, sssp, and tc. Moreover, our approach shows continuous gains
as the stream size increases, with the most prominent improvement
observed on bc. We find that tracking two squashed streams yields
the best overall results. As deeper squashed streams are enabled
for reused, the increased memory order violation events become a
significant bottleneck and limit further gains. This phenomenon is
consistently observed for both the RI and our RGID approach.

4.1.3 Complexity Analysis.

We conducted experiments on two critical logics: reconvergence
detection and reuse tests using Synopsys Design Compiler and set a
timing constraint at 2 GHz. The post-synthesis logic level, area and
power results are summarized in Table 4. For reconvergence de-
tection, since combinational logic is spanned across three pipeline
stages, the longest logic level is only 20 even with a large WPB
configuration of 4 streams and 64 entries each. The area and power
scaling are mostly linear with WPB size. For the reuse test circuit,
the logic level is relatively high, since resolving intra-group de-
pendencies is an inherent critical path in superscalar processors.
We identify that the critical path under the highest pressure is at
RGID increments, since in the worst case, the RGID associated with
an architectural register needs to be updated N times, where N is
the pipeline width. We note that optimization techniques such as
pre-calculation and shortening bit-width can further alleviate the
pressure. Note that the ROB size has a relatively minor impact on
the timing-critical path of our design. This is because Rename’s
Squash Log population operates in parallel with the standard Regis-
ter Aliasing Table (RAT) recovery process, introducing no additional
critical path.

As a reference for the total core area and power at a similar
technology node used in our evaluation, XiangShan’s YXH core [33]
reported an estimated area of 3.4mm? with an overall power con-
sumption of 5W3 .

5 Conclusion

We presented a solution to multi-stream squash reuse by tracking
multiple past squashed streams and detecting reconvergence oppor-
tunities. We analyzed a few inefficiencies with prior squash reuse
works and proposed an efficient mechanism to reuse results exe-
cuted on the wrong path in a streamlined fashion, saving execution
bandwidth and shortening dependency chains. We achieved aver-
age improvements in IPC of 2.2%, 0.8% and 2.4% on SPECint2006,
SPECint2017 and GAP benchmarks and maximum gains of 8.9%,
6.1% and 4.0% on astar from SPECint2006, bc and cc from GAP.
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A Artifact Appendix
A.1 Abstract

The artifacts include a simulation model, workloads and utility
scripts. The simulation model is a port of the open-source gem5
infrastructure, extended with our Multi-Stream Squash Reuse imple-
mentation and a previous work, Register Integration. For workloads,
the GAP benchmark suite and a partial set of gem5-compatible
SPEC2006int and SPEC2017int checkpoints (generated via the Sim-
Point methodology) are provided to evaluate the effectiveness of our
solution. In addition, build scripts, run scripts, and post-processing
utilities are provided to facilitate experiment execution and to col-
lect and compare results across different configurations.

A.2 Artifact check-list (meta-information)

Algorithm: Cycle-accurate microarchitecture model
Programs: GAP, SPECint2006, SPECint2017
Compilation: gcc, g++

Run-time environment: Linux (no root access required)
Hardware: x86-64 / amd64 processors (64+ cores recommended)
Metrics: Simulated runtime

Output: CSV tables

Experiments: Provided scripts

Disk space required (approx.): 5 GB

Time to prepare workflow (approx.): 1 hour

Time to complete experiments (approx.): 6 hours
Publicly available?: Yes

Code license (if publicly available): MIT License

A.3 Description

A.3.1 How to access. All data required to perform the artifact
evaluation can be found at Zenodo [12].


https://arxiv.org/abs/1508.03619
https://doi.org/10.5281/zenodo.17021834
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A.3.2 Hardware dependencies. An x86-64 / amd64 server, prefer-
ably with 64 or more hardware threads.

A.3.3  Software dependencies. We use Apptainer as the container
platform to manage all system dependencies. Please ensure that
Apptainer is installed on your system before proceeding.

A.3.4 Data sets. The workloads are included in the Artifact Evalu-
ation tarball.

A.4 Installation

Place ae. tgz in the current working directory and run:
$ tar xvf ae.tgz

The decompressed archive will have the following directory struc-

ture:
ae/

t::sandbox.sif
scripts/
build.sh
clean.sh
env.sh
rollup_gapbs.py
rollup_spec.py
run_gapbs.sh
run_spec_cpts.sh
| _work/
gapbs/
gem5/
spec_cpts/
tools/

A brief explanation of the file structure is as follows:

e sandbox.sif: the container image managed by Apptainer.

e scripts:build scripts, run scripts, and post-processing Python
utilities.

o work: workloads, the gem5 model, and precompiled tools
used for compilation.

Next, enter the container environment by:

$ cd ae
$ apptainer run sandbox.sif

You should see the following output:
Welcome to your Ubuntu container!
To build all dependencies (gem5, GAP benchmarks), run:

$ source scripts/env.sh
$ source scripts/build.sh

A.5 Experiment workflow
To run the GAP and SPEC checkpoints, run:

$ source scripts/run_gapbs.sh
$ source scripts/run_spec_cpts.sh

This should take approximately 6 to 12 hours, depending on the
number of hardware threads available.
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A.6 Evaluation and expected results

The raw outputs of the experiments are stored in the top-level
output/ directory. To gather the results, run:

$ python3 scripts/rollup_gapbs.py

$ python3 scripts/rollup_spec.py

An example output should look similar to the following:
CFG BM CYCLES diff

1 RCVG_4_64 Dbfs 76244487.0 0.050558

2 RCVG_1_16 bfs 79171252.0 0.011721

3 RCVG_2_64 bfs 76303937.0 0.049739

The four columns are explained as follows:
e CFG: Configuration of the experimental setup.
e BM: Benchmark being evaluated.
e CYCLES: Simulated runtime, measured in cycles.
e diff: Improvement in runtime relative to the baseline.

A.7 Experiment customization

Our run_gapbs. shand run_spec_cpts. sh scripts allow customiza-
tion of multiple parameters of the Wrong-Path Buffer (WPB) for
Multi-Stream Squash Reuse and the Reuse Table for Register Integra-
tion. For further details, please refer to the arguments of the run
function within each script.
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