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ABSTRACT

Modern processors achieve high performance and efficiency by
employing techniques such as speculative execution and sharing
resources such as caches. However, recent attacks like Spectre and
Meltdown exploit the speculative execution of modern processors
to leak sensitive information from the system. Many mitigation
strategies have been proposed to restrict the speculative execution
of processors and protect potential side-channels. Currently, these
techniques have shown a significant performance overhead. A solu-
tion that can detect memory leaks before the attacker has a chance
to exploit them would allow the processor to reduce the perfor-
mance overhead by enabling protections only when the system is
at risk.

In this paper, we propose a mechanism to detect speculative
execution attacks that use caches as a side-channel. In this detector
we track the phases of a successful attack and raise an alert before
the attacker gets a chance to recover sensitive information. We
accomplish this throughmonitoring the microarchitectural changes
in the core and caches, and detect the memory locations that can
be potential memory data leaks. We achieve 100% accuracy and
negligible false positive rate in detecting Spectre attacks and evasive
versions of Spectre that the state-of-the-art detectors are unable to
detect. Our detector has no performance overhead with negligible
power and area overheads.
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1 INTRODUCTION

Modern general-purpose processors provide high levels of per-
formance and efficiency through different strategies like specu-
lative execution with the state-of-the-art branch prediction tech-
niques. These processors share resources like caches with other
cores and different processes running on the same core. While
general-purpose processors have evolved around these strategies in
the past decades to achieve their current level of efficiency, recent
speculative execution attacks, like Spectre [14], allow the malicious
users to extract sensitive and private information from the system.
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Many defenses have been proposed in literature to mitigate spec-
ulative execution attacks in different ways [12, 26, 30] and most of
them are focused on protecting the caches as the most common and
practical side-channel to leak data [18]. However, all currently pro-
posed mitigation strategies are always-enabled, operating even if
no malicious activity is happening and the system is not at risk. To
improve performance, researchers have proposed various detection
mechanisms to turn on these protection mechanisms only if the sys-
tem is at risk. Most recent detectors exploit Machine Learning (ML)
to detect malicious activities by either monitoring the Hardware
Performance Counters (HPC) or monitoring the microarchitecture-
level statistics [8, 20–22, 25, 28, 29, 32]. While these techniques
achieve high detection accuracy with a low performance overhead,
they become significantly less effective when evasive attacks manip-
ulate the ML-based detectors to miss-classify malicious activities.

In this paper, we first propose two new evasive Spectre attacks
that aim to reduce the detection accuracy of ML-based detectors:
(1) Expanded-Spectre, and (2) Benign-Program-Spectre attacks (Sec-
tion 3). The former attack tries to change the footprint of a Spectre
attack in a way to classify the attack as benign while completing
the attack successfully. The latter attack is completely constructed
from benign programs. All gadgets used for the attack are labeled
as benign but by connecting these benign gadgets the attacker is
able to leak arbitrary and potentially sensitive information. Even
optimizing ML-based attacks with evasion resilient techniques is
ineffective against our attack. For example, RHMD [11] makes the
detector’s sampling frame unknown for the attacker but still will
not be able to distinguish our evasive Spectre attacks.

To overcome these shortcomings, we propose the Spectify detec-
tion methodology. This technique relies on microarchitecture-level
information to detect different phases of a Spectre attack and to
detect the exact memory data leaks and problematic speculative
branches (Section 5). Our methodology allows the system to deter-
mine the details about the data leaks before a potential attacker gets
a chance to reconstruct the leaked data and employs an appropri-
ate protection. Our detection methodology is based on the general
steps of a speculative execution attack and all known variations of
the attack can be tracked by this methodology.

We demonstrate that our detector achieves 100% detection accu-
racy for known speculative execution attacks and also our evasive
Spectre attacks. Spectify has 0% false negatives on our dataset
which is crucial for a detector in order to provide a strong secu-
rity guarantee. Even a small percentage of false negatives can be
problematic as a smart attacker might find a way to exploit this.
ML-based techniques cannot guarantee 0% false negatives since
adversarial attacks can always be a threat to trick an ML model to
miss-classify malicious activities. Also, we have a negligible false
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positive rate while running benign programs. As false positives re-
ported by our detector are actual data leaks from benign programs
the system should protect the leaked data. In other words, the sys-
tem needs to protect all the data leaks reported by our detector in
order to guarantee there are no data leaks.

Finally, we provide a microarchitectural implementation of our
detector (Section 6). Our implementation shows no performance
overheads since all the operations are off the critical path; we also
show low overheads in terms of power and area consumption.

The main contributions of our work are as follows:
• We significantly reduce the accuracy of a state-of-the-art
detector, PerSpectron, through the use of two new evasive
variants of Spectre: (1) Expanded-Spectre, and (2) Benign-
Program-Spectre (Section 3).
• We propose Spectify, a new detector to overcome the limi-
tations of ML-based solutions. We exploit the low-level in-
formation in the microarchitecture to track the required se-
quence of activities to launch a successful attack (Section 5).
• We show that Spectify achieves 100% detection accuracy
for known attacks and our proposed evasive attacks with
negligible false positive rate while running benign programs.
Spectify has no performance overhead and negligible power
and area overheads (Section 8).

In the rest of the paper, we provide background on speculative
execution attacks and their detection in Section 2. In Section 3 we
introduce our evasive variants of Spectre attack and the limitations
of ML-based detectors to detect these attacks. In Section 5 and
Section 6 we describe our detection methodology and microarchi-
tecture. In Section 7 we describe our experimental setup and in
Section 8 we present our results. Finally, Section 9 summarizes the
related works.

One can download the Spectify software infrastructure at:
https://github.com/Spectify-Detector/Spectify.

2 BACKGROUND

In this section, we will discuss relevant background information to
understand how speculative execution attacks work and why it is
important to have a detection mechanism that is accurate, robust,
fast, and efficient.

2.1 Speculative Execution Attacks

Modern CPUs utilize aggressive instruction scheduling to execute
instructions out-of-order as soon as their operands are ready. The
processor avoids stalling execution in situations where a branch
value of a jump target is unknown by predicting the branch target
and speculatively executing instructions. Speculatively executed
instructions will be squashed in case of a misprediction. The pro-
cessor aims to roll-back the system’s state into a safe state but some
speculatively executed instructions can leave traces of execution
in system components. Recent attacks like Spectre [14] and Melt-
down [17] exploit speculative execution of modern processors to
leak sensitive information from the system. Listing 1 shows the
steps of a Spectre attack. Below, we walk through the main four
steps of a successful attack:

Step 1 (branch mistraining). As the first step, the attacker
mistrains the branch predictor that the victim is going to make and

1 unit8 A[10];
2 uint8 B[256*64]; //side -channel (SC)
3
4 void victim(size_t addr){
5 if (addr < 10){ // safety check - mispredicts
6 uint8 val = A[addr]; // accesses secret
7 uint8 x = B[val *64]; // transmits secret to SC
8 }
9 }
10
11 void attack (){
12 //Phase 1: branch mistraining
13 for (i = 0; i < 10000; i++) victim (0);
14
15 //Phase 2: initializing the side -channel
16 for (i = 0; i < 256; i++) clflush(B[i*64]);
17
18 //Phase 3: running the victim
19 size_t secret_offset = secret_address - A;
20 victim(secret_offset);
21
22 //Phase 4: recovering the secret
23 for (guess = 0; guess < 256; guess ++){
24 t1 = rdtscp (); //read timer
25 temp = B[guess *64]; // accessing the guess
26 t2 = rdtscp (); //read timer
27 if (t2-t1 <= CACHE_HIT_THRESHOLD)
28 results[guess] += 1; // potential secret
29 }
30 }

Listing 1: Spectre attack based on Flush+Reload

access memory (see line 13 in Listing 1). This step ensures that this
branch is always taken and the branch prediction unit (BPU) will
learn to predict it as taken with high confidence.

Step 2 (initializing a side-channel). In this step, the attacker
initializes a side-channel into a known state. For example, the at-
tacker can use a Flush+Reload cache-based side-channel to flush
256 cache lines1 (see line 16 in Listing 1). This allows the attacker
to recover the data that the victim has speculatively brought to the
cache at a later time.

Step 3 (speculative access). After the side-channel is initialized
by the attacker, the victim will run and speculatively access the
secret, leaking the data. This is the mispredicted branch path, but
since the branch is trained to be taken, it will speculatively run
the code (see line 6 in Listing 1). Next, the secret is transmitted to
the side-channel (i.e., encoded in one of the flushed cache lines; see
line 7 in Listing 1).

Step 4 (recovering the secret). The processor will squash the
speculative instructions executed by the victim, but the transmitted
information via the side-channel will not change. In the final step,
the attacker will probe all of the initialized states of the side-channel
and try to reconstruct the secret information based on the changes
that occurred to the initial state of the side-channel. In the example
of Flush+Reload in Listing 1, all the cache lines will miss in the
cache except for the cache line that is associated with the secret
byte. This line will be a hit in the cache and the difference in access
latency will enable the attacker to recover the secret byte.

2.2 Cache-based Side-Channels

As demonstrated in Section 2.1, the attacker needs to initialize a side-
channel and later probe the same side-channel in order to recover
the secret information. The most important feature of an effective
1To extract one byte of secret, there are 256 possible guesses and the attacker needs to
initialize 256 states and later evaluate these 256 states and recover the secret based on
the changes that happened to them.
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side-channel is that all the changes during speculative execution
need to be persistent and not rolled back after the core handles the
misspeculation. Currently, the most common and practical side-
channel is the cache [27]. In this paper, we focus on the most
practical forms of cache-based side-channels: (1) Flush+Reload,
(2) Flush+Flush, and (3) Prime+Probe.

During a Flush+Reload attack, both victim and attacker share
same address space, for example, by sharing libraries. To begin, the
data is flushed from the cache. Afterward, the attacker goes into an
idle state until the victim runs and accesses the data. A final step
would be to reload the cache line and measure the access latency.
The victim can access the data speculatively, the line in the cache
containing the data will appear, and the reload operation will be
faster for that line, revealing the victim’s behavior. The attacker
can observe a longer access time if the victim hasn’t accessed the
cache line.

In Flush+Flush attacks, the attacker does not access memory
directly and no cache misses are caused for the attacker program.
This method exploits the duration of the flush instruction: in case
a cached address already exists, flushing takes longer. Because
Flush+Flush does not cause any cache hits or misses, it cannot be
detected by cache contention detection mechanisms.

With Prime+Probe attacks, the attacker attempts to detect which
cache sets the victim’s program uses. Attackers launch spy pro-
grams tomonitor a victim’s cache contention. As a first step (Prime),
the attacker’s program fills multiple cache sets. The attacker then
waits, letting the victim’s program run. Then, during the Probe
phase, the attacker monitors its own filled cache sets. As this occurs,
the attacker observes how much time it takes to load each set of
its data that was already primed. When cache sets are evicted by
the victim, the attacker will be able to observe this when data is
delayed in being fetched from the cache. Throughout the paper,
we use the term initialization to describe the cache lines that are
either primed by Prime+Probe or flushed by Flush+Reload and
Flush+Flush techniques.

2.3 Detection of Speculative Execution Attacks

In the previous section we discussed how speculative execution
attacks are able to leak arbitrary memory locations from the victim
in order to extract secret information. These attacks exploit one
of the most important features of modern processors, speculative
execution, whichmeans that the vast majority of modern processors
in high-performance settings have this vulnerability. To address
these issues, a number of defense techniques have been proposed
to mitigate speculative execution attacks [2, 12, 19, 30, 31]. The
majority of these mitigations result in a high overhead in terms
of performance and power consumption. As these techniques are
typically enabled for the entire workload execution, they will cause
a slowdown even when the system is not at risk. Hence, detecting
potential attacks and malicious activities during execution allows
the mitigation mechanisms to enable and protect the system only if
it is necessary and there is a threat. An ideal detector should satisfy
a specific set of conditions in order to be effective:

• Condition 1: The detector needs to be accurate with a low
false positive rate and 0% false negatives in order to provide
a strong security guarantee.

• Condition 2: Attackers can use a variety of methods to break
the system and detection mechanisms deployed on a system
[15]. An ideal detector needs to be robust to evasive attacks
and detect data leaks.
• Condition 3: An ideal detector raises an alert before the at-
tacker has a chance to extract secret information. A fast

detection mechanism enables the system to protect sensitive
information without any risks of data reconstruction by the
attacker.
• Condition 4: An efficient detector is crucial in order to moti-
vate its deployment in a system along with the mitigation
techniques. An ideal detector has low overheads in terms
of performance, power and area. Also, a low false positive
rate helps the system to avoid unnecessary restrictions and
maintain high efficiency.

3 MOTIVATION AND EVASIVE SPECTRE

ATTACKS

In this section, we introduce two new ways to break PerSpec-
tron [20], a state-of-the-art detector using Machine Learning (ML)
and microarchitectural features of the execution. PerSpectron col-
lects samples of microarchitectural features that are highly corre-
lated with the malicious activities. The PerSpectron methodology
starts by building a dataset of fixed-interval samples (e.g., each
10K instructions) and feeds this dataset to a heuristic algorithm
like neural networks to classify malicious and benign programs.
We use the same setup and methodologies used by the authors
of PerSpectron (see Section 7 for more details). In this work, we
aim to show that ML-based detectors can be vulnerable to evasive
attacks. We propose two new attacks using for this purpose: (1)
Expanded-Spectre, and (2) Benign-Program-Spectre attacks.

3.1 Expanded-Spectre Attack

PerSpectron exploits ML to detect the footprints of malicious activ-
ity by monitoring microarchitectural statistics. One way to defeat
this methodology is to change the footprint of a Spectre attack with-
out compromising the attack’s success. We designed a new version
of Spectre by expanding the first phase of Spectre, branch mistrain-
ing, since the changes of this phase are more persistent compared
to other phases. We use benign software structures to construct a
branch mistraining phase without disrupting the changes of this
phase. There are two variants of this attack: (1) insertion of NOPs,
and (2) insertion of memory delay instructions. In former variant,
NOPs are inserted into the branch mistraining code to stretch the
execution in a way that tricks the detector to classify the attack as
benign. In the latter version, we insert memory accesses instead
of additional NOPs. We use the Fisher-Yates shuffle algorithm [7]
to determine the order of memory accesses in order to increase
the chances of cache misses and changing the footprint of the at-
tack. Our evaluation shows that PerSpectron is not robust against
our Expanded-Spectre attacks, as the accuracy drops from 99% to
14.34% and 54.89% for NOP insertion and memory-delay insertion,
respectively (See Table 4 for details). Also, we show that retraining
the model with Expanded-Spectre does not help PerSpectron to
reach an acceptable detection accuracy.
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3.2 Benign-Program-Spectre Attack

As previous works classify programs as benign or malicious, one
counterexample that could demonstrate the limited benefits of ML-
based detectors would be to build a scenario that constructs a mali-
cious program from components of benign programs. If a malicious
attack could be built with these pieces, then a detector might be
fooled by this new application. To demonstrate this, we detail the
construction of another variant of evasive Spectre in this section.
We design Benign-Program-Spectre attack by linking all phases of
a Spectre attack by finding regions of the code in benign programs
with the same functionality of Spectre and Prime+Probe:
• Branch Mistraining Phase: For this phase, we require a
gadget which has a loop with a large number of iterations.
We also need to make sure this branch has a collision with
the victim’s branch in Pattern History Table (PHT). The
collision can be achieved either by the insertion of NOPs to
change PC of the branch, or by moving the gadget inside a
buffer and repeating the attack until a collision is found [13].
• Cache Initialization Phase: For this phase, we need a
gadget in a benign program that primes at least two cache
sets (in order to leak one bit of the secret). Table 5 shows
that there are many regions in the benign programs priming
at least 2 cache sets.
• Secret Recovery Phase: For this phase we use the same
gadget found for the initialization phase, however, we need
to measure the latency of accesses to different cache lines
in order to reconstruct the data leak. The measurement can
be achieved either by inserting rdtscp() to the gadget or
using another thread with spin-loop with a shared variable
and counting the latency of the gadget execution.

After extracting all these gadgets we can link them to launch a
successful attack. We use ELFies [24] to extract the attack gad-
gets from MCF application in SPEC CPU2006 [9] and build our
Benign-Program-Spectre. Our evaluation shows that PerSpectron’s
accuracy to detect Benign-Program-Spectre is 12.27%, which means
that 77.73% of the time, they are unable to detect malicious attacks.

Our evasive Spectre attacks show a strong indication that ML-
based detectors might not be sufficiently robust (Detection Con-
dition 2, Section 2.3). Also, these detectors do not have a 0% false
negative rate which means the attackers have the opportunity to
exploit the small percentage of false negatives and break the system
(Detection Condition 1). Another item to note is that most of the
detectors do not provide strong guarantees to detect data leaks
fast enough before the attackers can recover the secret (Detection
Condition 3). In this paper, we propose Spectify that provides an
efficient detection mechanism (Detection Condition 4) that is ro-
bust against evasive Spectre attacks and fast enough to enable the
system to employ appropriate protections in time. Also, Spectify
detects the source of memory data leaks instead of only classifying
the execution as benign or malicious. This method demonstrates
100% detection accuracy and negligible false positive rate. Hence,
Spectify fulfills all conditions of an ideal detector.

4 THREAT MODEL

The main goal of Spectify is to detect the speculative execution
attacks that aim to leak the memory contents that they are not

Initial State Sufficient cache lines 
initialized

Speculative access to 
an initialized cache line Data Leak

21 3 4
A C

B D

E

Figure 1: SpectifyDetectionMechanism. Transition Emakes

sure that the reported data leaks are misspeculatively ac-

cessed by the victim and a potential attacker can reconstruct

it later.

typically allowed to access. We assume the attacker uses cache
based side-channels to leak the information using existing cache
based attacks like Flush+Reload, Flush+Flush, and Prime+Probe.
Mainstream attacks prime an array (a consecutive range of mem-
ory locations) and probe the same locations to extract the secret.
However, our detector assumes these locations do not need to be
consecutive, as long as the attacker knows which memory loca-
tions have been primed. Spectify raises an alert and reports the
actual data leaks before the attacker gets a chance to probe the side-
channel, unlike other works that use machine learning to just warn
about the malicious activities without a definitive report of whether
a memory data leak has happened or not [20]. The characteristics
of the memory data leaks for Spectify are discussed in Section 5.

5 SPECTIFY DETECTION METHODOLOGY

In Spectify, we aim to track the required phases of the attack and
detect the actual memory leaks. Spectify reports memory leaks
with three main features:
• Feature 1. The data leak has occurred during the speculation
window of a branch that has resulted in misprediction and
squashing the memory access.
• Feature 2. The data leak is from a memory location that has
been primed from previous processes on the same hardware
(potentially an attacker).
• Feature 3. A potential attacker has the ability to reconstruct
the state of the leaked data. The attacker needs to initialize a
sufficient number of memory locations2 and later probe the
same locations in order to extract the secret. If more than
one of the initialized memory locations are leaked during
the process execution then the attacker will not have the
ability to reconstruct the key later during the probe phase.

The data leaks that we report are unintended memory accesses
that other processes might have some knowledge about their ini-
tial state (e.g., that location has been accessed or flushed before).
Spectify reports theses data leaks as soon as possible (at the end
of the execution of the current process before context switch).

Figure 1 shows an overview of Spectify’s detection mechanism.
Here, we explain the states and transitions of this technique:

1
A−→ 2 : We start from an initial state and transition A happens

if a sufficient number of cache lines are initialized and the system is
ready from the attacker’s perspective to run the victim. For example
for a successful Spectre attack with Flush+Reload, the attacker
needs to flush 256 memory locations in order to extract one byte
of secret information. The threshold of the sufficient number of
2For example, Listing 1 flushes 256 cache lines to use Flush+Reload. However, flushing
only two cache lines is enough to extract one bit of secret.
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initialized cache lines is configurable in our design. We configure
this threshold to 2 in our experiments (Section 8) which is the most
conservative threshold since the attacker can leak one bit of secret
information by initializing only two cache lines.

2
B−→ 1 : The transition B between state 2 and state 1 happens

if the number of initialized number of cache lines falls below the
configured threshold.

2
C−→ 3 : The transition C happens if a sufficient number of cache

lines are initialized by previous processes and the current process
(potentially a victim) speculatively accesses an initialized memory
(the attacker will be able to reconstruct the access behavior).

3
D−→ 2 : The transition D between state 3 and 2 occurs when

the speculative access resolves in correct the path (i.e., no branch
misprediction and squash of the speculative access). This means that
the speculative access could not be an access to a secret. Transition
D can also happen when multiple speculative accesses are squashed
in a way that multiple initialized cache lines are touched and the
attacker loses the ability to reconstruct the individual accesses.

3
E−→ 4 : The transition E results in data leak detection and it

happens if the speculative access in state 3 was squashed (mispre-
diction of a branch) and the next process (potentially an attacker)
is able to reconstruct the access behavior. In other words, the spec-
ulative and squashed access has changed the state of only one of
the initialized cache lines.

Spectify reports the data leaks before the attacker can probe the
initialized cache lines. This allows the system to enable the required
protection to prevent recovering the misspeculatively accessed
information by any potential attacker. Our detector provides the
accurate information about the data leak, for example, the accessed
memory location, the mispredicted branch, and the timing of the
data leak. Note that, our detector does not aim to detect an end-
to-end attack (unlike most other detectors [8, 22]). The goal of our
detector is to find all the data leaks that are ready to be recovered
from an attacker’s perspective. Hence, even if our detector detects
data leaks during the execution of benign programs, it means that
these programs are leaking information unintentionally but that
the system still needs to protect these data leaks.

6 SPECTIFYMICROARCHITECTURE

In this section, we discuss the microarchitecture implementation
of our detection mechanism described in Section 5. We perform
all the steps and transitions of the detector by monitoring the key
components in the architecture that are involved in shaping an
Spectre attack. Figure 2 shows an overview of the microarchitec-
ture of Spectify and the new structures added to the processor.
As shown in Figure 2, there are three types of information flow
that is tracked in our implementation: (1) the Initialization Flow
happens during the normal execution of a workload and gathers
the information about which cache lines and memory locations
are initialized (Section 6.1), and (2) the Squash Flow tracks when
branch misprediction and Reorder Buffer (ROB) squashes happen
(Section 6.2). The (3) Context-Switch Flow happens only when a
context-switch in the system occurs and the detector evaluates its
current information to detect potential data leaks of the old process
(Section 6.3).
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…

M

Prime and Access Status Table History 
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Figure 3: ROB is modified to store the information about

branches (unresolved, and which cache sets and memory ad-

dresses they have accessed during their speculation window).

FAST keeps the state of all memory addresses that have been

flushed and whether they are still valid and squashed by a

branch. PAST stores the state of all cache lines if they have

been accessed by the current process and squashed. PAST-

Hist is a shadow of PAST containing the state of PAST from

previous processes. M is the number of L1D cache sets and N

is the number of ways.

Figure 3 shows an example state of the new structures in our
implementation, and Table 1 contains the details of the events and
the actions processed in our proposed design.

6.1 Initialization Flow

The initialization flow of the detector gathers the essential infor-
mation from the execution of the running process to realize if a
process is performing the initialization step of a speculative execu-
tion attack (See Listing 1). When a branch is inserted to the ROB,
we mark extra bits in the ROB to show if the instruction is a branch
and yet unresolved (step ❶ in Figure 2). For the Trained bit in the
ROB, we lookup the Branch Prediction Unit (BPU) for its confidence
in the prediction (for example, the saturating counter assigned to
each entry being above a threshold). We reset the Unresolved bit
whenever the correct path of the branch is known.

In step ❷ and ❸, we update two new tables that are responsible
to keep track of the initialized cache lines and memory locations:
• Flush and Access Status Table (FAST). For the initialization
step of Flush+Reload and Flush+Flush, the attacker needs
to flush a sufficient number of memory locations. Each flush
request to L1 D-Cache inserts a new entry to FAST and
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Event Action

❶ Branch B ROB[B].Branch = 1
entering ROB ROB[B].Unresolved = 1

❷ Cache flush with FAST[addr].Valid = 1
addr happens FAST[addr].CurrentFrame = 1

❸ Cache access to set M PAST[M][N].Valid = 1
and way N happens PAST[M][N].Accessed = 1

if FAST[addr] exists:
FAST[addr].Valid = 0

❹ Cache miss with addr for all entries B in ROB:
and set M happens if ROB[B].Branch == 1 && ROB[B].Unresolved == 1:

ROB[B].MemAddr = addr
ROB[B].SetNumber = M

❺ Squash happens

for all entries B being squashed in ROB:
if ROB[B].Branch == 1 && ROB[B].Unresolved == 1:
PAST[ROB[B].SetNumber].Squahed = 1
if ROB[B].MemAddr exists in FAST:
FAST[ROB[B].MemAddr].Squashed = 1

❻ After context switch

for all entries E in FAST:
if FAST[E].Valid == 1:
FAST[E].CurrentFrame = 0

for all set X and way Y entries in PAST-Hist:
A = PAST[X][Y].Accessed
V = PAST[X][Y].Valid
P = PAST-Hist[X][Y].Primed
PAST-Hist[X][Y] = (P && !A) || (V && A)

Reset PAST

❼ Before context switch

FlushedCNT = 0, AccessedCNT = 0
for all entries E in FAST:
if FAST[E].Valid == 0 && FAST[E].CurrentFrame == 1
&& FAST[E].Squahed == 1:
AccessedCNT++

else if FAST[E].Valid == 1 && FAST[E].CurrentFrame == 0:
FlushedCNT++

if FlushedCNT >= Min_Flushed && AccessedCNT == 1:
Alert = 1

PotentialCNT = 0, PrimedCNT = 0
for all set entries S in PAST and PAST-Hist:
wayCNT = 0
for all way entries W in PAST[S]:
if PAST[S][W].Accessed == 1 && PAST[S][W].Valid == 1:
wayCNT++

if wayCNT == 1 && PAST[S].Squashed == 1:
PotentialCNT++

wayCNT = 0
for all way entries W in PAST-Hist[S]:
if PAST-Hist[S][W].Primed == 1:
wayCNT++

if wayCNT == TotalNumWays:
PrimedCNT++

if PrimedCNT >= Min_Primed && PotentialCNT == 1:
Alert = 1

Table 1: Spectify events and actions. Min_Flushed and

Min_Primed are the minimum number of locations to be

flushed or primed for a successful attack.

sets the 𝑉𝑎𝑙𝑖𝑑 and 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐹𝑟𝑎𝑚𝑒 bits. Each entry of FAST
is invalidated whenever an access to its memory location
happens (step❹). Note that, the𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐹𝑟𝑎𝑚𝑒 bit shows the
flush is done by the current process or previous processes.
• Prime and Access Status Table (PAST). For the initialization
step of Prime+Probe, the attacker needs to prime a sufficient
number of cache sets. This means that she needs to access
all the cache lines in each cache set in order to be considered
as primed. All the accesses to the cache are monitored by the
PAST table and the accesses are reflected in the appropriate
cache set and cache way. Each access can be invalidated
whenever a context switch occurs (see Section 6.3).

L1d Cache 64KB, 64B line, 8-way LQ/SQ size 32/32 entries
L1i Cache 32KB, 64B line, 4-way ROB size 192 entries
L2 Cache 2MB, 64B line, 8-way RF (INT/FP) size 256/256 entries
Branch Predictor TAGE FAST size 512 entries
F/D/I/C width 8/8/8/8 PAST/PAST-Hist size 128 entries

Table 2: System Configuration.

Also, whenever a L1 D-Cache miss occurs we update all the
unresolved branches in the ROB with the memory address and
the cache set number of the cache miss (step ❹). We need this
information later in the Squash Flow of the design (Section 6.2).
If multiple misses happen during the speculation window of an
unresolved branch, we reset the 𝑆𝑒𝑡𝑁𝑢𝑚𝑏𝑒𝑟 and𝑀𝑒𝑚𝐴𝑑𝑑𝑟 of the
branch in the ROB. We do this because the attacker will lose the
ability to reconstruct the secret (Feature 3 of a data leak, Section 5).

6.2 Squash Flow

When a branch misprediction occurs the Commit stage sends a
signal to the ROB to squash all the instructions after the branch
(step ❺). For any branch being squashed, if the 𝑆𝑒𝑡𝑁𝑢𝑚𝑏𝑒𝑟 and
𝑀𝑒𝑚𝐴𝑑𝑑𝑟 are set then we set the 𝑆𝑞𝑢𝑎𝑠ℎ𝑒𝑑 bit for the correspond-
ing entries in PAST and FAST tables. The detector will use this bit
to make sure that it only reports squashed memory accesses (see
Section 6.2).

6.3 Context-Switch Flow

When a context switch happens, the system changes the state of
flushed and primed locations in FAST and PAST tables [4] and
affects the initializations that a potential attacker has done [2]. After
a context switch, for all the entries in FAST that are still flushed
(𝑉𝑎𝑙𝑖𝑑 == 1) we reset the 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐹𝑟𝑎𝑚𝑒 bit, which shows that the
flush is done by the previous processes (a potential attacker). Also,
we add a new table, called PAST-Hist, which is a shadow of PAST
and contains the primed and access status of previous processes.
PAST-Hist has a 𝑃𝑟𝑖𝑚𝑒𝑑 bit for each cache line that shows if it has
been primed. PAST-Hist is updated after each context switch. It will
keep its 𝑃𝑟𝑖𝑚𝑒𝑑 bit state for each line if it has not been accessed
(𝐴𝑐𝑐𝑒𝑠𝑠𝑒𝑑 == 0 in PAST), but if the cache line is accessed then
we set the 𝑃𝑟𝑖𝑚𝑒𝑑 bit to 1 only if the access is valid and has not
occurred during the context switch (𝑉𝑎𝑙𝑖𝑑 == 1 in PAST) (step ❻).

In step ❼ and before a context switch, the detector evaluates
the state of FAST, PAST, and PAST-Hist tables to report memory
data leaks. The detector reports data leaks that satisfy all features
explained in Section 5. If there is an entry in FAST or PAST that its
𝑆𝑞𝑢𝑎𝑠ℎ𝑒𝑑 bit is set to (Feature 1) and it is a valid flushed location
(𝑉𝑎𝑙𝑖𝑑 == 1 in FAST, Feature 2) or a primed cache set (𝑃𝑟𝑖𝑚𝑒𝑑 == 1
for all its ways in PAST-Hist, Feature 2) then we report it as data
leak only if it is the only entry satisfying these conditions (Feature
3). Table 1 shows the details of the detector’s logic.

7 EXPERIMENTAL SETUP

Simulation. We implement Spectify in gem5 [1] in syscall emula-
tion mode. We use CACTI 6.5 [16] to estimate the power and area
overheads of Spectify over our baseline out-of-order core. Table 2
shows the detailed system parameters used for evaluation.
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Scenario Description

Benign SPEC CPU2006 programs (list of SPEC programs in Table 5)
Spectre Spectre V1 + Spectre V2
Expanded-Spectre-N1 Expanded-Spectre with insertion of 50 NOPs during each iteration in branch mistraining
Expanded-Spectre-N2 Expanded-Spectre with insertion of 100 NOPs during each iteration in branch mistraining
Expanded-Spectre-M Expanded-Spectre with insertion of 30 memory delay instructions during each iteration in branch mistraining
Benign-Program-Spectre Spectre constructed by MCF slices based on Prime+Probe
Training-Set#1 Benign + Spectre
Training-Set#2 Training-Set#1 + Expanded-Spectre-N1

Table 3: Scenario Summary.

Test Scenario
PerSpectron Spectify

Avg.Accuracy #Alerts Accuracy

Benign 99.10% 11 99.98%
Spectre V1 99.61% 1 100.0%
Spectre V2 98.67% 1 100.0%
Expanded-Spectre-N1 14.34% 1 100.0%
Expanded-Spectre-N2 ‡ 61.25% 1 100.0%
Expanded-Spectre-M 54.89% 1 100.0%
Benign-Program-Spectre 12.27% 1 100.0%
‡ in this case, PerSpectron is retrained with the Training-Set#2
dataset (see Table 3 for details).

Table 4: Comparison of detection accuracy for PerSpectron

and Spectify.

Benchmarks. For benign programs, we use SPEC CPU2006
benchmark suite [9]. We generate ELFies [24] as executable rep-
resentative with a region size of 100M instructions. For malicious
programs, we run Spectre V1 and Spectre V2 alongside our evasive
Spectre attacks. Table 3 shows different scenarios including the
details of our evasive Spectre attacks.

Running PerSpectron. We implement PerSpectron with the
FANNC library [23] usingmicroarchitectural features, a 10k instruc-
tion sampling rate and the single-layer perceptron neural network
originally used [20]. Datasets from Table 3 were used for evaluation,
where 66% of the data is used for training and the rest for testing.

8 EXPERIMENTAL RESULTS

8.1 Security Evaluation

To compare our work with the state-of-the-art ML based detection,
we use the scenarios in Table 3 to evaluate the accuracy of Spectify
and PerSpectron. We do not report the false positive rates since the
test scenarios consist of only benign or onlymalicious programs. For
all cases we used the Training-Set#1 dataset to train PerSpectron’s
model. However, we retrained the model with Training-Set#2 only
when testing the Expanded-Spectre-N2 scenario.

Table 4 shows the accuracy of Spectify compared to PerSpec-
tron. We split the execution of programs into multiple frames where
each frame represents a period of execution between two context
switches. We assume that context switches occur every 10ms [6].
Also, we emulate the impact of a context switch by randomly clear-
ing the primed state of 50% of entries in PAST since more than
half of the cache is accessed by the system during a context switch

Application #frames avg. primed #min. 2 sets primed #SANS #SASNP #SASMA #Data Leaks

1
A−→ 2 2

D←− 3 2
D←− 3 2

D←− 3 3
E−→ 4

401.bzip2 38136 1.04 6667 5122 81 5035 4
403.gcc 151771 2.29 53186 43097 1322 675494 11
410.bwaves 55255 15.05 46278 5800 10 6205 3
416.gamess 26720 0.28 1205 83 291 12016 10
429.mcf 217673 7.23 106053 6509 4246 9330631 52
434.zeusmp 32763 6.51 19760 10757 700 215863 40
436.cactusADM 60729 0.54 7407 7367 0 52 0
444.namd 277321 0.01 244 235 3 42 0
445.gobmk 48742 1.14 4074 719 668 384957 1
450.soplex 128519 5.60 39411 4745 2223 2734828 10
462.libquantum 72327 9.37 26315 16847 0 140 0
471.omnetpp 85982 1.25 22715 1258 2164 1275119 2

Table 5: Detailed statistics from running Spectify. Three

statistics showing different reasons for transition D between

state 3 and state 2 : (1) SANS: Speculative Access but Not

Squashed, (2) SASNP: Speculative Access and Squashed but

Not Primed, and (3) SASMA: Speculative Access and Squashed

but Multiple Accesses.

[4]. At the end of each frame we evaluate whether there has been
a data leak in the previous frame or not. We consider the most
conservative situation where the attacker only needs to prime two
cache sets or flush two memory locations to leak one bit of secret
information [18].

As shown in Table 4, Spectify has 100% detection accuracy for
malicious scenarios and is able to detect the exact data leak of the
attack before the recovery phase. Spectify shows 99.98% accuracy
in detection of benign programs. However, the data leaks detected
by Spectify are all actual memory data leaks that can be recovered
later and it means the system needs to be cautious in these situa-
tions and employ appropriate protections. This also confirms the
possibility of our Benign-Program-Spectre while running benign
applications on the system. Table 4 shows the detection accuracy
of PerSpectron as well. While PerSpectron shows high accuracy
for normal benign programs and Spectre attacks, it fails to detect
our evasive Spectre attacks in different scenarios. We also retrained
PerSpectron’s model with the Expanded-Spectre-N1 dataset, how-
ever, we were able to break the new model by adding more NOPs
to the Expanded-Spectre attack (Expanded-Spectre-N2 test).

Table 5 shows the detailed statistics of running SPEC CPU2006
programs with Spectify. We report the number of frames (#frames)
and the number of frames that at least two cache sets are primed

(i.e., 1
A−→ 2 transition has been seen, Section 5) and the system

is ready to leak information (i.e., ready for the 2
B−→ 3 transition).

We also show the average number of cache sets primed and the
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Figure 4: Total power and area consumption normalized to

the out-of-order baseline processor. The new structures are

in capital letters in the legend.

number of data leaks per frame. The other three statistics show
the results for situations where a data leak has not occurred: (1)
#SANS counter shows the number of speculative accesses that did
not squash, and therefore cannot leak data. (2) The #SASNP counter
shows the number of speculative accesses that have been squashed
but have not resulted in a data leak since the accesses did not access
primed cache sets. (3) The #SASMA counter shows the number of
speculative accesses that have been squashed but did not result
in a data leak since they accessed multiple cache sets during the
speculation window (this means that a potential attacker will not
be able to reconstruct the data at a later point).

8.2 Efficiency Evaluation

Since Spectify operates in parallel with the core operations and is
off the critical path of the execution, we do not expect a runtime
performance reduction.

Figure 4 shows the total power and area consumption of Spec-
tify normalized to the out-of-order baseline processor. Overall,
Spectify has an average power overhead of 0.66% that comes
from the implementation of FAST, PAST, and PAST-Hist struc-
tures, which are direct-mapped memory structures requiring little
power. Also, the area overhead of new structures is 7.3% over the
baseline core.

9 RELATEDWORKS

ML-based detectors.Machine Learning is widely used in the lit-
erature to classify running applications into benign and malicious
categories. These techniques train a classifier based on a labeled
dataset from runtime characteristics of benign programs and at-
tacks. Most detectors use hardware performance counters (HPCs)
[5, 21, 22, 25, 28, 29, 32]. For example, [22] proposes a detector
that uses three different trained models of HPC data and classifies
applications based on a majority vote. While HPCs provide a ba-
sic dataset for ML-based anomaly detection, the limited number
of HPCs result in a degradation of accuracy and less robustness
of detectors. Only a few hardware events can be tracked in paral-
lel due to the limitation of available physical registers (typically
4-8 registers). To overcome this limitation, PerSpectron [20] uses
microarchitecture-level statistics directly to capture attack signa-
tures through highly-correlated features. They propose an efficient
microarchitecture for more accurate classification of running appli-
cations. Most detectors in this class can be vulnerable to evasive

attack via bandwidth reduction [20]. However, they can address
this issue by employing RHMD [11]. RHMD uses multiple inde-
pendent classifiers and chooses one of the classifiers randomly to
defend against reverse engineering attacks. While this technique is
effective against bandwidth reduction evasion, it cannot address
our evasive Spectre attacks. Also, it is challenging for ML-based
detectors to detect our Benign-Program-Spectre since they use a
labeled dataset of benign and malicious programs.

Cache contention based detectors. A class of detectors track
cache contention and try to find malicious access patterns of the
attacker to cache blocks [3, 8, 10]. Cyclone [8] introduces a com-
mon feature in contention-based attacks, like Prime+Probe and
Flush+Reload, called cyclic interference to efficiently implement
contention tracking. However, the cyclic interference feature can
occur in benign programs as well, and Cyclone uses an ML tech-
nique to classify each cyclic interference to be benign or malicious.
This means that this technique can be vulnerable to evasive attacks
that can miss-classify malicious activities. Also, Cyclone is not as
fast as our detector since the probe phase of the attack needs to
occur in order to form a cyclic interference, while we report data
leaks before the probe phase. Note that since Flush+Flush attacks
do not form a cyclic interference pattern Cyclone will not be able
to detect this class of attacks.

Mitigations.Many defenses have been proposed to mitigate the
speculative execution attacks targeting caches. SafeSpec [12] and
InvisiSpec [30] hide transient loads from the cache hierarchy and
use a separate buffer for speculative accesses before they become
non-speculative and commit changes to the cache. CEASER [26]
is another mitigation that keeps the cache in a randomized and
obfuscated state that prevents the attacker from reconstructing the
secret. This technique significantly reduces the attack’s success
via cache side-channels. STT [31] and DOLMA [19] try to mitigate
Spectre attacks from the source of the leak and prevent data leaks
via any side-channels. As our detector reports data leaks before
the recovery phase of attack, it allows these defenses to be enabled
only if it is required. This can be more efficient to protect the actual
data leaks and problematic speculative branches.

10 CONCLUSION

Modern CPUs are vulnerable to speculative execution attacks and
it is crucial to adopt effective and efficient protections against these
attacks. But, the performance overheads of recent always-on miti-
gations slows down the execution of CPUs. An effective detection
mechanism can help the system to employ the appropriate protec-
tions whenever there is a risk and potentially a memory leak.

In this work, we propose Spectify that takes advantage of
microarchitecture-level information to track the attack phases in
order to find actual memory data leaks before a potential attacker
finds a chance to reconstruct the data leak. We demonstrate 100%
detection accuracy for known speculative execution attacks and
evasive attacks that the state-of-the-art ML based detectors are
unable to detect. Spectify has no performance slowdowns with
low overheads in terms of power and area.
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