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Abstract—Graphs are used to store relationships on a variety of topics, such as road map data and social media connections.
Processing this data allows one to uncover insights from its structure. However, while analyzing graphs with traditional processors, the
graph connectivity can result in irregular memory access patterns and thus poor data locality that can result in low performance.
Processing-in-Memory (PIM) is an attractive alternative for graph processing, as it can reduce data movement by bringing the
computation closer to the data itself. While PIM-based techniques have been shown to improve graph processing performance, there is
still room for improvement, as critical bottlenecks exist when connecting multiple PIM-based accelerators into larger clusters. Although
a number of recent proposals have aimed to reduce inter-accelerator data movement, their techniques have generally overlooked the
potential to optimize how the graph’s connectivity can lead to a more efficient hardware mapping. In fact, many real-world graphs have
a small percentage of high-degree nodes that connect widely to a large number of other nodes. By clustering these nodes into
communities, one can more efficiently map them to hardware, minimizing expensive inter-accelerator communication, a key
performance bottleneck in these accelerators. To capitalize on this observation, we propose PIM-GraphSCC, the first PIM-based graph
processor that exploits a graph’s connectivity to significantly reduce communication over critical resources: the inter-accelerator links.
By partitioning graphs into communities, PIM-GraphSCC provides a community-aware graph partitioning scheme that reduces
inter-accelerator data movement by up to 93% compared to modern graph processing schemes.
Index Terms—Processing-in-Memory, 3D Stacked Memory, HMC, Graph Processing, Strongly-connected components.

F
1 INTRODUCTION

IN recent years, graph processing has received significant
interest as it forms the basis of many commonly used

techniques to analyze relational data. However, irregular
memory accesses and the low compute-to-communication
ratio that exists in many graph algorithms [1], has limited
their performance on CPU-centric architectures where data
locality is the key for both performance and efficiency. As
an alternative, memory-centric architectures [2] have been
developed in an attempt to overcome these limitations.
Processing-in-Memory (PIM)-based architectures enable fast
delivery of data because of the proximity (and low latency)
of compute to memory (unlike traditional architectures
which rely on caching and locality to achieve the same goal).
Previously proposed techniques [2], [3] follow a vertex-
centric approach and use a sequential graph partitioning
technique to distribute a graph among multiple memory
structures (like High-Bandwidth Memory (HBM) or Hybrid
Memory Cube (HMC)). However, such an approach gen-
erates a significant amount of inter-accelerator communi-
cation, stressing the limited inter-accelerator bandwidth, a
critical bottleneck for performance [3].

In an attempt to improve performance in spite of the
limited inter-accelerator bandwidth available, prior solu-
tions [2], [3] have proposed techniques to reduce inter-
accelerator communication. While effective, these solutions
take a vertex-centric approach to distribute each vertex
independently. The key insight of our work is that, while
these techniques are effective, many real-world graphs, like
social networking, road networks, etc., do not behave like
synthetically generated random graphs. Real-world graphs,
instead, have a strong community structure in the under-
lying data [1], that operate according to a power law [4],
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(a) Vertices
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(b) Communication

Fig. 1: Percentage of vertices in communities and communi-
cation among them.

where clusters of vertices naturally form throughout a graph.
Naive sequential placement of vertices, as used in prior
solutions, will not allow the hardware to take advantage
of this natural community structure. However, by viewing a
graph as a collection of clusters, instead of an unorganized
collection of vertices, it is possible to reduce inter-accelerator
communication (the key bottleneck in today’s PIM designs)
to improve performance and efficiency.

In this work, we demonstrate that PIM-based graph
processing systems can benefit significantly from the adop-
tion of a community-centric paradigm. Our study of seven
graphs (see Section 4.1) demonstrates that: (1) on an average
more than 70% of vertices are part of various communities
present in the graph (Figure 1a), and (2) communication
among these communities account for 80% of the total
communication (Figure 1b). Hence, our proposed solu-
tion, PIM-GraphSCC, utilizes these two key observations
to build a community-aware approach for distributing a
graph on the PIM’s memory system, thus reducing the inter-
accelerator data movement by up to 93%.

2 BACKGROUND AND MOTIVATION

2.1 Stacked Memory Architecture Designs
Hybrid Memory Cubes, or HMCs, are 3D stacked memories
that can be easily extended with PIM capabilities. A single
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HMC consists of a logic layer at the base, with memory
controllers and processing capabilities, and up to 8 stacked
memory layers on top organized into 32 vertical skyscraper-
like vaults [5]. HBM, or High-Bandwidth Memory, an al-
ternative high-density memory technology, also shares the
same principle of 3D stacking of memory layers. Such
devices like HMCs provide two types of connectivity: 1)
Internal (or intra-cube) connections between the logic and the
memory layers; and 2) External (or inter-cube) connections
between one HMC and another, or to the host processor. An
HMC offers an internal bandwidth of 320 GB/s along with
an external bandwidth of 480 GBs/s [5]. The logic layer can
support general purpose cores to enable PIM functionality.

Apart from PIM capability, HMC-based systems also
have memory-capacity-proportional bandwidth, enabling their
performance to scale with an increase in the memory capac-
ity (through the use of additional, interconnected, HMCs),
unlike conventional systems. However, HMC-based sys-
tems have their own set of challenges. The first challenge
is to partition a graph in a balanced way for an HMC’s
memory system, an NP-complete problem [6]. The second
challenge is to organize a graph’s data to fully utilize the
HMC’s internal bandwidth, and minimize external com-
munication. Prior solutions have shown that a system’s
performance can improve with a reduction in external
communication (typically through the use of better data
organization). Tesseract [2] and GraphP [3], for example,
have used METIS-generated balanced graph partitioning
and a source-cut technique, respectively, to reduce external
communication. However, there is still scope for a further
reduction in communication as prior works have not con-
sidered a graph’s community structure while partitioning
it.

Partitioning a graph among HMCs generates edge-cuts
between these HMCs. Each edge-cut result in the genera-
tion at least one inter-cube communication. Thus, reducing
edge-cuts reduces inter-cube or external communication.
The focus of this work is to take advantage of the natural
communities in graphs (referred to as Strongly Connected
Components (SCCs)) to reduce edge-cuts. In our experi-
ments, we observed that on average 80% of vertex com-
munication occurs within the communities of the graph (See
Figure 1b). Thus, if the partitioning strategy partitions the
graph such that all the vertices in a community are mapped
to the same HMC, the vertex communication within these
vertices will be intra-cube communication, thus utilizing
HMC’s large internal bandwidth. In contrast, if the strategy
is community-oblivious, it can map the vertices within a
community to different HMCs, incurring expensive inter-
cube communication and thus stressing the limited external
bandwidth. Thus, this work proposes a Community-Aware
Graph Partitioning, or CAGP strategy, to harness the
benefit of communities.

As an example (with details shown in Figure 2), we can
illustrate how CAGP has the potential to reduce inter-cube
communication, the main bottleneck for PIM architectures
handling graph-workloads. An example graph with 6 ver-
tices and arrows depicting the direction of vertex commu-
nication is shown in Figure 2a. If these vertices are sequen-
tially distributed among the 2 HMCs (as is typically done in
previous works to distribute the workload and bandwidth

43

6
C2

1 2

5
C1

(a) Graph with communities C1 and C2

1

2

3

HMC 1

4

5

6

HMC 2

(b) Sequential partitioning

1

2

5

HMC 1

4

3

6

HMC 2

(c) CAGP
Fig. 2: Intra- and Inter-cube communication in Sequential
and Community-aware graph partitioning (CAGP) strategies.
Intra-cube communication have increased from 3 to 8, and
inter-cube communication have reduced from 6 to 1 in
CAGP in comparison to sequential partitioning.

utilization), the resulting assignment (shown in Figure 2b)
demonstrates the potential for a large number of inter-
HMC (external) communication requests. In contrast, CAGP
considers the communities C1 and C2 present in the graph
and partitions the communities accordingly (Figure 2c). Due
to this mapping, the resulting inter-cube communication
(depending on the algorithm used) can be 1/6th that of the
sequential partitioning case. Apart from reducing inter-cube
communication, CAGP has also increased the intra-cube
communication from 3 to 8, thus utilizing the large internal
bandwidth. Hence, CAGP benefits in effective utilization
of both internal and external connectivity. In the following
sections of this work, we will present an argument for why
CAGP is effective at reducing inter-cube communication.

2.2 Different Strategies of Graph Partitioning

To understand the effectiveness of CAGP in partitioning
real-world graphs, we conducted a comparison study of two
graph partitioning strategies to understand CAGP’s impact
on the inter-cube communication, a key bottleneck in PIM-
based graph processing. The first strategy, source-cut parti-
tioning [3], distributes a graph among multiple HMCs us-
ing sequential partitioning (e.g. vertexID % NUM HMCs).
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Fig. 3: Edge-cuts in different partitioning
strategies

It then follows
the source-cut
technique
to assign a
vertex and all
its incoming
edges on the
same HMC.
However, as
it follows the
vertex-centric
approach, it
is oblivious to
the clusters of vertices naturally formed in the graph and
hence misses the opportunity to further reduce inter-cube
communication. Our proposed strategy, community-aware
partitioning, (a) first identifies various communities, then
(b) assigns communities to HMCs such that an entire
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community is assigned to the same HMC (if possible),
(c) and then follows source-cut replication to further
reduce inter-cube communication. As shown in Figure 3,
community-aware partitioning is successful in reducing
edge-cuts by more than 70% for CAGP in comparison to
source-cut partitioning. As mentioned previously, reducing
edge-cuts leads to a reduction in inter-cube communication.

Our strategy of CAGP is generic and can also be used
for graph processing on other 3D-stacked memory interfaces
(e.g. HBM-based PIM systems). In the case of HBM, CAGP
can be used to map the graph on different DRAM layers
and independent channels of HBMs, for efficient usage of
limited channel bandwidth.

3 PIM-GRAPHSCC ARCHITECTURE

Our PIM-GraphSCC architecture consists of a cluster of 16
HMCs interconnected by the HMC’s external links. In this
section, we first describe how communities are detected in
a graph and then explain how CAGP assigns the vertices on
different HMCs.

3.1 Detecting Communities

One of the key features of PIM-GraphSCC is its potential to
utilize the graph’s community structures. Figure 2a shows
a graph G represented as a set of vertices V and a set
of edges E, with G = (V,E). Prior works [2], [3] have
used this straight-forward representation of the graph for
its partitioning. However, as also shown in Figure 2a, the
graph G also consists of communities C1, and C2. Eight
out of nine edges of G are within these two communities.
Hence, it is important to detect such communities to fur-
ther reduce inter-cube communication. The Kosaraju-Sharir
(KS) algorithm [7], which we use in this work, is used to
detect communities in a graph with linear time-complexity
O(V + E). By definition, two vertices (a, b) of a graph are
said to be strongly connected, (a ∼ b), if there is a path from
a→ b, and also, a path from b→ a. In the context of graphs,
it means that two vertices are part of a community if they
mutually communicate with each other. Each community is
a set a vertices and is mutually exclusive from other commu-
nities. We detect such communities during a preprocessing
stage.

Graph Preprocessing: Preprocessing is common for
most graph processing systems. In PIM-GraphSCC, three
steps are performed in the preprocessing stage. (1) The
graph is converted from an edge-list text format to a binary
format, e.g., CSR (Compressed Sparse Row). (2) The CSR
format is processed by the KS algorithm to detect com-
munities present in the graph. (3) The graph is partitioned
among HMCs. Steps (1) and (3) are also performed in prior
works, and only the step (2) is specific to PIM-GraphSCC.
While partitioning the graph among HMCs, PIM-GraphSCC
attempts to assign all the vertices of a single community on
a single cube. However, as the graph partitions are balanced
to evenly distribute the workload, as in [3], this constraint
can result in assigning vertices of a large community to
multiple HMCs, thus generating edge-cuts. While detecting
communities can take a bit longer (up to 3 seconds for the
largest graph i.e RoadNet-CA in comparison to 1 seconds
by [3]), we see that this time, while short, is amortized over
multiple runs of the graph and is a one-time cost. As per our

analysis, the preprocessing time for the graphs under study
is less than 1.5% of the simulated runtime and is only 0.06%
of the runtime for RoadNet-CA, the largest graph.

Preprocessing a graph using the KS algorithm partitions
it into multiple SCCs (i.e., SCC0...i : 0 ≤ i ≤ N ) and non-
SCC-vertices (the vertices that are not part of any SCC). As
one of the goals of partitioning (as in [3]) is even distribution
of the workload, we first find J , the maximum number
of vertices that can be mapped on an HMC for balanced
distribution. Next, we iterate over all of the SCCs. If the
number of vertices in the given SCC is ≤ J , the SCC is
mapped on a single available HMC. Otherwise, the SCC is
evenly distributed on K (≤ T , the total number of HMCs)
available HMCs. After mapping all of the SCCs, non-SCC-
vertices are sequentially mapped on the remaining available
HMCs. As per our mapping algorithm, if the number of
vertices mapped on an HMC is ≤ J , the remaining SCCs or
non-SCC-vertices can be mapped on the same HMC until
the number of vertices mapped on the HMC reaches J .

4 SIMULATION FRAMEWORK AND EVALUATION

4.1 Simulation Methodology

Our architecture consists of 16 HMCs (each with 32 vaults
and each vault having an in-order core) connected in a
2-D mesh topology. Each HMC has four quadrants, and
the vaults within each quadrant are connected in a star
topology. We model a closed page policy [5], with a static
DRAM access latency of 33.6 ns (tRAS = 22.4 ns, tRP =
11.2 ns). Each serial link has an 8-cycle latency, including
3.2 ns for SerDes [8]. We assume a 3 cycle router latency
and 1 cycle wire communication delay [8]. We model this
configuration in Booksim [9] with 4 virtual channels and a
32-entry packet buffer size. We studied four widely used
graph algorithms (their implementation taken from [10]):
PageRank (PR), Single-Source Shortest Path (SP), Vertex
Cover (VC), and Breadth-First Search (BF).

Performance Evaluation: We evaluate the cycles spent
TABLE 1: Graph Dataset

Graph #V #E
Wiki-Vote (WK) 7.1 K 0.1 M
Slashdot (SD) 82 K 0.9 M
Notre Dame (ND) 326 K 1.5 M
Amazon (AZ) 262 K 1.2 M
DBLP (DB) 326 K 1.6 M
CNR (CN) 326 K 3.2 M
RoadNet-CA (RN) 1965 K 2.7 M

(to measure
speed-up) and
the number
of intra-cube
and inter-cube
messages sent
(to measure
communication
reduction) while running the graph algorithm with
different graph inputs mentioned in Table 1. Due to the
long simulation times, we simulate a single iteration of the
application and record the run time in cycles, similar to [2].

We compare our results to GraphP, a state-of-the-art
graph partitioning strategy for PIM-based graph processing
system. While a newer work, GraphQ [11] outperforms
GraphP (through its techniques of batched and overlapped
inter-cube communication), those enhancements are or-
thogonal to GraphP’s source-cut partitioning technique. As
GraphQ still uses sequential partitioning, it is complemen-
tary to our CAGP partitioning technique.

4.2 Evaluation
Figure 4a shows that PIM-GraphSCC outperforms GraphP
by 2.7× on an average (up to 11×), and Figure 4b
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Fig. 4: Speedup (reduction in run time) and Inter-cube commu-
nication in PIM-GraphSCC normalized to GraphP

shows that, on average, inter-cube communication for PIM-
GraphSCC is 71% (up to 93%) lower than GraphP. Fig-
ure 4a also shows that there is a performance trend.
As explained later in the section, we find that the per-
formance benefits for PIM-GraphSCC follow the reduc-
tion in bandwidth utilization of the inter-cube links.
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buffers getting full.

The trend is more
evident from the
performance of
graphs for the PR
application. PR is an
all-active application,
i.e., all of its vertices
are active in each
iteration, whereas
BF, and SS enable
only partial vertices
and edges as graph traversal ends at the searched vertex.

Using CAGP, SCCs are mapped to reduce inter-cube
communication. Due to limited inter-cube bandwidth, there
remains significant network congestion. As the reduction in
the number of edge-cuts is specific to a graph (and indepen-
dent of the algorithm), it alone can not explain the perfor-
mance benefits completely. We observed that the interplay
between two factors, namely inter-cube edge cut reduction and
inter-cube communication reduction, determines the resultant
performance for a graph. In order to study reduced network
congestion in PIM-GraphSCC, we studied the occupancy of
virtual channel buffers in the network (See Figure 5). We
found that the limited inter-cube bandwidth (manifested as
full packet buffers, See Figure 5) remained a dominant factor
for graphs AZ, SD, DB, and WK. The graphs AZ and DB did
not achieve their potential for higher performance related
to their edge-cut reduction because of the high inter-cube
bandwidth requirements. This could indicate that a NoC
design to tolerate network congestion due to the limited
inter-cube bandwidth of links at the SCC-mapped HMCs
might alleviate such performance degradation. Overall, the
CAGP technique is able to reduce more than 90% edge-cuts
in these two graphs.

5 RELATED WORK

PowerGraph [12] exploits the structure of graph programs
for distributed graph processing. Their graph partitioning
scheme is based on reducing vertex-cuts, while this work
focuses on reducing edge-cuts. Gemini [13] attempts to im-

prove the distributed graph processing performance by us-
ing locality-aware chunk-based graph partitioning; we use
community-aware partitioning in this work. Tesseract [2]
proposed the usage of PIM-based systems for graph pro-
cessing and used message-passing for reducing communica-
tion among HMCs. However, since it is oblivious to the data
organization of the graph, it generates a significant amount
of messages that puts pressure on the the HMC’s limited
link bandwidth. GraphP [3] improves upon Tesseract by
specifically considering the graph’s data organization by
using a source-cut technique. However, GraphP is oblivious
to community structures present in the graph, and thus,
it also has high inter-cube communication. HATS [1] is
among the first proposals to use information in the graph’s
communities. However, it uses the community structure in
the graph to improve data locality in the cache memories. In
contrast, this work uses the information of communities to
reduce the edge-cuts in the graph. PIM-GraphSCC shows
that the community structures present in the graph can
significantly reduce inter-cube communication.
6 CONCLUSION

PIM-based graph processing has opened new opportunities
for high performance graph processing. However, inter-
cube communication is very expensive in such architectures
due to limited external bandwidth. Hence, reducing inter-
cube communication is performance-critical. We demon-
strate that our work has a potential to drastically reduce
such communication by using Community Aware Graph Par-
titioning (CAGP). Our proposed solution, PIM-GraphSSC,
capitalizes on CAGP to improve performance by up to 11×
in comparison to the recent PIM-based graph processing
system, GraphP. It also reduces inter-cube communication,
the critical bottleneck in PIM-based systems, by up to 93%.
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