
2026 IEEE International Symposium on High-Performance Computer Architecture (HPCA)

SSBleed: Non-speculative Side-channel Attacks via
Speculative Store Bypass on Armv9 CPUs

Chang Liu†, Hongpei Zheng†, Xin Zhang‡, Dapeng Ju†,
Dongsheng Wang†(�), Yinqian Zhang§, Trevor E. Carlson¶

†Tsinghua University, {cliu21, zhenghp23}@mails.tsinghua.edu.cn, {judapeng, wds}@tsinghua.edu.cn
‡Peking University, zhangxin00@stu.pku.edu.cn

§Southern University of Science and Technology, yinqianz@acm.org
¶National University of Singapore, tcarlson@comp.nus.edu.sg

Abstract—Modern CPUs employ Speculative Store Bypass
(SSB) to reduce load latency and improve performance. In
response to transient attacks such as Spectre, CPU vendors have
also introduced mitigations to prevent incorrect speculation from
leaking data. In this work, we show that the SSB on Armv9 CPUs
introduces a previously unexplored form of non-speculative data
leakage. Specifically, we find that the SSB on Armv9 performance
cores is governed by an undocumented predictor. Through
reverse engineering, we uncover the design of this predictor and
show that it lacks isolation across security domains. Furthermore,
existing mitigations such as SSBS are insufficient to prevent
leaks. Based on this, we present SSBleed, the first non-speculative
side-channel attack via SSB on Armv9 CPUs. We validate the
practicality of SSBleed through five case studies, including cross-
process RSA signature and key generation attacks on the latest
version of MbedTLS and WolfSSL, interrupt detection, and
improved data transmission in two transient attacks. Finally, we
propose a flush-based mitigation through a kernel patch, which
incurs an average performance overhead of 0.46%.

I. INTRODUCTION

Memory accesses have become one of the primary
bottlenecks in modern CPUs, especially in high-performance
CPU architectures that support out-of-order and speculative
execution. To mitigate performance loss due to load stalls,
various techniques have been introduced, including address
prediction [16], [36], [69], value prediction [15], [35],
[42], and memory dependence prediction [17], [38], [51].
Among them, Speculative Store Bypassing (SSB) is a key
optimization, which allows a load to be speculatively executed
before a preceding store completes, and exposes additional
parallelism in the CPU pipeline. SSB has been widely adopted
in modern CPUs [19], [46], [47], [55], [58], including recent
Armv9 CPUs used in servers [5] and mobile performance
cores [4].

On the other hand, SSB has also raised security concerns.
Under misprediction, a load would obtain stale data from an
address before a preceding store overwrites it [2], [31], or
receive the value of a store targeting a different address [41].
Although the CPU will resolve such mispredictions to preserve
correct program behavior, these mispredictions can lead to

(�) Corresponding author.

microarchitectural state changes, enabling transient attacks [9],
[47].

To mitigate such attacks enabled by SSB, mainstream CPU
vendors have implemented several hardware mitigations. In
contrast to x86 CPUs that disable SSB entirely, known as SSB
Disable (SSBD), recent Armv9 CPUs mitigate SSB attacks by
preventing speculative data forwarding of loads during SSB
rather than blocking it statically, named SSB Safe (SSBS) [3].
However, it is unclear whether the latter approach may still
leave security risks beyond speculative execution. Particularly,
if the SSB behavior is controlled by a predictor, similar to a
branch predictor [20], [40], [82], [83], the internal state of this
predictor may leak non-speculative changes persistently across
security boundaries, without relying on speculative execution
that has been already mitigated. However, the implementation
details of SSB are largely undocumented, and such non-
speculative leaks have remained underexplored. This raises
two fundamental and unresolved questions: Does the SSB
expose an attack surface at the non-speculative level? If so,
can existing defenses prevent such kind of attacks?

In this work, we address these questions by studying
the details of SSB on Armv9 CPUs. We uncover a
previously undocumented Memory Dependence Predictor
(MDP) responsible for controlling SSB behavior on both
the Neoverse-N2 CPUs for servers and Cortex-X3 CPUs for
mobile devices. Through reverse engineering, we uncover the
design of the MDP, including its state machine, organization,
and replacement policy. We find that the MDP state can be
persistently updated by any loads, even in the absence of a
preceding store. Moreover, the MDP is indexed by a part of
the load’s virtual address. We also observe that the MDP can
be updated before the load commits, enabling it to persistently
record leaked data across transient execution.
Attack Primitives. Building on these findings, we present
SSBleed, the first non-speculative side-channel attack that
exploits the SSB on Armv9 CPUs. SSBleed enables both
cross-process and cross-privilege leakage of control-flow and
data-flow information. To make the attack practical in user
space, we design a primitive that probes MDP states without
relying on cache side channels.
Case Studies. We evaluate the effectiveness of SSBleed

through five case studies, and show that existing defenses such
as SSBS are insufficient to prevent this non-speculative data
leakage. First, we demonstrate two control-flow attacks on
Armv9, which break secret-dependent branches in the RSA
signature and RSA key generation functions in the latest
version of WolfSSL [80] and MbedTLS [49], respectively.
These attacks show SSBleed’s practicality in real-world
environments, as well as its effectiveness with a single
execution. Second, we use SSBleed to monitor interrupts from
other context switches with microsecond-level granularity.
Finally, we use SSBleed to improve two transient attacks:
SpectreRewind [21] and TikTag [37], making SpectreRewind
practical in user space and significantly reducing the number
of repetitions required by TikTag.
Defense. Given that SSBleed bypasses existing defenses, we
propose a software-based mitigation that can be deployed
with a low performance overhead. Specifically, we implement
a kernel patch that flushes the MDP state during context
switches, effectively preventing cross-process and cross-
privilege attacks. Evaluation on SPEC2017 shows that the
defense has an average performance overhead of 0.46%.
Contribution. In summary, our contributions are as follows:

• We study the SSB on two Armv9 CPUs and discover an
undocumented predictor, MDP. We reverse-engineer its
state machine, organization, and replacement policy.

• We propose SSBleed, the first non-speculative side-
channel attack that exploits security weaknesses in the
MDP. SSBleed bypasses existing defenses and is practical
when an unprivileged coarse-grained timer is used.

• We demonstrate the effectiveness of SSBleed through five
case studies targeting both control-flow and data-flow
leakage. To the best of our knowledge, SSBleed is the
first byte-level control-flow attack on Armv9.

• We propose and evaluate a software-based mitigation that
flushes MDP state during context switches.

Responsible Disclosure. We reported this vulnerability to
Arm in March 2025. Arm confirmed that existing mitigations
are insufficient to defend against SSBleed. At the time of
publication, we observe that SSBS has been enhanced to
totally disable the MDP on Neoverse-N2 CPUs, and SSBleed
can be mitigated via SSBS. Moreover, CVE-2025-54764 has
been assigned by the Mbed TLS security team to track the
vulnerability that allows SSBleed to break the inverse modular
function in the library.

II. BACKGROUND

A. Speculative Store Bypass and MDP

Speculative Store Bypass (SSB) primarily targets uncertain
Read-After-Write (RAW) data dependencies [62], [85].
Specifically, when the address of a store instruction is not yet
resolved, and a younger load instruction with a ready address
is issued, the CPU cannot immediately determine whether the
store and load are data-dependent, i.e., whether they access
the same address. If so, the load must wait for the store to
complete. If not, the load can be safely executed ahead of

time. To improve performance in such cases, modern CPUs
implement the SSB [2], [3], [32], which speculatively executes
the load before the preceding store completes. Once a store
address is resolved, the CPU checks for the dependence. If the
load is incorrectly executed, it is squashed and re-issued.

To reduce the frequency of incorrect speculations, SSB
is typically guided by a predictor known as the Memory
Dependence Predictor (MDP) [17], [38], [51], [56], [68],
[71]. The MDP follows general predictor design principles. It
consists of several entries selected by the instruction address
of the store or load. Based on the current state of the entry, the
MDP predicts whether SSB should be allowed for the load,
and updates its state based on the actual dependence.

B. Transient Attacks

Transient attacks primarily exploit transient execution (i.e.,
incorrect speculative execution) of loads to access arbitrary
data from arbitrary addresses [39] or test the validity of
addresses [37], [61]. Although CPUs eventually detect such
incorrect speculation and discard their architectural effects
(e.g., changes to registers or memory), the accessed data can
still affect microarchitectural state during transient execution.
These effects include both transient contention [7], [8], [21]
and non-speculative persistent state updates on caches [28],
[37], TLBs [61], prefetchers [29], micro-op caches [63], and
the MDP of Armv9 CPUs.

Transient attacks can be classified based on their triggering
mechanisms [10]. These include mispredictions on conditional
branches [39], indirect branches [64], return instructions [78],
decoder [79], as well as microarchitectural data sampling [9],
[67], [73] and Speculative Store Bypassing (SSB) [10], [47],
[58]. These attacks can breach isolation boundaries between
sandboxes [35], [36], processes [39], [47] and the kernel [6],
[64], [78]. To mitigate such attacks, modern CPUs introduce
mechanisms to reduce or prevent incorrect speculation. These
include serialization barriers and controls to disable specific
types of speculation. For SSB, these controls include SSBD
on x86 CPUs [2], [31] and SSBS on Arm CPUs [3].

C. Non-speculative Microarchitectural Side-channel Attacks

Non-speculative microarchitectural side-channel attacks ex-
ploit persistent state changes in microarchitectural components
to leak information. For example, memory access instructions
may load data into the cache. After a victim executes such an
instruction, an attacker can probe cache states using methods
such as Flush+Reload [48], [81], Prime+Probe [43], or
Flush+Flush [27] to infer the victim’s memory access patterns.
Similar leakage sources include the TLB [26], [61], [72], data
prefetchers [11], [12], [14], [29], branch predictors [20], [30],
[82], and the MDP discovered in this work.

These non-speculative side channels can be used to encode
and transmit data obtained during transient execution [39],
[47], [63]. They can also leak architectural-level instruction
information. For example, cache, TLB, and prefetcher side
channels can enable data-flow leakage, revealing memory
access patterns and compromising cryptographic keys in

algorithms such as AES [27], [43], RSA [48], [81],
ECDH [70], EdDSA [26], and post-quantum schemes [11].
Similarly, side channels in branch predictors [20], micro-op
caches [18], [57], and prefetchers [14] can be used for control-
flow leakage, exposing which codes are executed and revealing
secret-dependent control flows or monitoring kernel and I/O
events [12], [27].

III. REVERSE ENGINEERING OF MDP

In this section, we perform reverse engineering on the MDP
design on Armv9 CPUs based on the SSB behavior. Our
experimental platforms include Microsoft Azure D2ps v6 (2
Neoverse-N2 cores) and Google Pixel 8 Pro (1 Cortex-X3 core,
3 Cortex-A720 cores, and 4 Cortex-A520 cores). We confirm
the existence of MDP on the performance cores (Section III-A)
and analyze its implementation details (Section III-B to III-E).

A. Existence of MDP

SSB allows a load to execute speculatively before
the preceding store computes its address, and the MDP
predicts whether SSB is triggered. To verify the existence
of the MDP, we design the microbenchmark shown in
Fig. 1. In the stld function, we include a store targeting
array1[delayed_idx] (line 4) and a load targeting
array1[0] (line 5). Before executing stld, we use the dc
civac instruction to evict delayed_idx from the cache,
which delays the generation of the store address. To determine
whether the load triggers SSB, we use the Flush+Reload cache
side channel [48], [81]. Specifically, before executing stld,
we flush all addresses in array2 from the cache. Then, the
data loaded to temp is used as an address to access array2
(line 7). If delayed_idx equals 0 and SSB is triggered,
the load accesses old_value before it is overwritten by
new_value. By probing which address in array2 is cached
through cycle-level timer PMCCNTR in the Arm Performance
Monitor Unit (PMU), we infer whether SSB is triggered.

To test the existence of MDP, we use the experiment
function. By setting delayed_idx to 0 or 10, we control
whether there is a data dependence between the store and load
in stld. We denote data-dependent accesses as SA (Same
Address) and independent accesses as DA (Different Address).
We first train the MDP by executing a large number of stld
functions with old_value equal to new_value. Then we
update old_value to 240 and execute stld once to check
for SSB. We design two experiments as follows:

• 100SA–kDA: 100 SA followed by k DA during training.
• kSA–100DA: k SA followed by 100 DA during training.
As shown in Fig. 2, we observe that on Neoverse-N2,

Cortex-A715 and Cortex-X3 CPUs, the kSA–100DA always
triggers SSB, while 100SA–kDA triggers SSB only when k
exceeds a boundary. This indicates that these CPUs implement
MDP. After training with 100 DA, the MDP predicts SSB,
while after training with 100 SA, the predictor learns that the
load should not trigger SSB, and more than 10 DA are required
to reverse that prediction. We do not observe the existence of
MDP on efficiency cores, i.e., Cortex-A520 in Pixel 8.

1 uint64_t delayed_idx; // generate store address
2 uint8_t array1[64], array2[256 * 4096], temp;
3 void stld(int new_value) {
4 array1[delayed_idx] = new_value; // delayed store
5 temp = array1[0]; // load to be tested
6 // cache side channel to test SSB
7 temp &= array2[temp * 4096];
8 }
9 void experiment(int raw_control, int old_value) {

10 // flush addresses in array2 for cache side channel
11 flush_all(array2);
12 // SA: 0, DA: 10, Trigger: 0
13 delayed_idx = raw_control;
14 // Train: 0, Trigger: 240
15 array1[0] = old_value;
16 // delay the address of the store by cache flushing
17 flush(&delayed_idx);
18 stld(0);
19 }

Fig. 1. C implementation of our microbenchmark to reverse-engineer the
MDP. Data dependence in stld (lines 4-5) is controlled by raw_control.
We use flush to delay the store, and use the cache side channel to test
whether old_value is loaded before the update of new_value.

SS
B

 R
at

e
Itera�on on k

Neoverse-N2 Cortex-A520 Cortex-A715 Cortex-X3

Itera�on on k Itera�on on k Itera�on on k

Fig. 2. Speculative store bypass rate after executing 100 SA and k DA (orange
lines) or k SA and 100 DA (blue lines). The different SSB rates under two
experiments and a dynamic change in 100SA−kDA indicate the MDP is used.

B. State Machine of MDP

After validating the existence of SSB on Armv9 CPUs,
we further investigate the MDP implementation details on the
Neoverse-N2 and Cortex-X3 CPUs. As shown in Fig. 2, after
a number of SA are executed to train the MDP, at least 15
DA are required to activate SSB on both CPUs, suggesting
that the MDP uses a counter to hold the state, where SA and
DA update the counter differently. To further investigate the
state machine, we use the setup in Fig. 1 and vary the SA
and DA sequences used to train the MDP. Similarly, during
training, we keep old_value as 0. After training, we set
old_value to 1 and run experiment to observe whether
the MDP predicts SSB or load stalling (blocking, BLK).

We design 8 experiments shown in Table I, where Exp. 1
and 2 show that a single SA is sufficient to switch the MDP
state from BLK to SSB. Exp. 3 and 4 indicate that at least 14
DA are required to revert the state to SSB. Besides, Exp. 5 and
6 show that a maximum of 15 DA is sufficient to transition
the state, regardless of the number of SA. From these results,
we infer that the MDP uses a 4-bit saturating counter. When
the counter is cleared, SSB is predicted. Otherwise, BLK is
predicted. Executing an SA while the counter is cleared sets it
to 14, and subsequent SA increment it to saturation (i.e., 15).
Each DA decreases the counter by 1 until it reaches 0.

To further investigate the effect of SA when the counter
is not cleared, we conduct Exp. 7 and 8. We initialize the
counter to 4 using 1 SA and 10 DA, then run an additional
SA and measure how many DA are needed to revert the state

TABLE I
EXPERIMENTS ON MDP STATE MACHINE

Exp. Training Pred. Exp. Training Pred.
1 15 DA SSB 2 15 DA, 1 SA BLK
3 1 SA, 13 DA BLK 4 1 SA, 14 DA SSB
5 10 SA, 14 DA BLK 6 10 SA, 15 DA SSB

7 1 SA, 10 DA,
1 SA, 4 DA

BLK 8 1 SA, 10 DA,
1 SA, 5 DA

SSB

Neoverse-N2 Cortex-X3

SS
B

 R
at

e
SS

B
 R

at
e

Evic�on Set Size

(a) Selec�on Experiment

(b) Size Experiment
Evic�on Set Size

Address Offset Address Offset

Fig. 3. Experiments on MDP selection function (a) and prediction table size
(b) on Neoverse-N2 and Cortex-X3 CPUs.

to SSB. The results show that 5 DA are required instead of 4,
indicating that running an SA at counter value 4 increases it
to 5. Therefore, we infer that an SA increments the counter
by 1 when the counter is not saturated or cleared.

Based on these findings, we construct the state machine
shown in Fig. 6. To validate the accuracy of the inferred
state machine, we exhaustively test all 230 training sequences
with all permutations of 30 SA and DA. By validating the
outcomes of state machine with the code shown in Fig. 1, we
achieve a 100% match, indicating that our reverse engineering
is accurate with high confidence.

C. Organization of MDP

In this section, we analyze the organization of the MDP.
We first investigate how different store-load pairs share MDP
state by extending code in Fig. 1. We extract the machine
code of the stld function, creating two functions named
stld_1 and stld_2. We fix the address of stld_1 and
use just-in-time code generation to dynamically place stld_2
across a large address range. For each location of stld_2,
we train the MDP using stld_2 to alternate between SSB
and BLK states, and observe the effects on stld_1. If both
training outcomes are reflected in stld_1, we infer that the
two functions share the MDP counter in the same entry. We
then record the relative address offset between stld_1 and
stld_2 where such sharing occurs.

As shown in Fig. 3, on Neoverse-N2, the training results are
shared if and only if the instruction virtual addresses (i.e., IPs)
of stld differ by a multiple of 215 bytes. We further insert
varying numbers of nop instructions between the store and
load in both functions and find that sharing still occurs as long
as the load IPs have the same lower 15 bits. We conclude that,
on Neoverse-N2, the MDP entries are selected by the lowest
15 bits of the load IP. Similarly, on Cortex-X3, we find that
the lowest 16 bits are used for the entry selection.

Next, we investigate the number of entries in the MDP.
Based on the selection function, we construct eviction sets
containing k distinct stld functions, each with a unique load
IP in the relevant low-bit range (i.e., 15 bits for Neoverse-N2
and 16 bits for Cortex-X3), ensuring no entry sharing with
stld_1. By default, the MDP predicts SSB, and thus we
first train the MDP state at stld_1 to BLK, then use the
eviction set with a size k to train the related entries to BLK,
and finally run stld_1 again to observe if its prediction has
reverted to SSB. If so, the entry used by stld_1 is evicted.

As shown in Fig. 3, we find that, on Neoverse-N2, the
prediction at stld_1 is overwritten when k = 32, indicating
that the MDP contains 32 entries. On Cortex-X3, the threshold
is 40 entries. To further validate associativity, we generate 220

random eviction sets of size 32 on Neoverse-N2, and always
observe the eviction. Therefore, the MDP in Neoverse-N2 is
fully-associative, using the lowest 15 bits of the load IP as
the tag for matching, without using any bits for indexing. We
observe the same conclusion on Cortex-X3, except the tag
consists of the lowest 16 bits of the load IP.

D. Replacement Policy of MDP

In the organization experiment, we also observe that if each
entry in the eviction set is trained into the SSB state using
the sequence 1 SA 15 DA, we no longer observe the eviction.
This indicates that the MDP employs two types of eviction
mechanisms. The first is the external eviction triggered when
the table is full, and the second is self-eviction triggered when
the internal counter of an entry reaches 0. In this section, we
focus on analyzing the replacement policy used during these
two eviction cases.

We construct a set of stld functions where the load in
each function selects a unique MDP entry. These functions
are labeled as f0, f1, ..., fk−1, where k ≥ 2s, and s is
the total number of MDP entries. For each function f , we
perform 10 SA to ensure its corresponding entry is fully
trained and inserted into the MDP. After filling the MDP
with the execution order fs−1 to f0, we introduce operations
O that may affect replacement order, including O1

i : updating
the counter value of entry i without triggering self-eviction,
and O2

i : actively removing entry i via self-eviction. We then
execute entries fs to f2s−1 to trigger external evictions.
Finally, we probe from f0 to fs−1 to determine which
entries have been evicted. This allows us to reconstruct the
replacement order of the original entries.

Following previous research [1], [72], we
represent the replacement ordering as a permutation
Πs = (π−1, π0, π1, ..., πs−1), where each πi is a permutation
of the remaining entries after applying O1

i or O2
i , and a

higher index indicates a higher eviction priority. Notably,
π−1 denotes the default replacement order without any
operations applied. On both Neoverse-N2 and Cortex-X3, we
observe that π−1 = (0, 1, 2, ..., s − 1), where each i ∈ π−1

denotes the entry corresponding to fi, and the values in the
right have a higher eviction priority. This result indicates
FIFO (i.e., First-In, First-Out) policy, where newer entries

= (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31)
= (0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14, 17, 16, 19, 18, 21, 20, 23, 22, 25, 24, 27, 26, 29, 28, 31, 30)
= (1, 0, 3, 6, 5, 4, 7, 10, 9, 8, 11, 14, 13, 12, 15, 18, 17, 16, 19, 22, 21, 20, 23, 26, 25, 24, 27, 30, 29, 28, 31)
= (0, 1, 2, 7, 4, 5, 6, 11, 8, 9, 10, 15, 12, 13, 14, 19, 16, 17, 18, 23, 20, 21, 22, 27, 24, 25, 26, 31, 28, 29, 30)

...

= (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 31, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30)
= (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31)

...

= (1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14, 17, 16, 19, 18, 21, 20, 23, 22, 25, 24, 27, 26, 29, 28, 31)
= (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30)

0

1

0
0

0

0

1

0

0

0

…

…

… External-evic�on
on Entry 9

Self-evic�on on
Entry 10

0 1 … 8 9 10 … 31

1

0

0
1

1

0

0

0

0

0

…

…

…

0 1 … 8 9 10 … 31 0 1 … 8 9 10 … 31

010012=910
1

0

0
1

0

0

0

1

0

0

…

…

…

010102=1010

(a) Permuta�on of MDP Replacement Policy on Neoverse-N2

(b) Example of Tree-PLRU32 in MDP

0 1 0
0

1
0 1 0

0
1

Fig. 4. The Tree-PLRU32 replacement policy in the Neoverse-N2 MDP.
(a) shows the effective permutation caused by replacement due to self-eviction.
(b) shows the replacement process when the 9th entry is external-evicted due
to a full table, and the 10th entry is self-evicted due to counter clear.

have lower eviction priority. Furthermore, for operation
O1 and its permutation Π1

s, we observe πi = π−1 for all
πi ∈ Π1

s. Therefore, counter value updates alone do not alter
replacement priority, confirming that FIFO is used as long as
no self-eviction occurs.

For operation O2 and its permutation Π2
s, we observe

πi = π−1−{i} on Cortex-X3, which means removing entry i
leaves the ordering of remaining entries intact. Hence, Cortex-
X3 strictly follows FIFO, regardless of self-eviction. On
Neoverse-N2, however, Π2

s undergoes a non-trivial shuffle, as
illustrated in Fig. 4(a). This behavior resembles a Tree-PLRU
replacement policy [1], [72]. Given the MDP on Neoverse-N2
contains 32 entries, we hypothesize it employs a 5-level binary
Tree-PLRU structure with 31 internal nodes. We construct the
theoretical Tree-PLRU32 permutation Πtp32

32 and confirm that
for every π2

i ∈ Π2
s and corresponding πtp32

i ∈ Πtp32
32 , we have

π2
i = πtp32

i − {i}. This confirms our hypothesis.
In specific, the Tree-PLRU32 consists of 31 bits representing

internal nodes of a binary tree. As shown in Fig. 4(b), Under
an external eviction, the MDP traverses the tree from the root.
Each bit determines the direction (i.e., 0 = left, 1 = right). After
5 nodes are accessed, one entry is selected for replacement.
The bits along this traversal path are then flipped to update the
replacement priority. This replacement scheme approximates
FIFO behavior when no self-eviction occurs. However, when
entry i is self-evicted, the path from the root to entry i is
extracted, and the 5 corresponding internal bits are set to the
bitwise complement of the binary representation of i. This
modifies the tree state deterministically and causes a specific
permutation effect, as observed in Fig. 4(a). Finally, accessing
an entry and updating its counter value without a self-eviction
has no effects on the bits in the binary tree.

E. Update Condition of MDP

In this section, we study the conditions under which
the MDP counter is updated. In previous sections, we
demonstrate that non-speculative store-load pairs within a

TABLE II
EXPERIMENTS ON MDP UPDATE CONDITION

Exp.
Training Trigger and Test

Process Inst. Process Inst. Pred.

1 Process-1 10 SA Process-1 14 L BLK
2 Process-1 10 SA Process-1 15 L SSB
3 Process-1 10 SA Process-2 14 DA BLK
4 Process-1 10 SA Process-2 15 L SSB

1 uint64_t delayed_bound = 1; // branch condition
2 uint8_t temp, array1[2] = {16, 0}, array2[20];
3 void branch(int x) {
4 // delayed branch to trigger transient execution
5 if (x < delayed_bound) {
6 // normal: temp = 0, transient: temp = 1
7 temp = array1[x];
8 // delayed store, address from array1[x]
9 array2[temp] = 0;

10 // load with address &array2[0]
11 temp &= array2[0];
12 }
13 }

Fig. 5. C implementation of our experiment to test the MDP update by
transient store-load pairs.

single process can trigger MDP updates. To further investigate
other conditions, we design the experiments listed in Table II.

In Exp. 1 and 2, we first train the MDP to the state BLK
with 10 SA, then execute another load without any preceding
store (denoted as L) in the same process. We ensure that this
load shares the same MDP tag as the one in stld. We find
that after more than 14 L, the MDP state is updated to SSB.
This shows that even without a preceding store, a load can
decrement the MDP counter if it is greater than zero. Next,
in Exp. 3 and 4, we place the training and triggering code in
different processes, while keeping the MDP tags of loads the
same. We execute process 1 to train the MDP and process 2 to
trigger prediction. Results show that as long as the tags match,
different processes can share MDP state, i.e., the counter value
in the same entry.

The above experiments focus on the effect of non-
speculative loads with or without preceding delayed stores.
Finally, we test whether a load executed transiently can cause
persistent MDP updates. We use the branch-based setup shown
in Fig. 5 to trigger transient execution. Specifically, we set
x to 0 and repeatedly execute the branch function to train
the conditional branch (line 4), then set x to 1 to trigger
misprediction, and evict delayed_bound from the cache to
delay branch resolution. During the transient execution caused
by the mispredicted branch, the store and load (lines 6 and
7) access the same address, and the store address is delayed
by another load (line 5). If the load updates the MDP, the
MDP will insert a new entry. We then use the stld function
with the same load tag to probe the MDP after transient
execution. Results show that a transient load can update the
MDP, indicating that the MDP is updated before the load is
committed.

store

DataData AddressPC

load

(UPDATE) when load is commi�ed

State Machine

Store Bypass

State Transfer Func�onState

Not EqualEqualValuePred

1415x=15BLK

x - 1x + 1x [2,14]BLK

Self-evic�on2x=1BLK

None14NoneSSB

no stores / not equal / equal

Load Block

ValueValidTag

...……

611ccc

...……

32 Entries

delay

Data AddressPC

(PREDICT) before store
address generated

Virtual Address LSB 15 bits

Valid ?

None

=?

=?

=?

x
External
Evic�on
(FIFO)

Tree-PLRU32

SSBBLK

Fig. 6. Overview of the reverse-engineered MDP on Neoverse-N2 CPU.
The MDP on the Cortex-X3 CPU shares a similar design but has different
parameters in tag, table size and replacement policy.

F. Summary of Reverse-engineering of MDP

In this section, we discover that Armv9 implements SSB
using an undocumented MDP, and present the first detailed
reverse engineering of the state machine, organization, re-
placement policy, and update conditions. Fig. 6 systematically
illustrates our findings using the Neoverse-N2 MDP as an
example. The MDP has a prediction table containing 32
entries. Each entry includes a tag field, a valid bit, and a value
field. The tag field stores the lowest 15 bits of the load’s IP,
allowing the MDP to make predictions for different loads. The
value field is a 4-bit counter. The counter gives the prediction
according to a state machine, and is updated based on the data
dependence between the load and preceding stores.

In particular, when the counter reaches 0, self-eviction is
triggered. In addition, if the table is full and a new entry
is inserted, external eviction occurs. Neoverse-N2 adopts the
Tree-PLRU32 replacement policy. Under external eviction, it
behaves like FIFO, while self-eviction alters the replacement
priority of entries. Cortex-X3 has a similar MDP design, but it
has 40 entries and only uses FIFO as the replacement policy.

IV. SSBLEED: OVERVIEW AND PRIMITIVES

The reverse engineering results in Section III show that the
MDP is shared between different security domains. In this
section, we show the feasibility of MDP side-channel attacks
using unpriveleged coarse-grained timers.

A. Overview of SSBleed

Section III-E shows that the MDP is shared across processes
and privileges on the same CPU. Moreover, a single load is
sufficient to update the MDP, and loads executed transiently
can also persistently update it. Therefore, the MDP can be
used to construct various control-flow and data-flow attacks.
In this work, we implement three side-channel attacks, named
SSBleed, as shown in Fig. 7.

SSBleed-v1 uses the MDP to perform cross-process, byte-
level control-flow attacks. The attack target is a secret-
dependent branch in the victim code, which includes a
load (①) in the branch path. The attacker first executes a store-
load pair with the same MDP tag as the target load, training the
counter to 15 (②). If the victim then executes the target load,
the counter of the corresponding MDP entry is decremented

Process 1 (A)

So
�

w
ar

e

ldr x1, [x0]
str x3, [x1]
ldr x4, [x2]

tbz w0, #0, L1
ldr x2, [x1]
L1: ...

if(secret)
a = A[0];

else
b = A[0];

H
ar

d
w

ar
e

Same Core

ldr x1, [x0]
str x3, [x1]
ldr x4, [x2]

tbz w0, #0, L1
ldr x2, [x1]
L1: ...

ldr x1, [x0]
str x3, [x1]
ldr x4, [x2]

tbz w0, #0, L1
ldr x2, [x1]
L1: ...

CounterTag

15…MDP

x1 x2 x1 x2

① Setup ② (A) Ini�alize ③ (V) Update ④ (A) Probe

w0 0 Process 2 (V)

CounterTag

14…

CounterTag

0…

A�ack Procedure

VA

015

114

(a) SSBleed-v1: Byte-level Control-flow A�ack

(b) SSBleed-v2: Control-flow Fingerprin�ng (c) SSBleed-v3: Transient Data-flow leakage

① Speculate ② Access secret byte X

Store array[Y]
Load array[X]

③ Encode secret to MDP

X Y:
X Y:

④ Probe MDP state

MDP

MDP

Handler 1

MDP

③ (A) Probe① (A) Ini�alize

Event

Handler 2 Handler 3 Handler n…

Event

② (V) Update

Fig. 7. Three variants of SSBleed that exploit MDP to implement cross-
process control-flow attack (a), kernel control-flow fingerprinting (b), and
transmit data-flow information during transient execution (c).

by 1 (③). Finally, the attacker probes the MDP state in its own
address space to determine whether the target load has been
executed, thereby inferring the branch direction (④).

SSBleed-v2 uses the MDP to monitor kernel behavior
from user space. Specifically, the attacker identifies loads
executed in different interrupt handlers and selects a set of
loads with distinct MDP tags. These tags are inserted into
MDP in advance (①). Then, if an external interrupt or syscall
triggers a context switch (②), the attacker monitors changes
in MDP counter values or the eviction of MDP table entries
to determine which interrupts or syscalls occur during a time
window (③).

SSBleed-v3 uses the MDP to transmit secret data obtained
via transient execution or to verify address validity. For
example, the attacker first trains a conditional branch to induce
misprediction and trigger transient execution (①). During the
transient execution, a secret byte is accessed (②). The attacker
encodes this byte into the load address (i.e., the array index) of
a store-load pair and adjusts the store address to see whether
a new MDP entry is updated due to address matching (③). If
so, the leaked byte value equals the index of the array (④).

B. Threat Model

We follow the standard threat model for single-core and
user-space attackers [14], [18], [29], [47], [65]. We assume a
user-level attacker who shares the same core with the victim.
The attacker can execute unprivileged code. On Arm CPUs,
the attacker cannot access the privileged timer PMCCNTR
for cycle-level timing and is restricted to the user-accessible
timer CNTVCT_EL0. On Microsoft Azure instances, this timer
operates at a default frequency of 1 GHz, with a precision of
1 ns. On the Pixel 8 Pro, however, the default frequency is
24.5 MHz, with a precision of about 40 ns.

For SSBleed-v1, we assume the attacker knows a secret-
dependent branch in the victim’s code through binary analysis
and has identified at least one load on the branch path.
We assume the attacker is capable of preempting the victim
to achieve the inter-process interleaving shown in Fig. 7(a),

which has been demonstrated as practical in prior work [65],
[92]. For simplification, we follow the experimental setup
in [14] where the victim voluntarily yields control for each
execution round. For SSBleed-v2, we assume the attacker
can pin their process across multiple cores. For SSBleed-
v3, we assume the attacker can inject code into the victim’s
address space (e.g., via JIT or shared libraries), which
is a common assumption in transient attacks [35]–[37].
Finally, we assume the victim system is deployed with
existing mitigations enabled, including address space layout
randomization (ASLR) and SSBS, and that other system
settings remain at default.

C. Prime and Probe Primitives

During reverse engineering, we detect whether a load
triggers SSB by observing cache states. However, as a defense
against transient attacks such as Spectre-v4 [10], Armv9 CPUs
implement the SSBS to block the data forwarding by a load
performing SSB, and thus eliminate the cache state changes
caused by the load [3]. Therefore, we require a method to
probe the MDP state even when SSBS is enabled.

Inspired by prior work [47], [58], we design the probing
primitive using mul instructions to induce port contention, as
shown in Fig. 8,. This not only delays the address generation of
the store, but also creates a timing side channel independent of
the cache to observe the MDP state. To validate the feasibility
of this primitive, we measure the timing under both MDP
states with SSBS enabled. We use a sufficient number of
muls to ensure that the timing difference is observable with
coarse-grained timers. As shown in Fig. 9, both CPUs show
measurable timing differences between the BLK and SSB
states. Under CNTVCT_EL0, Neoverse-N2 shows a difference
of about 10 ticks, and Cortex-X3 shows a difference of 2 ticks.

Further, this primitive can be used to both prime and probe
the MDP. Similar to Fig. 1, we mark x0 = x1 as SA and x0
̸= x1 as DA. We fill an MDP entry with 1 SA and initialize
the counter to 14. During probing, we execute multiple DA in
sequence and measure their execution times. According to the
state machine, if the counter value is k, then the first k DA will
be in BLK state, and the rest in SSB. We observe noticeable
slowdowns for the first k DA, allowing us to infer k.

To further confirm that the timing differences are caused
by the MDP, we conduct the following experiments. First, to
exclude the effects of prefetchers [5], we execute additional
loads before probing to ensure that both the store and load
in the mdp_probing hit the cache. Second, to exclude the
effects of other predictors, such as value predictors [35] and
address predictors [36], we randomly generate different values
for x0, x1 and [x1], while keeping x0 ̸= x1 for each
probing round. Third, to exclude the effects of speculation
in the arithmetic unit [53], we replace the mul instructions
with other arithmetic operations. Finally, we insert barrier
instructions (i.e., dsb) between the store and load. The timing
difference persists across the first three experiments, but does
not exist for the last experiment, demonstrating that the MDP
is the root cause of the observed timing variation.

1 mdp_probing:
2 // avoid semantic error of multiplication
3 mov x2, #0x1
4 // contention 1: delay store address
5 .rep 50
6 mul x0, x0, x2
7 .endr
8 str x2, [x0] // store
9 ldr x3, [x1] // load

10 // contention 2: delay memory dependency resolution
11 .rep 50
12 mul x3, x3, x2
13 .endr
14 ret

Fig. 8. A64 assembly implementation of the probe primitive to probe the
MDP current state.

Neoverse-N2 Cortex-X3

CNTVCT CNTVCT

D
en

si
ty

D
en

si
ty

Fig. 9. Timing difference between two MDP states created via port contention.

V. SSBLEED: CASE STUDIES

In this section, we demonstrate the effectiveness and
practicality of SSBleed through five real-world case studies
shown in Table III. We first show how SSBleed breaks secret-
dependent branches to leak RSA keys, proving its efficiency
in both repeatable attacks on unbalanced branch (Section V-A)
and single-trace attacks on balanced branch (Section V-B).
We then show that SSBleed can leak branchless control
flows (Section V-C), enabling real-time interrupt monitoring.
Finally, we demonstrate SSBleed’s capability to leak data
flows (Section V-D to V-E) by improving transient attacks.
Notably, all of the experiments are conducted with SSBS
enabled.

A. Attack on RSA Signature Implementation of WolfSSL

Attack Target. WolfSSL accelerates RSA signing using the
Chinese Remainder Theorem (CRT). Given a private key D,
it precomputes dP = D mod (P −1) and dQ = D mod (Q−
1), where P and Q are two large primes. It then computes
the modular exponentiations hdP mod P and hdQ mod Q
for a message hash h, and combines the results to produce
the ciphertext. When hardware acceleration is disabled, the
function shown in Fig. 10 is called to perform the modular
exponentiations, which involves multiple iterations.

In each round, the variable y scans a bit of the secret
keys, and selects an operation mode based on the bit: skipping
leading zeros (mode 0, line 15), performing squaring (mode
1, line 17), or performing both squaring and multiplication
(mode 2, lines 19 to 26). We observe that accessing variables
or calling functions causes execution of loads to access the
data from the stack, and identify one load in mode 0, one
in mode 1, and four in mode 2. These loads leak the branch
targets, directly leaking dP and dQ from y.
Attack Setup. We use the default gcc compilation options and
a 4096-bit key. Similar to prior state-of-the-art works [14],

TABLE III
OVERVIEW OF 5 SSBLEED CASE STUDIES ON CONTROL FLOW AND DATA FLOW SIDE-CHANNEL ATTACKS

Attack Information Attack Target Attack Feature*

Section Case Study Variant Victim Function Loads Leakage BL SP ST SdB BB

V-A RSA Signature v1 WolfSSL v5.7.6 Exponent Modular 6 Control Flow ✔ ✗ ✗ ✔ ✗

V-B RSA Key Generation v1 MbedTLS v3.6.2 Inverse Modular 9 Control Flow ✔ ✗ ✔ ✔ ✔

V-C Interrupt Detection v2 Linux 6.8.0-1027-azure Interrupt Handler 1 Control Flow ✔ ✗ ✔

V-D SpectreRewind-MDP v3 5.15.137-android14-11 Attacker Injected 1 Data Flow ✔ ✔

V-E TikTag-MDP v3 5.15.137-android14-11 Attacker Injected 1 Data Flow ✔ ✔

* Column 6 (Loads) shows the number of vulnerable loads used in the attack. Column 7 (Leakage) indicates the leakage type. Column 8 (BL) denotes byte-level granularity. Column
9 (SP) indicates speculative execution. Column 10 (ST) indicates a single-trace control flow side-channel attack. Column 11 (SdB) indicates the attack target is the secret-dependent
branches. Column 12 (BB) indicates the attacked branch is balanced at the source code level.

1 // X is one of the RSA keys (dP, dQ)
2 digidx = X->used - 1; // get the bit number of X->dp
3 // 0: skip leading 0s; 1: handle bit 0; 2: handle bit 1
4 mode = 0;
5 bitcnt = 1; // to iterate within each bit block
6 for (;;) { // access one bit (from MSB) in each round
7 if (--bitcnt == 0) {
8 if (digidx == -1) break;
9 buf = X->dp[digidx--];

10 bitcnt = 60;
11 }
12 y = (int)(buf >> 59) & 1;
13 buf <<= 1;
14 // secret-dependent branch 1
15 if (mode == 0 && y == 0) continue;
16 // secret-dependent branch 2
17 if (mode == 1 && y == 0)
18 ... // square function
19 mode = 2;
20 // the branch below is always taken when winside=1
21 if (1 == winsize) {
22 for (x = 0; x < winsize; x++)
23 ... // square function
24 ... // multiply function
25 mode = 1;
26 }
27 }

Fig. 10. Part of the mp_exptmod_fast function in WolfSSL v5.7.6. During
RSA signing, dP and dQ are used as exponents. The variable y scans each
bit from the most significant bit. Load instructions (lines 15, 20, 22) leak y
via conditional branches (lines 13, 14), which further leaks dP and dQ.

[22], [23], we fix the window size (i.e., winsize in Fig. 10)
to 1, ensuring that every bit affects the control flow. When
winsize is greater than 1, cache side channels are required
to leak bits within each window, which has been shown to be
feasible [48]. Using SSBleed, we track updates to the MDP
entries in each iteration to monitor the execution of 6 loads.
Experimental Results. We randomly generate 1000 RSA
keys of 4096 bits and use SSBleed to leak dP and dQ. We
evaluate the leakage accuracy and the number of incorrectly
recovered bits, as shown in Fig. 11. Without interference
from other user processes, each attack takes approximately
9.29 seconds. A single run achieves 94% accuracy, and
averaging over 5 repetitions achieves 100% accuracy. We
also evaluate the impact of compute-intensive, memory-
intensive, and I/O-intensive workloads on attack accuracy.
Compute and memory-intensive scenarios generated using
openSSL and stress-ng have minimal effect, requiring
only 10 repetitions to reach 100% accuracy. In contrast, I/O-

Accuracy on Control Flow Leakage log10(number of incorrect bits + 1)

Threshold for
Local A�acks

Threshold for
Cloud A�acks

Number of Repe��ons

Fig. 11. Evaluation of attacks on the RSA signature implementation in
WolfSSL. We test 1000 RSA keys across 4 environments, measuring control
flow recovery accuracy (solid line) and incorrect bits (dotted line) under
varying repetitions. In non-I/O-intensive settings, 10 repetitions suffice for
100% accuracy; otherwise, about 37 repetitions are needed to suppress noise.

intensive scenarios generated by iperf3 significantly lower
the accuracy, as frequent context switches may exhaust and
evict MDP entries. Under this condition, a single trace may
contain around 1000 bit errors, and more than 37 repetitions
are needed to fully recover the key.
Discussion. Instruction-level control-flow attacks on RSA
modular exponentiation typically rely on specific microarchi-
tectural features, such as Intel’s branch predictors [82], [86]
and prefetchers [14], and AMD’s scheduler [22]. Other attacks
assume privileged attackers with access to page tables [50],
interrupts [57], or performance counters [22]. On Armv9
CPUs, the microarchitectural details mentioned above remain
largely unexplored, and we assume a non-privileged threat
model. To the best of our knowledge, this is the first byte-
level control-flow attack demonstrated on Armv9.

B. Attack on RSA Key Generation of MbedTLS

Attack Target. MbedTLS uses the modular inverse algorithm
for RSA key generation. After obtaining the large primes P
and Q, MbedTLS computes the private key D by calling a
modular inverse function, where D = E−1 mod L, E is the
public exponent, and L = (P−1)(Q−1)

gcd(P−1,Q−1) .
The latest version of MbedTLS implements modular

inversion using the BEEA algorithm, as shown in Fig. 12.
It performs multiple iterations on the initial inputs E and L,
stored in variables u and v. Each iteration consists of a u-
loop (lines 2–3), a v-loop (lines 4–5), and a sub-step (lines
7–10). The u-loop and v-loop (collectively referred to as x-
loop) repeatedly right-shift u and v until their least significant

1 do { // input: u = E, and v = (P-1)(Q-1)/gcd(P-1,Q-1)
2 while((TU.p[0] & 1) == 0) // u-loop: if u % 2 == 0
3 mbedtls_mpi_shift_r(&TU, 1); // u = u >> 1
4 while((TV.p[0] & 1) == 0) // v-loop: if v % 2 == 0
5 mbedtls_mpi_shift_r(&TV, 1); // v = v >> 1
6 // sub-step: if u >= v
7 if (mbedtls_mpi_cmp_mpi(&TU, &TV) >= 0)
8 mbedtls_mpi_sub_mpi(&TU, &TU, &TV); // u -= v
9 else // u < v

10 mbedtls_mpi_sub_mpi(&TV, &TV, &TU); // v -= u
11 } while (mbedtls_mpi_cmp_int(&TU, 0) != 0);

Fig. 12. Part of the mbedtls_mpi_inv_mod function in MbedTLS v3.6.2.
During RSA key generation, the private key D is computed as E−1 mod L.
Load instructions in lines 3, 7, 11 and 14 leak the number of iterations of
the u-loop (line 2) and v-loop (line 6), and the execution path of the sub-step
(line 10), which further leaks P and Q.

bit is set to 1. The sub-step is a balanced branch (i.e., both
branches execute the same code) that subtracts the smaller
of u or v from the larger one and updates the corresponding
variable. Each direction of the u-loop, v-loop, and sub-step
contains three loads that access the return values and invoke
MBEDTLS_MPI_CHK to verify the results. These loads leak
the direction of three secret-dependent branches (lines 2, 4,
and 7), which can be used to reconstruct L and ultimately
recover the primes P and Q.
Attack Setup. Aligned with prior state-of-the-art works [45],
[57], we use the latest version of MbedTLS to generate
2048-bit RSA keys. After leaking the control flow, we
derive P and Q from L based on methods established in
previous research [45]. Compared to modular exponentiation
in Section V-A, RSA key generation invokes the inverse
modular function only once to compute the private key,
meaning that only a single trace is available for recovery.
This significantly increases the attack difficulty. However,
our results show that by using SSBleed and exploiting
mathematical properties to reduce measurement noise, an
effective userspace attack is still achievable.
Noise Reduction. For attacks on the modular inversion
algorithm, 100% accuracy from a single trace is required.
Otherwise, the correct L cannot be recovered. To achieve
this, we perform four analysis passes, exploiting control-flow
correlations to reduce noise and obtain the final result.

In the first pass, we identify the control flow in each iteration
by analyzing which of the 12 loads are executed. In the second
pass, we exploit a property: between any two adjacent sub-
step operations, there must exist an x-loop, and only one
of u-loop or v-loop is executed. Based on this property, we
segment control flow using sub-step as boundaries and correct
the control flow between adjacent sub-steps to either u-loop
or v-loop. In the third pass, we exploit another key property:
if the sub-step branch is taken, the next iteration must execute
a u-loop. Otherwise, it must execute a v-loop. This correlation
enables us to refine the classification of the previous sub-step
based on the following x-loop, and vice versa.

In the final pass, we enumerate the remaining uncertain
control-flow cases, i.e., those in which the observed loads does
not match any known pattern. If the number of possibilities

Analysis Pass 1 Analysis Pass 2 Analysis Pass 3 Analysis Pass 4

Control Flow Recovery Error or Uncertainty Rate

Control Flow Recovery Error or Uncertainty Rate

D
en

si
ty

Fig. 13. Evaluation of attacks on RSA key generation in MbedTLS. Control
flow recovery improves with each analysis pass. Out of 1000 RSA keys, 615
are successfully recovered. The remaining 385 fail due to early termination
in pass 3 or persistent noise that cannot be reduced in pass 4.

is fewer than 64, we exhaustively enumerate all options and
retain only those leading to valid prime values for P and Q.
If the candidates exceeds this threshold, we terminate early,
as the noise cannot be effectively eliminated. In practice, the
attacker can relax this constraint and increase enumeration
time to improve the likelihood of successful key recovery.
Experimental Results. We randomly generate 1000 RSA
keys of 2048 bits and use SSBleed to leak the control flow
of the modular inversion. After four passes of analysis, we
successfully recover 615 keys, i.e., we achieve 100% single-
trace control flow recovery accuracy for these keys. On
average, 10 control-flow candidates are evaluated per key. Each
candidate takes approximately 9.19 seconds to verify, resulting
in an average recovery time of around 90 seconds per key.

We further evaluate the control-flow error rate across all
1000 traces after each analysis pass, as shown in Fig. 13.
Without the noise reduction process, the initial trace error
rate ranges from 15% to 20%. The error rate decreases after
each pass of analysis, with the third pass contributing the
most significant improvement. Among the unrecovered keys,
369 are terminated early during the third pass due to an
excessive number of candidates. The remaining 16 keys are
not leaked successfully due to unrecoverable noise. In practice,
attackers can increase the enumeration threshold to improve
key recovery success at the cost of longer runtime.
Discussion. Attacks on RSA modular inversion require high
noise resilience, as only a single trace is available. Existing
attacks [45], [50], [57] often rely on privileged access
to page tables to infer the number of x-loops, since x-
loops are unbalanced branches that trigger additional page
accesses when taken. Compared to these attacks, SSBleed
observes load executions to leak x-loop counts. For sub-step
identification, prior works typically require specific compiler
options to emit store [57] or store-load pairs [45], enabling
microarchitectural side channels to track memory accesses.
SSBleed only relies on the presence of a single load along
the branch path, demonstrating strong noise resistance and
significantly expanding the attack surface of real-world code.

C. Interrupt Detection

Interrupt Side Channels. Interrupts are a well-established
shared resource for side channel attacks [12], [59], [60], [66],

Network Traffic

Execu�on Time of the Vic�m (s)

Rela�ve Timing Difference (�cks)

Tracked Network Interrupts

Not detected

Detected

Threshold

Fig. 14. Evaluation of interrupt side channels. This side channel successfully
distinguishes network interrupts from other events, including memory
allocation, file operations, and idle states.

[76], [88], [90]. They can be detected by an unprivileged
attacker via architectural or microarchitectural changes. Such
attacks can leak user activities such as keystrokes [59],
[60], [66], [76] and network traffic [12], [88], [90]. Among
existing interrupt detection techniques, only LeakIDT [76]
can spy on specific types of interrupts, and the rest merely
detect the presence of an interrupt. However, LeakIDT [76]
depends on x86-specific features (e.g., interrupt descriptor
table), rendering it inapplicable to Arm architectures.
Attack Setup. We demonstrate that SSBleed goes beyond
basic interrupt detection by accurately identifying specific
types of interrupts among a wide range of context-switching
events. Specifically, on Linux kernel versions listed in
Table III, we trigger different types of interrupts and syscalls,
and profile all MDP tags to identify loads that are executed
only in specific interrupt handlers. As a case study, we focus
on the network interrupt handler, identifying a set of unique
load tags used exclusively by that handler. Using the process
in Fig. 7(b), we initialize and probe the corresponding MDP
entries from a user process. If we observe changes in any of
the selected tags, we infer that the network interrupt occurs
and that the handler is executed.
Experimental Results. Over a time window of 3600 µs, we
randomly trigger 16 interrupts and 25 noisy context switches
while using SSBleed to continuously monitor the execution of
the network interrupt handler. The experiment consists of 100
probes, corresponding to a detection resolution of 27.78 kHz.
As shown in Fig. 14, SSBleed accurately detects network
interrupts with µs-level granularity while suppressing noise
from other context switches, which is fast enough to track
network packets in real world applications [12]. The results
show an accuracy of 97%.

D. Improvement of SpectreRewind

SpectreRewind. SpectreRewind [21] is the first transient
attack on Arm CPUs that does not rely on caches. As shown
in Fig. 15(a), the attacker first trains the branch predictor to
trigger a misprediction, and then executes a sequence of fdiv
instructions to delay branch resolution. During the transient
execution, the attacker accesses a secret bit and, depending
on whether the bit is 1, issues another sequence of fdivs to
introduce contention. Finally, the total execution time of the
transient execution is measured, and longer latency indicates
that the secret bit is 1. We reproduce SpectreRewind on

① Issue divs
to FPU

② Specula�vely access
secret bit X and issue divs

Division requests Division requests

FPU if X 1

Conten�on

③ Timing the whole
specula�ve window to
probe FPU port conten�on

X=1 / X=0
Timing difference:
~ 2 cycles = 4 ns

① Issue divs
to FPU

② Specula�vely access
secret bit X and issue divs

Division requests Division requests

FPU if X 1

Compute Y

③ Transcode delay to MDP

Store array[Y]
Load array[Z] MDP

④ Probe MDP state

Z = Y X=1: 14; X=0: 0

X=1 / X=0 Timing difference: ~ 700 ns

(a) SpectreRewind (b) SpectreRewind-MDP

Fig. 15. Basic principle of SpectreRewind (a) and our improvement (b). Using
MDP, we transcode transient contention on the division unit into persistent
MDP state changes, amplifying the timing difference from 4 ns to 700 ns,
making it distinguishable in user space.

Cortex-X3 and observe that the timing difference caused by
contention is below the resolution of CNTVCT_EL0, making
the attack infeasible in user space.
Attack Improvement. In this work, we improve Spectre-
Rewind using the MDP. As shown in Fig. 15(b), within the
transient window, we insert a store-load pair with the same
address. We use fdivs to delay the store’s address generation.
If the secret bit is 1, contention on the division unit delays the
store address, activating the MDP and inserting a new entry
for the load. If the bit is 0, the store is not delayed and the
MDP is not updated. After the transient execution, the attacker
probes the MDP and infers the secret bit.
Experimental Results and Discussion. We implement the
enhanced SpectreRewind on Cortex-X3. Using our MDP
probing primitive, we distinguish between counter values 14
and 0, with a timing difference of 16 ticks, clearly observable
in user space. Our proof-of-concept achieves over 98.7%
accuracy and a leakage rate of 12.8 kbps with only a single
attack (i.e., repetitions to reduce noise are not required).
Similar to other transient attacks [24], [35], [36], practical
exploit scenarios include leaking secrets from browser space or
bypassing ASLR. We leave these exploitation as future work.

E. Improvement of TikTag

TikTag. TikTag exploits transient execution to break Arm’s
Memory Tagging Extension (MTE) [37]. MTE appends a 4-
bit tag to the upper bits of a pointer and verifies tag correctness
during memory accesses [3]. On failure, it raises an exception
to defend against memory corruption attacks. However, if
the access occurs during transient execution, no exception is
raised, and the validity of the address affects the length of
the transient window. As shown in Fig. 16(a), the attacker
speculatively accesses a guessed tagged address, followed by
another access with a valid address. If the tag guess is correct,
the second address is prefetched and cached [37]. Through
a cache side channel, the attacker can enumerate all 16 tag
values to infer the correct one. TikTag relies on the prefetch,
requiring extensive pre-training to ensure both speculation and
prefetch are triggered. We reproduce TikTag on Cortex-X3 and
observe that it requires over 80 training iterations and 100
repetitions per guess to reach reliable inference.
Attack Improvement. We observe that TikTag’s high
overhead stems from prefetcher noise. To address this, we

① Trigger
Specula�on

② Access address X with a
guessed tag Tag

③ Access a tested and
cache-missed address Y

X

Cache
Y

④ Probe Cache state

Tag
Match: Y Cache Hit

Not Match: Y Cache Miss

① Trigger
Specula�on

② Access address X with a
guessed tag Tag

③

X

Tag
Match: 14

Not Match: 0Delayed Y
Store array[Y]
Load array[Z] MDP

④ Probe MDP state

(a) TikTag (b) TikTag-MDPNoise from Prefetcher

Fig. 16. Basic principle of TikTag (a) and our improvement (b). We replace
the cache side channel with MDP to effectively suppress noise from the
prefetcher, achieving high accuracy with fewer training and probing attempts.

A
cc

u
ra

cy

Itera�on on Training

Repe��on: 1 Repe��on: 10 Repe��on: 100

Itera�on on Training Itera�on on Training

Fig. 17. Evaluation of the improved TikTag. Compared to the cache side
channel (baseline), using MDP significantly improves accuracy with fewer
repetitions and minimal training iterations.

replace the prefetch-based channel with the MDP side channel.
As shown in Fig. 16(b), after accessing the guessed address,
we insert a store-load pair. The store-load pair executes
transiently and updates the MDP only if the guess is correct.
Experimental Results and Discussion. We implement the
improved TikTag on Cortex-X3. As shown in Fig. 17,
our method achieves 100% accuracy with only 8 pre-
training iterations and a single trial. The 8 iterations are
needed to induce branch misprediction. Reducing training
and repetition times lowers the attack’s detectability and
complicates sampling-based defenses [52], [89].

F. Discussion

Other Exploitations of SSBleed. As a new leakage source
on Armv9, MDP can cross security-domain boundaries, such
as sandbox and virtual machine, which gives it practical
impact on real systems. At the system level, SSBleed-v1 can
also break certain system-level defenses such as ASLR [74]
and KASLR [33]. Moreover, by exploiting speculative
execution, SSBleed-v3 can undermine Arm-specific pointer-
safety defenses such as Pointer Authentication [61], enabling
classic memory vulnerabilities to be re-exploited on Armv9
platforms. At the compiler level, SSBleed-v2 can be adapted
to infer the function call chain, because compilers may
insert additional loads at different instructions when handling
function calls with more than eight arguments, large structs,
or variadic arguments. At the application level, SSBleed-
v1 and v3 can achieve effects on exfiltrating secrets from
sandboxes and VMs [25], breaking other control-flow-
dependent cryptographic algorithms such as post-quantum
schemes [23], and leaking partial tokens fed to LLMs [34].
Comparison with Other Potential Leakage Sources.
Although components such as branch predictors [82], [86] and
prefetchers [14], [65] on x86 can enable similarly fine-grained
control-flow attacks, additional reverse engineering efforts are
required for Armv9 branch predictors and prefetchers. Similar

TABLE IV
EVALUATION OF PERFORMANCE OVERHEAD OF DEFENSE IN SPEC2017

Benchmark ID 500 502 503 505 508 510 519
Overhead / % 1.02 0.00 0.00 0.40 0.00 0.00 0.00
Benchmark ID 520 523 525 531 541 544 557
Overhead / % 1.83 0.86 0.72 0.42 0.00 0.00 1.15

attacks may also be implemented with other predictors such
as address predictors [36] and value predictors [35], but a
more comprehensive reverse engineering of these predictors is
required on Armv9 CPUs. Finally, compared with established
microarchitectural side channels, SSBleed achieves byte-
granularity control-flow leakage, which is substantially finer
than that of cache [43] (64 B) or TLB [61] (4 KB).

VI. MITIGATION

Our study shows that existing defenses are ineffective
against SSBleed. For example, although ASLR randomizes
the load IP, it does not affect the lower 16 bits used by
the MDP as the tag. In addition, although SSBS prevents
speculative loads from leaking data [3], it does not block the
attack primitives described in Section IV. A straightforward
defense would be to adjust SSBS to either completely disable
SSB or entirely disable the MDP, similar to the SSBS
design on Armv8 CPUs [46]. While effective, this approach
incurs significant performance overhead and would require a
hardware or microcode update.
Our Defense. We propose a software defense that prevents
cross-process and cross-privilege SSBleed attacks. Inspired by
prior research [14], [82], [86], we implement a kernel patch
to flush the MDP during context switches, thereby preventing
MDP state from leaking across processes or privileges. Based
on our reverse-engineering results, we prepare s store-load
pairs in the kernel with distinct load tags, where s is the
number of entries in MDP. We first execute each store-load
pair with 3 SA to evict the existing MDP entries via the
external eviction. Then, for each store-load pair, we follow
with 15 DA to trigger self-eviction. This ensures a full flush
of the MDP.
Results and Discussion. We deploy this defense on the
Microsoft Azure D2ps v6 instance and observe that all cross-
process and cross-privilege attacks are no longer effective. We
also evaluate the performance overhead using SPEC2017, with
results shown in Table IV. The geometric mean performance
overhead is below 0.46%, which is acceptable in most
scenarios. To further show the effectiveness, we use a
Armv8 machine with the interface to fully disable the MDP,
and evaluate the performance with MDP on and off using
SPEC2017. Disabling MDP caused an average overhead of
4.3% (500.perlbench r reaches 12%), indicating that even if
the MDP can be fully diablsed on Armv9, the performance
overhead are non-negligible.
Other Software Defenses. For SSBleed-v1 and v2, the loads
from different program paths can be merged to eliminate
control-flow leakage [44]. For SSBleed-v3, the gadgets with

TABLE V
COMPARISON OF MDP SECURITY ON DIFFERENT ARCHITECTURES

Architecture
MDP Features and Security

State
Machine

Entry
Collision

Single
Load

SSBD/SSBS
Bypass

Intel [58] ✔ ✔ ✗ ✗
AMD [47] ✔ ✔ ✗ ✗

Armv8 [46] ✗ ✔ ✗ ✗
Armv9 (This Work) ✔ ✔ ✔ ✔

store-load pairs can be detected with software analysis, and
barriers can be inserted to block potential leakage [54], [91].
Other Hardware Defenses. SSBleed-v1 and v2 can be
mitigated using partitioning [84], randomization [77], or
context-switch flushing [75], while SSBleed-v3 can be
mitigated by delaying speculative commits [87]. More broadly,
secure microarchitectures should isolate components across
domains and prevent speculative updates to shared states,
though approaches incur notable performance overhead. We
leave hardware implementation for future work.

VII. RELATED WORK

A. MDP Research on Other Architecture

Prior to this work, several studies have investigated MDP-
like structures on other CPU architectures. Ragab et al. [58]
present the first systematic reverse engineering of Intel’s
Memory Disambiguation Unit (MDU), demonstrating its
exploitation in a cross-process Spectre-v4 attack. Liu et
al. [45] further show that MDU is not isolated in Intel SGX,
and propose a control-flow attack named MDPeek. Liu et
al. [47] also identify two similar predictors on AMD Zen 3
CPUs, used for predictive store-to-load forwarding and SSB,
respectively. Based on these predictors, they propose an out-
of-place Spectre-v4 attack. Additionally, they find that Armv8
CPUs include an MDP without a complex state machine [46].

Compared to the previous studies, this work is the first
to uncover and reverse-engineer the MDP on Armv9 CPUs.
We find that the Armv9 MDP employs a novel fully-
associative design and poses more severe security risks than
similar predictors on other architectures, which is summarized
in Table V. First, Armv9’s MDP enables non-speculative
side-channel attacks, giving it security implications beyond
transient attacks. Second, while SSB predictors on Armv8
and x86 can be disabled via SSBS or SSBD [32], [46],
[47], Armv9’s MDP remains active even when SSBS is
enabled, making SSBleed unmitigated by existing defenses.
Third, MDPeek [45] requires a store-load pair inside SGX
enclaves to detect load execution. In contrast, SSBleed detects
a single load from user space, significantly expanding the
attack surface for control-flow leakage.

B. Other Optimization of Load Instruction on Arm CPUs

In addition to the MDP, Arm and Apple CPUs also
employ various mechanisms to accelerate load execution. To
reduce cache misses, Arm and Apple introduce several data

prefetchers, including stride prefetcher [13], Spatial Memory
Stream (SMS) prefetcher [65], and Data Memory-dependent
Predictor (DMP) [11], [74]. In addition, Kim et al. [36]
discover a Load Address Predictor (LAP) and a Load Value
Predictor (LVP) [35] on Apple CPUs that optimize loads.
These mechanisms expose various security vulnerabilities and
have been exploited in side-channel attacks. By studying the
MDP, this work broadens the attack surface and presents
the first byte-level control-flow attack on Armv9, while also
significantly enhancing the practicality of several existing
transient attacks. The MDP exhibits better noise resistance
when compared to the cache [43], prefetcher [37], [65] and
other known side channels on Arm CPUs.

VIII. CONCLUSION

In this work, we discover that Armv9 CPUs implement
Speculative Store Bypass (SSB) using a previously undocu-
mented predictor, the Memory Dependence Predictor (MDP).
We reverse-engineer its design, including the state machine,
organization, and replacement policy. We also identify that
the MDP is shared across processes and privilege levels, can
be updated by loads without preceding stores, and can be
updated during transient execution. Based on these findings,
we propose SSBleed, the first non-speculative side-channel
attack exploiting MDP. We demonstrate its effectiveness and
practicality through 5 case studies targeting both control-flow
and data-flow leakage. Finally, we propose a software defense
that flushes MDP on context switches.

ACKNOWLEDGEMENT

We would like to thank the anonymous reviewers and AE
reviewers for their valuable comments. This work was partially
supported by the Singapore Ministry of Education (Award
No. MOE-T2EP20222-0007). Chang Liu was supported by
the China Scholarship Council (Student No. 202406210249),
and conducted this research during his visit to NUS, hosted
by Professor Trevor E. Carlson.

REFERENCES

[1] A. Abel and J. Reineke, “Measurement-based Modeling of the Cache
Replacement Policy,” in Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2013, pp. 65–74.

[2] AMD, “Security Analysis of AMD Predictive
Store Forwardind,” 2023. [Online]. Available: https:
//www.amd.com/content/dam/amd/en/documents/processor-tech-docs/
white-papers/security-analysis-of-amd-predictive-store-forwarding.pdf

[3] Arm, “Arm Architecture Reference Manual for A-profile architecture.”
[Online]. Available: https://developer.arm.com/documentation/ddi0487/
latest

[4] Arm, “Arm Cortex-X3 Core Technical Reference Manual.” [Online].
Available: https://developer.arm.com/documentation/101593/0102

[5] Arm, “Arm Neoverse N2 Core Technical Reference Manual r0p3.”
[Online]. Available: https://developer.arm.com/documentation/102099/
0003

[6] E. Barberis, P. Frigo, M. Muench, H. Bos, and C. Giuffrida, “Branch
History Injection: On the Effectiveness of Hardware Mitigations Against
Cross-Privilege Spectre-v2 Attacks,” in USENIX Security Symposium
(USENIX Security), 2022, pp. 971–988.

https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/white-papers/security-analysis-of-amd-predictive-store-forwarding.pdf
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/white-papers/security-analysis-of-amd-predictive-store-forwarding.pdf
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/white-papers/security-analysis-of-amd-predictive-store-forwarding.pdf
https://developer.arm.com/documentation/ddi0487/latest
https://developer.arm.com/documentation/ddi0487/latest
https://developer.arm.com/documentation/101593/0102
https://developer.arm.com/documentation/102099/0003
https://developer.arm.com/documentation/102099/0003

[7] M. Behnia, P. Sahu, R. Paccagnella, J. Yu, Z. N. Zhao, X. Zou,
T. Unterluggauer, J. Torrellas, C. Rozas, A. Morrison et al., “Speculative
Interference Attacks: Breaking Invisible Speculation Schemes,” in
Proceedings of the International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2021,
pp. 1046–1060.

[8] A. Bhattacharyya, A. Sandulescu, M. Neugschwandtner, A. Sorniotti,
B. Falsafi, M. Payer, and A. Kurmus, “SMoTherSpectre: Exploiting
Speculative Execution through Port Contention,” in Conference on
Computer and Communications Security (CCS), 2019, pp. 785–800.

[9] C. Canella, D. Genkin, L. Giner, D. Gruss, M. Lipp, M. Minkin,
D. Moghimi, F. Piessens, M. Schwarz, B. Sunar et al., “Fallout: Leaking
Data on Meltdown-resistant CPUs,” in Conference on Computer and
Communications Security (CCS), 2019, pp. 769–784.

[10] C. Canella, J. Van Bulck, M. Schwarz, M. Lipp, B. Von Berg, P. Ortner,
F. Piessens, D. Evtyushkin, and D. Gruss, “A Systematic Evaluation
of Transient Execution Attacks and Defenses,” in USENIX Security
Symposium (USENIX Security), 2019, pp. 249–266.

[11] B. Chen, Y. Wang, P. Shome, C. Fletcher, D. Kohlbrenner,
R. Paccagnella, and D. Genkin, “GoFetch: Breaking Constant-
Time Cryptographic Implementations Using Data Memory-Dependent
Prefetchers,” in USENIX Security Symposium (USENIX Security), 2024,
pp. 1117–1134.

[12] Y. Chen, A. Hajiabadi, L. Pei, and T. E. Carlson, “PrefetchX:
Cross-Core Cache-Agnostic Prefetcher-based Side-Channel Attacks,” in
International Symposium on High-Performance Computer Architecture
(HPCA), 2024, pp. 395–408.

[13] Y. Chen, A. Pashrashid, Y. Wu, and T. E. Carlson, “Prime+Reset: Intro-
ducing A Novel Cross-World Covert-Channel Through Comprehensive
Security Analysis on ARM TrustZone,” in Design, Automation & Test
in Europe Conference & Exhibition (DATE), 2024, pp. 1–6.

[14] Y. Chen, L. Pei, and T. E. Carlson, “AfterImage: Leaking Control Flow
Data and Tracking Load Operations via the Hardware Prefetcher,” in
Proceedings of the International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2023,
pp. 16–32.

[15] Y. C. Chou, D. Chandra, M. Agarwal, and H. Jia, “Shared Learning
Table for Load Value Prediction and Load Address Prediction,” 2024,
US Patent 18/764,611.

[16] Y. C. Chou, V. Gautam, W.-H. Lien, K. N. Kothari, and M. Agarwal,
“Early Load Execution via Constant Address and Stride Prediction,”
2023, US Patent 11,829,763.

[17] G. Z. Chrysos and J. S. Emer, “Memory Dependence Prediction Using
Store Sets,” in Proceedings of the Annual International Symposium on
Computer Architecture (ISCA), 1998.

[18] S. Deng, B. Huang, and J. Szefer, “Leaky Frontends: Security
Vulnerabilities in Processor Frontends,” in International Symposium on
High-Performance Computer Architecture (HPCA), 2022, pp. 53–66.

[19] K. Evgeni, S. Guillermo, M. Idan, and D. Jacob, “Counter-
based Memory Disambiguation Techniques for Selectively Predicting
Load/store Conflicts,” 2009, US Patent 7,590,825.

[20] D. Evtyushkin, R. Riley, N. C. Abu-Ghazaleh, ECE, and D. Ponomarev,
“BranchScope: A New Side-Channel Attack on Directional Branch Pre-
dictor,” in Proceedings of the International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
2018, pp. 693–707.

[21] J. Fustos, M. Bechtel, and H. Yun, “SpectreRewind: Leaking Secrets
to Past Instructions,” in Proceedings of the Workshop on Attacks and
Solutions in Hardware Security (ASHES), 2020, pp. 117–126.

[22] S. Gast, J. Juffinger, M. Schwarzl, G. Saileshwar, A. Kogler, S. Franza,
M. Köstl, and D. Gruss, “SQUIP: Exploiting the Scheduler Queue
Contention Side Channel,” in Symposium on Security and Privacy
(S&P), 2023, pp. 2256–2272.

[23] S. Gast, H. Weissteiner, R. L. Schröder, and D. Gruss, “CounterSEVeil-
lance: Performance-Counter Attacks on AMD SEV-SNP,” in Network
and Distributed System Security Symposium (NDSS), 2025.

[24] E. Göktas, K. Razavi, G. Portokalidis, H. Bos, and C. Giuffrida,
“Speculative Probing: Hacking Blind in the Spectre Era,” in Conference
on Computer and Communications Security (CCS), 2020, pp. 1871–
1885.

[25] J. Graf, S. Rüegge, A. Hajiabadi, and K. Razavi, “VMScape:
Exposing and Exploiting Incomplete Branch Predictor Isolation in Cloud
Environments: Exposing and Exploiting Incomplete Branch Predictor

Isolation in Cloud Environments,” in Symposium on Security and Privacy
(S&P), 2026.

[26] B. Gras, K. Razavi, H. Bos, and C. Giuffrida, “Translation Leak-aside
Buffer: Defeating Cache Side-channel Protections with TLB Attacks,”
in USENIX Security Symposium (USENIX Security), 2018, pp. 955–972.

[27] D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+Flush: A Fast
and Stealthy Cache Attack,” in International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment (DIMVA), 2016,
pp. 279–299.

[28] L. Hetterich and M. Schwarz, “Branch Different - Spectre Attacks on
Apple Silicon,” in International Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment (DIMVA), 2022, pp. 116–
135.

[29] L. Hetterich, F. Thomas, L. Gerlach, R. Zhang, N. Bernsdorf,
E. Ebert, and M. Schwarz, “ShadowLoad: Injecting State into Hardware
Prefetchers,” in Proceedings of the International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2025, pp. 1060–1075.

[30] T. Huo, X. Meng, W. Wang, C. Hao, P. Zhao, J. Zhai, and M. Li,
“Bluethunder: A 2-level Directional Predictor Based Side-Channel
Attack against SGX,” IACR Transactions on Cryptographic Hardware
and Embedded Systems (CHES), pp. 321–347, 2020.

[31] Intel, “Fast Store Forwarding Predictor.” [Online].
Available: https://www.intel.com/content/www/us/en/developer/
articles/technical/software-security-guidance/technical-documentation/
fast-store-forwarding-predictor.html

[32] Intel, “Speculative Store Bypass.” [Online]. Available:
https://www.intel.com/content/www/us/en/developer/articles/technical/
software-security-guidance/advisory-guidance/speculative-store-bypass.
html

[33] H. Jang, T. Kim, and Y. Shin, “SysBumps: Exploiting Speculative
Execution in System Calls for Breaking KASLR in macOS for Apple
Silicon,” in Conference on Computer and Communications Security
(CCS), 2024, pp. 64–78.

[34] G. Jia, A. Wong, and A. Khandelwal, “Found in Translation: A
Generative Language Modeling Approach to Memory Access Pattern
Attacks,” in USENIX Security Symposium (USENIX Security), 2025, pp.
7957–7975.

[35] J. Kim, J. Chuang, D. Genkin, and Y. Yarom, “FLOP: Breaking the
Apple M3 CPU via False Load Output Predictions,” in USENIX Security
Symposium (USENIX Security), 2025, pp. 2095–2164.

[36] J. Kim, D. Genkin, and Y. Yarom, “SLAP: Data Speculation Attacks via
Load Address Prediction on Apple Silicon,” in Symposium on Security
and Privacy (S&P), 2025, pp. 3549–3566.

[37] J. Kim, J. Park, S. Roh, J. Chung, Y. Lee, T. Kim, and B. Lee,
“TikTag: Breaking ARM’s Memory Tagging Extension with Speculative
Execution,” in Symposium on Security and Privacy (S&P), 2025, pp.
4063–4081.

[38] S. S. Kim and A. Ros, “Effective Context-Sensitive Memory Depen-
dence Prediction,” in International Symposium on High-Performance
Computer Architecture (HPCA), 2024, pp. 515–527.

[39] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas,
M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and
Y. Yarom, “Spectre Attacks: Exploiting Speculative Execution,” in
Symposium on Security and Privacy (S&P), 2019, pp. 1–19.

[40] L. Li, H. Yavarzadeh, and D. Tullsen, “Indirector: High-Precision Branch
Target Injection Attacks Exploiting the Indirect Branch Predictor,” in
USENIX Security Symposium (USENIX Security), 2024, pp. 2137–2154.

[41] Linux, “MDS - Microarchitectural Data Sampling,” 2019. [Online].
Available: https://www.kernel.org/doc/html/next/admin-guide/hw-vuln/
mds.html

[42] M. H. Lipasti, C. B. Wilkerson, and J. P. Shen, “Value Locality and
Load Value Prediction,” in Proceedings of the International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 1996, pp. 138–147.

[43] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard,
“ARMageddon: Cache Attacks on Mobile Devices,” in USENIX Security
Symposium (USENIX Security), 2016, pp. 549–564.

[44] C. Liu, S. Feng, Y. Li, D. Wang, and T. E. Carlson, “HoBBy: Hardening
Unbalanced Branches against Control Flow Attacks on Intel SGX and
AMD SEV,” in Design Automation Conference (DAC), 2025, pp. 1–7.

[45] C. Liu, S. Feng, Y. Li, D. Wang, W. He, Y. Lyu, and T. E.
Carlson, “MDPeek: Breaking Balanced Branches in SGX with Memory
Disambiguation Unit Side Channels,” in Proceedings of the International

https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/fast-store-forwarding-predictor.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/fast-store-forwarding-predictor.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/fast-store-forwarding-predictor.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/speculative-store-bypass.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/speculative-store-bypass.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/speculative-store-bypass.html
https://www.kernel.org/doc/html/next/admin-guide/hw-vuln/mds.html
https://www.kernel.org/doc/html/next/admin-guide/hw-vuln/mds.html

Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2025, pp. 622–638.

[46] C. Liu, Y. Lyu, H. Wang, P. Qiu, D. Ju, G. Qu, and D. Wang,
“Leaky MDU: ARM Memory Disambiguation Unit Uncovered and
Vulnerabilities Exposed,” in Design Automation Conference (DAC),
2023, pp. 1–6.

[47] C. Liu, D. Wang, Y. Lyu, P. Qiu, Y. Jin, Z. Lu, Y. Zhang, and
G. Qu, “Uncovering and Exploiting AMD Speculative Memory Access
Predictors for Fun and Profit,” in International Symposium on High-
Performance Computer Architecture (HPCA), 2024, pp. 31–45.

[48] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-Level Cache
Side-Channel Attacks are Practical,” in Symposium on security and
privacy (S&P), 2015, pp. 605–622.

[49] Mbed TLS, “Mbed TLS Version 3.6.2,” 2025. [Online]. Available:
https://github.com/Mbed-TLS/mbedtls/tree/v3.6.2

[50] D. Moghimi, J. Van Bulck, N. Heninger, F. Piessens, and B. Sunar,
“CopyCat: Controlled Instruction-Level Attacks on Enclaves,” in
USENIX Security Symposium (USENIX Security), 2020, pp. 469–486.

[51] K. H. Mose, S. S. Kim, A. Ros, T. M. Jones, and R. D. Mullins,
“MASCOT: Predicting Memory Dependencies and Opportunities for
Speculative Memory Bypassing,” in International Symposium on High-
Performance Computer Architecture (HPCA), 2025, pp. 59–71.

[52] M. Mushtaq, A. Akram, M. K. Bhatti, M. Chaudhry, V. Lapotre, and
G. Gogniat, “NIGHTs-WATCH: A Cache-Based Side-Channel Intrusion
Detector using Hardware Performance Counters,” in Proceedings of
the International Workshop on Hardware and Architectural Support for
Security and Privacy (HASP), 2018, pp. 1–8.

[53] O. Oleksenko, M. Guarnieri, B. Köpf, and M. Silberstein, “Hide and
Seek with Spectres: Efficient discovery of speculative information leaks
with random testing,” in Symposium on Security and Privacy (S&P),
2023, pp. 1737–1752.

[54] O. Oleksenko, B. Trach, M. Silberstein, and C. Fetzer, “SpecFuzz:
Bringing Spectre-type vulnerabilities to the surface,” in USENIX Security
Symposium (USENIX Security), 2020, pp. 1481–1498.

[55] L. E. Olson, Y. Eckert, and S. Manne, “Specialized Memory
Disambiguation Mechanisms for Different Memory Read Access Types,”
2016, US Patent 9,524,164.

[56] A. Perais and A. Seznec, “Cost Effective Speculation with the
Omnipredictor,” in Proceedings of the International Conference on
Parallel Architectures and Compilation Techniques (PACT), 2018, pp.
1–13.

[57] I. Puddu, M. Schneider, M. Haller, and S. Čapkun, “Frontal Attack:
Leaking Control-Flow in SGX via the CPU Frontend,” in USENIX
Security Symposium (USENIX Security), 2021, pp. 663–680.

[58] H. Ragab, E. Barberis, H. Bos, and C. Giuffrida, “Rage Against the
Machine Clear: A Systematic Analysis of Machine Clears and Their
Implications for Transient Execution Attacks,” in USENIX Security
Symposium (USENIX Security), 2021, pp. 1451–1468.

[59] F. Rauscher and D. Gruss, “Cross-Core Interrupt Detection: Exploiting
User and Virtualized IPIs,” in Conference on Computer and Communi-
cations Security (CCS), 2024, pp. 94–108.

[60] F. Rauscher, A. Kogler, J. Juffinger, and D. Gruss, “IdleLeak: Exploiting
Idle State Side Effects for Information Leakage,” in Network and
Distributed System Security Symposium (NDSS), 2024.

[61] J. Ravichandran, W. T. Na, J. Lang, and M. Yan, “PACMAN:
Attacking ARM Pointer Authentication with Speculative Execution,”
in Proceedings of the Annual International Symposium on Computer
Architecture (ISCA), 2022, pp. 685–698.

[62] G. Reinman and B. Calder, “Predictive Techniques for Aggressive Load
Speculation,” in Proceedings of the Annual International Symposium on
Microarchitecture (MICRO), 1998, pp. 127–137.

[63] X. Ren, L. Moody, M. Taram, M. Jordan, D. M. Tullsen, and A. Venkat,
“I See Dead µops: Leaking Secrets via Intel/AMD Micro-Op Caches,”
in Proceedings of the Annual International Symposium on Computer
Architecture (ISCA), 2021, pp. 361–374.

[64] S. Rüegge, J. Wikner, and K. Razavi, “Branch Privilege Injection:
Compromising Spectre v2 Hardware Mitigations by Exploiting Branch
Predictor Race Conditions,” in USENIX Security Symposium (USENIX
Security), 2025.

[65] T. Schlüter, A. Choudhari, L. Hetterich, L. Trampert, H. Nemati,
A. Ibrahim, M. Schwarz, C. Rossow, and N. O. Tippenhauer, “Fetch-
Bench: Systematic Identification and Characterization of Proprietary
Prefetchers,” in Conference on Computer and Communications Security
(CCS), 2023, pp. 975–989.

[66] M. Schwarz, M. Lipp, D. Gruss, S. Weiser, C. L. N. Maurice,
R. Spreitzer, and S. Mangard, “KeyDrown: Eliminating Software-Based
Keystroke Timing Side-Channel Attacks,” in Network and Distributed
System Security Symposium (NDSS), 2018.

[67] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina,
T. Prescher, and D. Gruss, “ZombieLoad: Cross-privilege-boundary data
sampling,” in Conference on Computer and Communications Security
(CCS), 2019, pp. 753–768.

[68] T. Sha, M. M. Martin, and A. Roth, “NoSQ: Store-Load Communication
without a Store Queue,” in Proceedings of the Annual International
Symposium on Microarchitecture (MICRO), 2006, pp. 285–296.

[69] R. M. A. Sheikh and R. Damodaran, “Providing Load Address
Predictions Using Address Prediction Tables Based on Load Path History
in Processor-based Systems,” 2023, US Patent 11,709,679.

[70] Y. Shin, H. C. Kim, D. Kwon, J. H. Jeong, and J. Hur, “Unveiling
Hardware-based Data Prefetcher, a Hidden Source of Information
Leakage,” in Conference on Computer and Communications Security
(CCS), 2018, pp. 131–145.

[71] S. Subramaniam and G. H. Loh, “Store Vectors for Scalable Memory
Dependence Prediction and Scheduling,” in International Symposium on
High-Performance Computer Architecture (HPCA)., 2006, pp. 65–76.

[72] A. Tatar, D. Trujillo, C. Giuffrida, and H. Bos, “TLB;DR: Enhancing
TLB-based Attacks with TLB Desynchronized Reverse Engineering,” in
USENIX Security Symposium (USENIX Security), 2022, pp. 989–1007.

[73] S. Van Schaik, A. Milburn, S. Österlund, P. Frigo, G. Maisuradze,
K. Razavi, H. Bos, and C. Giuffrida, “RIDL: Rogue In-Flight Data
Load,” in Symposium on Security and Privacy (S&P), 2019, pp. 88–
105.

[74] J. R. S. Vicarte, M. Flanders, R. Paccagnella, G. Garrett-Grossman,
A. Morrison, C. W. Fletcher, and D. Kohlbrenner, “Augury: Using Data
Memory-Dependent Prefetchers to Leak Data at Rest,” in Symposium
on Security and Privacy (S&P), 2022, pp. 1491–1505.

[75] I. Vougioukas, N. Nikoleris, A. Sandberg, S. Diestelhorst, B. M. Al-
Hashimi, and G. V. Merrett, “BRB: Mitigating Branch Predictor Side-
Channels,” in International Symposium on High-Performance Computer
Architecture (HPCA), 2019, pp. 466–477.

[76] D. Weber, F. Thomas, L. Gerlach, R. Zhang, and M. Schwarz, “Indirect
Meltdown: Building Novel Side-Channel Attacks from Transient-
Execution Attacks,” in European Symposium on Research in Computer
Security (ESORICS), 2023, pp. 22–42.

[77] M. Werner, T. Unterluggauer, L. Giner, M. Schwarz, D. Gruss, and
S. Mangard, “ScatterCache: Thwarting Cache Attacks via Cache Set
Randomization,” in USENIX Security Symposium (USENIX Security),
2019, pp. 675–692.

[78] J. Wikner and K. Razavi, “Retbleed: Arbitrary Speculative Code
Execution with Return Instructions,” in USENIX Security Symposium
(USENIX Security), 2022, pp. 3825–3842.

[79] J. Wikner, D. Trujillo, and K. Razavi, “Phantom: Exploiting Decoder-
detectable Mispredictions,” in Proceedings of the Annual International
Symposium on Microarchitecture (MICRO), 2023, pp. 49–61.

[80] wolfSSL, “wolfSSL Version 5.7.6-stable,” 2025. [Online]. Available:
https://github.com/wolfSSL/wolfssl/tree/v5.7.6-stable

[81] Y. Yarom and K. Falkner, “FLUSH+RELOAD: A High Resolution, Low
Noise, L3 Cache Side-Channel Attack,” in USENIX security symposium
(USENIX security), 2014, pp. 719–732.

[82] H. Yavarzadeh, A. Agarwal, M. Christman, C. Garman, D. Genkin,
A. Kwong, D. Moghimi, D. Stefan, K. Taram, and D. Tullsen,
“Pathfinder: High-Resolution Control-Flow Attacks Exploiting the
Conditional Branch Predictor,” in Proceedings of the International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2024, pp. 770–784.

[83] H. Yavarzadeh, M. Taram, S. Narayan, D. Stefan, and D. Tullsen,
“Half&Half: Demystifying Intel’s Directional Branch Predictors for Fast,
Secure Partitioned Execution,” in Symposium on Security and Privacy
(S&P), 2023, pp. 1220–1237.

[84] L. Yin, H. Wang, Y. Lyu, C. Hu, and D. Wang, “VeriCache:
Formally Verified Fine-Grained Partitioned Cache for Side-Channel-
Secure Enclaves,” IEEE Transactions on Dependable and Secure
Computing (TDSC), 2025.

[85] A. Yoaz, M. Erez, R. Ronen, and S. Jourdan, “Speculation Techniques
for Improving Load Related Instruction Scheduling,” in Proceedings of
the Annual International Symposium on Computer Architecture (ISCA),
1999, pp. 42–53.

https://github.com/Mbed-TLS/mbedtls/tree/v3.6.2
https://github.com/wolfSSL/wolfssl/tree/v5.7.6-stable

[86] J. Yu, T. Jaeger, and C. W. Fletcher, “All Your PC Are Belong to Us:
Exploiting Non-control-Transfer Instruction BTB Updates for Dynamic
PC Extraction,” in Proceedings of the Annual International Symposium
on Computer Architecture (ISCA), 2023, pp. 1–14.

[87] J. Yu, M. Yan, A. Khyzha, A. Morrison, J. Torrellas, and C. W. Fletcher,
“Speculative Taint Tracking (STT): A Comprehensive Protection
for Speculatively Accessed Data,” in Proceedings of the Annual
International Symposium on Microarchitecture MICRO, 2019, pp. 954–
968.

[88] R. Zhang, T. Kim, D. Weber, and M. Schwarz, “(M)WAIT for It:
Bridging the Gap between Microarchitectural and Architectural Side
Channels,” in USENIX Security Symposium (USENIX Security), 2023,
pp. 7267–7284.

[89] T. Zhang, Y. Zhang, and R. B. Lee, “CloudRadar: A Real-Time
Side-Channel Attack Detection System in Clouds,” in International
Symposium on Research in Attacks, Intrusions, and Defenses (RAID),
2016, pp. 118–140.

[90] X. Zhang, Z. Zhang, Q. Shen, W. Wang, Y. Gao, Z. Yang, and
J. Zhang, “SegScope: Probing Fine-grained Interrupts via Architectural
Footprints,” in International Symposium on High-Performance Computer
Architecture (HPCA), 2024, pp. 424–438.

[91] Z. Zhang, G. Barthe, C. Chuengsatiansup, P. Schwabe, and Y. Yarom,
“Ultimate SLH: Taking Speculative Load Hardening to the Next Level,”
in USENIX Security Symposium (USENIX Security), 2023, pp. 7125–
7142.

[92] Y. Zhu, B. Chen, Z. N. Zhao, and C. W. Fletcher, “Controlled
Preemption: Amplifying Side-Channel Attacks from Userspace,” in
Proceedings of the International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2025,
pp. 162–177.

ARTIFACT APPENDIX

A. Abstract

This artifact consists of two components. First, it includes
the code used to reverse-engineer the MDP on Neoverse-N2
CPUs, corresponding to Section III and Section IV of the
paper. Second, it contains the Proof-of-Concepts (PoCs) of
the SSBleed attacks, including SSBleed-v1, SSBleed-v2, and
SSBleed-v3, corresponding to Section V of the paper.

For the reverse engineering, the artifact demonstrates the
methodology and results for analyzing the existence of the
MDP (Section III-A), its state machine (Section III-B), its
indexing mechanism and prediction table size (Section III-C),
and its replacement policy (Section III-D). These findings
serve as the building blocks of the SSBleed attacks. For
the PoCs, the artifact demonstrates the feasibility of three
SSBleed variants, including cross-process control-flow leakage
using SSBleed-v1, interrupt detection using SSBleed-v2, and
transiently executed value encoding using SSBleed-v3.

B. Artifact check-list (meta-information)
• Program: Codes for reverse-engineering the MDP properties,

and PoCs to demonstrate the effectiveness of SSBleed-v1,
SSBleed-v2 and SSBleed-v3.

• Run-time environment: Microsoft Azure D2ps v6 instance,
with Ubuntu 24.04, Linux kernel version 6.14.0, Python 3.12,
gcc 13.3.0, make 4.3.

• Hardware: Arm Neoverse-N2 CPU.
• Execution: For the reverse engineering, python scripts are used

to automatically run the tests and print the outputs or generate
the figures. For the SSBleed-v1 and SSBleed-v3 PoCs, binaries
are executed directly. For the SSBleed-v2 PoC, two semi-
automated scripts are executed to generate the figure.

• Output: For the reverse engineering, four figures will be
generated, corresponding to Fig. 2, Fig. 3 and Fig. 9. In addition,
two text outputs are printed in the command line, corresponding

to Table I and Fig. 4. For the PoCs, two text outputs are printed,
demonstrating the effectiveness of SSBleed-v1 and SSBleed-
v3. In addition, one figure will be generated, corresponding to
Fig. 14, demonstrating the effectiveness of SSBleed-v2.

• Disk space required (approximately): 100 MB.
• Time required to prepare the workflow (approximately): 1

minute.
• Time required to complete experiments (approximately): 1

hour.
• Publicly available?: Yes.
• Code license (if publicly available): Apache-2.0 License.
• Archived (provide DOI)?: 10.5281/zenodo.17854610

C. Description
1) How to access: The PoCs can be accessed from Zenodo:

https://zenodo.org/records/17854610 or from Github: https://
github.com/CPU-Security/SSBleed.

2) Hardware dependencies: The PoCs depend on MDP
properties specific to Arm Neoverse-N2 CPUs.

3) Software dependencies: A C compiler is required. No
specific kernel or packages are required. To generate plots,
matplotlib and seaborn packages of python are required. To
perform SSBleed-v2, a kernel module is required.

4) Code organization: The code is organized in two main
directories, corresponding to the reverse engineering and PoCs,
respectively.

• reverse-engineering: contains the reverse engineering codes of
MDP’s existence, state machine, indexing mechanism, table size
and replacement policy proposed in our paper.

• proof-of-concepts: contains the PoCs that demonstrate the
effectiveness of SSBleed-v1, v2 and v3 attacks.

D. Installation
No specific installations are required. We recommend to use

the Makefile in the artifact to build the executable files.

E. Evaluation and expected results
The reverse-engineering code includes tests for MDP

existence, state machine, indexing mechanism, prediction table
size, replacement policy, and probe primitives. These tests
require compiling the source code first and then running
Python scripts individually, each of which generates the
expected outputs. The existence test, indexing mechanism test,
prediction table size test, and probe primitive test each produce
four figures,corresponding to Fig. 2, Fig. 3, and Fig. 9 in the
paper. The state machine test produces the text output shown
in Table I, and the replacement policy test produces the text
output, corresponding to Fig. 4 in the paper.

The PoC code includes the SSBleed-v1, SSBleed-v2,
and SSBleed-v3 PoCs. SSBleed-v1 and SSBleed-v3 are
executed directly as binaries and print demo results, accuracy,
and throughput of the cross-process control-flow leakage
and transient-execution attacks to the terminal. SSBleed-v2
requires running two shell scripts sequentially: the first script
obtains valid load tags for monitoring, and the second script
performs interrupt detection. The final output corresponds to
Fig. 14 in the paper.

For additional information on the building steps, running
steps, and expected outputs, please refer to the README.md
files in the respective subdirectories.

https://zenodo.org/records/17854610
https://github.com/CPU-Security/SSBleed
https://github.com/CPU-Security/SSBleed

	INTRODUCTION
	BACKGROUND
	Speculative Store Bypass and MDP
	Transient Attacks
	Non-speculative Microarchitectural Side-channel Attacks

	REVERSE ENGINEERING OF MDP
	Existence of MDP
	State Machine of MDP
	Organization of MDP
	Replacement Policy of MDP
	Update Condition of MDP
	Summary of Reverse-engineering of MDP

	SSBleed: OVERVIEW AND PRIMITIVES
	Overview of SSBleed
	Threat Model
	Prime and Probe Primitives

	SSBleed: CASE STUDIES
	Attack on RSA Signature Implementation of WolfSSL
	Attack on RSA Key Generation of MbedTLS
	Interrupt Detection
	Improvement of SpectreRewind
	Improvement of TikTag
	Discussion

	MITIGATION
	RELATED WORK
	MDP Research on Other Architecture
	Other Optimization of Load Instruction on Arm CPUs

	CONCLUSION
	References
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Code organization

	Installation
	Evaluation and expected results

