
LoopPoint: Checkpoint-driven Sampled Simulation

for Multi-threaded Applications

Alen Sabu

National University of Singapore

Harish Patil

Intel Corporation

Wim Heirman

Intel Corporation

Trevor E. Carlson

National University of Singapore

Abstract—Generic multi-threaded sampled simulation has
been a long-standing, challenging problem with the potential to
help change how researchers study modern, complex computing
systems. Yet, a practical solution for reducing complex multi-
threaded applications into a representative sample has been
elusive. Existing techniques either do not provide significant
speedups to be useful (Time-based Sampling techniques can show
less than a 10× speedup compared to a fully-detailed simulation)
or apply only to particular synchronization types (BarrierPoint
for barrier-based workloads). In addition, workload-specific solu-
tions can be rigid with respect to region selection, which can limit
the overall simulation speedup when regions are large. A solution
is needed that both supports generic multi-threaded applications,
no matter the synchronization primitives used, as well as allows
for ease of deployment and fast evaluation.

In this work, we aim to solve these challenges and propose a
novel sampling technique for multi-threaded applications, called
LoopPoint, that is both agnostic to the type of synchronization
primitives used and scales by the similarity exhibited by the
application. The proposed methodology combines several vital
features, including (1) repeatable, up-front application analysis,
(2) a novel clustering approach to take into account run-time
parallelism, and (3) the use of loop-based simulation markers to
divide the work into measurable chunks, even in the presence of
spin-loops. LoopPoint identifies representative simulation regions
that can be simulated in parallel to achieve speedups of up to
801× for the train input set of the multi-threaded SPEC CPU2017
benchmarks with an average simulation error of just 2.33%.
For the ref inputs of CPU2017, we calculate the speedup with
LoopPoint to be 11,587× on average (for parallel simulation),
and up to 31,253×, demonstrating how the identification of
application regularity and loops can lead to significant simulation
improvements compared to state-of-the-art solutions.

Index Terms—checkpointing; multi-threaded; record-and-
replay; sampling; simulation

I. INTRODUCTION

Sampling is a well-known application workload reduction

technique that traces its roots back decades. From the earliest

works [1], [2], researchers have been able to identify regularity

in single-threaded applications and exploit that to sample large

applications into smaller application representatives. Because

of the repeated execution of regions with similar behavior, these

techniques have been shown to accurately predict the original

workload behavior, and significantly reduce the simulation time

needed [1], [2].

Apart from sampling, researchers have developed a number

of complementary techniques to reduce the overall amount of

work required to simulate applications in detail, including input

size reduction [3] and benchmark synthesis [4]. While each

NPB.B NPB.C NPB.D SPEC.Train SPEC.Ref

10 1

100

101

102

103

104

105

Si
m

. T
im

e
(in

 h
ou

rs
)

1 hour

1 day

1 month

1 year

Detailed Sim Time-based Sampling BarrierPoint LoopPoint

Fig. 1: Approximate time to evaluate the performance of multi-

threaded benchmarks with different methodologies. The average

result and error bars represent the estimated simulation time

for all benchmarks in the corresponding suite and input sets,

assuming infinite simulation resources (the longest simulation

region determines the overall simulation time). Benchmarks

were configured with 8-threads and passive OpenMP wait

policy, assuming a total simulation speed of 100 KIPS.

technique presents its benefits and challenges, sampling has

emerged as a straightforward way to maintain the original ap-

plication characteristics and accurately extrapolate performance

while reducing the overall simulation burden.

With the increasing number of cores in modern processors,

multi-threaded applications can exploit a large amount of

compute through task and loop parallelism. Simulating these

large, multi-threaded applications is extremely difficult, even

on modern simulators. Ultra-fast FPGA-based simulators [5]

require detailed implementations and are capacity-limited,

preventing the simulation of large processors and large parallel

systems, and fast software-based simulators [6], [7] still

require a significant amount of time to run an entire large,

parallel workload to completion. Multi-threaded applications

are inherently difficult to analyze [8] as the threads can go

to sleep at any time, threads interfere with one another, and

complex behavior emerges from regular application parameters

like misalignment of threads to cores and unequal cache

distribution.

Some of the earliest multi-threaded sampling solutions prove

effective when the threads themselves do not synchronize but

can still interact with the memory hierarchy [9]. Any amount

of synchronization requires thread progress to be measured

mailto:alen@u.nus.edu
mailto:harish.patil@intel.com
mailto:wim.heirman@intel.com
mailto:tcarlson@comp.nus.edu.sg

in time to track the amount of progress or parallelism in

the application. The move toward a time-based sampling

methodology has led to the development of sampling tech-

niques for synchronizing multi-threaded applications. These

techniques [10], [11] describe one of the first generic sampling

solutions for multi-threaded applications. However, the overall

simulation speed is still bound to the total application length,

which dominates the simulation time of this methodology.

Later proposals, in the form of application and synchronization-

specific methodologies [12]–[14], exceeded the performance of

time-based sampling and allowed for the simulation complexity

to be bound to application diversity, not application length.

Unfortunately, these methodologies are tied to specific applica-

tion characteristics (the use of barriers [12] or tasks [13], [14]),

and therefore do not represent a general sampling solution that

covers all application types. In fact, as Figure 1 demonstrates,

both time-based sampling, and BarrierPoint (when inter-barrier

regions exist to simulate), approach a simulation time of

one year to simulate the sample when considering large,

multi-threaded applications. Clearly, current methodologies are

insufficient for simulating the largest, most realistic benchmarks

like the multi-threaded SPEC CPU2017 with the ref input

set.

In this work, we aim to overcome the limitations of these

prior works to enable synchronization-agnostic application

sampling for multi-threaded workloads while still scaling

the amount of work based on the representative nature of

the application. To accomplish this goal, we present the

LoopPoint methodology that reduces an application to a few

representative regions, called looppoints, by taking into account

several key factors like understanding (1) where to simulate

which requires (1a) an accurate analysis methodology that can

provide for reproducible analysis, and (1b) using a precise

clustering mechanism that partitions the regions to reduce the

workload into its representative components. In addition, our

methodology presents (2) how to simulate the regions to allow

the application to take advantage of the underlying hardware,

while not constraining execution to a deterministic path [15]

that might not exhibit true application behavior.

We make the following contributions in this work:

1) A representative simulation region selection methodology

called LoopPoint suitable for the performance projection

of multi-threaded programs (more details on supported

workloads in Section III-K) based on using loop iterations

as the unit of work.

2) A technique to enable multi-threaded sampled simulation

by filtering out spin-loops during region identification,

selecting repeatable loop boundaries of a practical

region size, and accurately extrapolating performance

characteristics.

3) The development of a process to record a constrained

application checkpoint for accurate analysis and subse-

quently simulate the workload’s unconstrained behavior

during simulation.

4) A comprehensive evaluation of the LoopPoint method-

ology to demonstrate the potential for speedup while

maintaining accuracy using the OpenMP-based multi-

threaded subset of SPEC CPU2017 benchmark suite and

NAS Parallel Benchmarks (NPB).

In the following sections of this work, we first provide an

overview the LoopPoint methodology, results, and evaluation.

In Section II, we detail each of the components needed for a

fast, accurate, and generic multi-threaded sampled simulation.

In Section III, we describe the LoopPoint methodology. We then

detail the experimental infrastructure and setup in Section IV,

evaluate the LoopPoint methodology in Section V. Finally, we

compare to related work (Section VI) and conclude the paper

(Section VII).

II. FAST AND GENERIC MULTI-THREADED SIMULATION

REQUIREMENTS

Time-based sampling methodologies [10], [11] present

the first workable solution to sample generic multi-threaded

applications. However, the speed-ups achieved (up to 5.8×)

using these methodologies are limited by the need to visit the

entire application. To achieve high speed-up while maintaining

accuracy during multi-threaded workload sampling, we need

to consider the inherent application regularity and the amount

of parallelism present in the workload at any particular time.

We need to define a unit-of-work that is suitable to exploit

the application regularity and, at the same time, is applicable

across a variety application and synchronization types. The key

is the ability to (1) recognize representative regions in a generic

way across multi-threaded workload types, and to (2) classify

these regions considering application parallelism. To this end,

we present a new application sampling methodology called

LoopPoint that (a) uses loop iterations as the main unit of work,

(b) utilizes constrained pinballs [16] (user-level checkpoints

that allow for reproducible analysis), (c) employs heuristics to

remove synchronization during analysis, but use them during

simulation, and (d) performs unconstrained simulation of the

selected simulation regions allowing for fast and accurate

workload evaluation. Figure 2 shows the overall methodology.

Sampling methodologies that rely on instruction counting

can perform poorly when dealing with multi-threaded ap-

plications [17]. We demonstrate this by performing a naive

adaptation of Simpoint [1] for multi-threaded applications of

SPEC CPU2017 that use 8 threads. With this methodology,

the average error in predicting the runtime of the applications

using active wait policy is 25% and as high as 68.44%, whereas

errors for the passive wait policy are as high as 20%.

Previous works like the BarrierPoint [12] methodology use

inter-barrier regions as the unit of work, whereas the Task-

Point [13] methodology applies only to task-based applications

that use task instances as the unit of work. Unfortunately,

BarrierPoint, when used to sample large applications with a

small number of barriers, can yield negligible simulation speed-

ups. This can be common, especially while sampling realistic

workloads for which the length of inter-barrier regions is a

bottleneck. BarrierPoint, therefore, is not practical for such

workloads. Figure 1 shows how the instruction count (and

therefore simulation time) of an inter-barrier region grows

W
h
e
re

 t
o
 s

im
u
la

te

Program

binary, inputs

2. Region Analysis

and Clustering

1. Loop-based

Profiling
Looppoints

Specification

4. (Warmup +)

Detailed Region

Simulation

3. Checkpoint

Generation

Checkpoint-driven

Binary-driven

H
o

w
 t

o
 s
im
u
la
te

5. Performance

Extrapolation

DCFG

Generation

Application

Execution

Recording

Synchronization

Filtering

Slice Generation

(PC, count)

Vector

Concatenation

Flow-control

Region

Checkpoints

Per-thread

Feature

Vectors

Fig. 2: LoopPoint-based region selection and simulation

for multi-threaded workloads. The workload is captured for

analysis and region selection based on loop information. The

representative regions are simulated using a checkpoint-driven

method as well as by binary-driven unconstrained way allowing

for extrapolation of performance and other metrics of interest.

with larger input sets of SPEC CPU2017 and NAS Parallel

Benchmarks (NPB) [18] with 8 threads. BarrierPoint works

well for NPB with the A input size [12], but as the input sizes

grow, for classes C, D and E, inter-barrier regions become so

large that it becomes impractical to use BarrierPoint for those

input sets. The same is the case with SPEC CPU2017 using

ref inputs.

Instead, LoopPoint uses loop iterations as the unit of work

with the goal to apply to generic multi-threaded programs.

The idea of using loop iterations as slices for single-threaded

programs was proposed in [19]. With loop entries as slice

boundaries, the simulation regions can then be specified using

a (PC, count) pair for the starting and ending loop entry

for each simulation region. By monitoring the amount of

work, as represented by loops, and not instructions or barriers,

we can isolate multi-threaded application representatives and

understand the amount of global work completed. For multi-

threaded programs, one additional constraint is that the loop

entries that are chosen to start and end slices should be

those doing meaningful work. Automatically separating loops

doing real work from synchronization can be a daunting task.

However, we can use application knowledge or synchronization

mechanism details to filter out synchronization loops. For

example, the Intel OpenMP run-time uses functions in the

libiomp5.so library for synchronization; hence loops from

that library should not be counted towards work done while

profiling the application. Alternatively, if the synchronization

routines are known before-hand, the code from such routines

can likewise be avoided.

Where to simulate. As detailed cycle-accurate simulation

can be time-consuming, architects and researchers often use

sampling to decide where to simulate by choosing small

portions or regions of long-running program executions for

simulation. Sampling requires (a) choosing the regions so

that they are representative of the whole program behavior

and (b) projecting the whole-program performance based on

the simulation results of the selected regions. SimPoint [1]

is a popular simulation region selection approach. It works

by dividing the program execution into smaller slices and

collecting an execution signature for each slice. K-means

clustering is used to determine phases from slice signatures.

One representative per cluster is then chosen with the weight

corresponding to the cluster size. Since these representatives are

designed to be micro-architecture independent, the signature

collected for each slice needs to be dependent only on the

program execution and not based on any micro-architecture

dependent metric. Typical signatures used include the BBV

(Basic Block Vector) which contains execution counts of

various basic blocks (single-entry/exit code blocks). How

to slice a program’s execution into regions is an important

decision. For single-threaded programs, using a fixed instruction

count called the slice size has been shown to work well [1].

In our work, we keep slices of approximately similar sizes

demarcated by loop entries. The region selection is based on

the replay of a previously recorded whole-program execution as

a pinball. According to the micro-architecture of the recording

machine, the synchronization seen there can be different from

the synchronization seen during unconstrained simulation. We,

therefore, augment our region selection methodology to make

a selection only on the real computation or work done. The

heuristics described earlier to avoid synchronization loop entries

as region boundaries can also be used to filter out (to execute

but not count) synchronization code during profiling for region

selection.

How to simulate. A critical decision that the simulator

developers need to make is how to simulate, i.e., how to connect

the application in consideration to a simulator. The most

commonly used methods are (1) binary-driven where a program

binary is executed during simulation feeding instructions to the

simulator, (2) checkpoint-driven where a snapshot of selected

region memory/register state and a list of injection events are

used to drive the simulator, and (3) trace-driven where an

instruction-by-instruction recorded state is fed to a timing-only

simulator. The choice of how to simulate depends on several

factors, such as ease of deployment, cost of generation, and

flexibility of the evaluation. For this work, we use both binary-

driven and checkpoint-driven simulations for our evaluation,

although the implementation itself is generic and supports

any of these simulation methods. Checkpoints are easier to

share among multiple users than program binaries whose

execution might require complex setup and input availability.

We propose to capture regions selected by LoopPoint as

pinball [20] checkpoints so they can be used to drive PinPlay-

based simulators.

By default, PinPlay supports constrained replay of pinballs

where the shared memory accesses among threads are repeated

in the order captured during recording. Simulation based

on such constrained replay will repeat the thread ordering

based on the micro-architecture of the machine on which the

pinballs were generated. However, we ideally want the target,

simulated micro-architecture to decide the thread behavior

during simulation. To achieve that, we also use binary-driven

simulation of the regions selected by LoopPoint using stable

(PC, count)-based boundaries defining those regions. Therefore,

the simulation proceeds as though the region was executed

natively on the simulated micro-architecture. Another technique

to achieve unconstrained simulation using pinballs is to convert

them to executable checkpoints, called ELFies [21].

III. THE LOOPPOINT METHODOLOGY

In this section, we explain the different parts of the proposed

methodology, LoopPoint. We start with an upfront analysis of

the application to determine its behavior and to identify loops,

as shown in Figure 2. This is a one-time step and we use

the information collected here for clustering regions to choose

representatives. The representative regions are then simulated

with sufficient warmup. The simulation results enable us to

reconstruct the overall application performance.

A. Selecting a Unit of Work

Multi-threaded applications may use different execution paths

with different runs, and therefore the use of IPC to evaluate

the performance of multi-threaded workloads is infeasible [17].

LoopPoint proposes a strategy that identifies regions of interest

in terms of work done by each thread. We define the unit of

work as the actual amount of compute done within a slice of

an application. For an unmodified application with the same

input set, the unit of work chosen needs to remain the same

for each application execution regardless of the properties of

the underlying hardware, although the number of instructions

executed may vary each time. The generality of the chosen unit

of work is crucial for application sampling as this determines

the amount of simulation speedup achieved. We would want the

chosen unit of work to be large in number within the program,

to be one that repeats itself, and to remain unchanged over

multiple executions.

We consider the number of loop iterations as the unit of

work done. Program loops are ubiquitous across application

domains and the number of iterations of any particular loop

doing real computation as opposed to synchronization can

remain constant over multiple executions for an unmodified

application and for a fixed input size. In a multi-threaded

environment, we consider loop execution, ignoring spin-loops

(one form of active synchronization), to compute the amount of

work done. Spin-loops contribute to the IPC of the application

and consume CPU cycles, however, they do not contribute to

the meaningful work done by the particular thread (waiting

cannot be considered work completed). This is the key to

LoopPoint methodology we present here.

B. Understanding Parallelism

One of the fundamental requirements of a multi-threaded

sampling methodology is the ability to understand how the

parallelism of an application changes, over time, and to use

that information to drive the representative selection process.

In fact, understanding parallelism in a generic way is one of

the main insights of this work. To accomplish this, we continue

to use worker loop instructions as the key metric for work

completed.

Program phase behavior is an important aspect to consider

while sampling applications. A phase is a set of slices in a

program’s execution that shows similar behavior, regardless

of where they appear within the execution. The locations in

source code whose executions correlate to a phase change

in the application are called software phase markers [19].

The software phase markers can accurately identify the phase

changes which occur in an application execution irrespective

of the underlying microarchitecture. These are execution points

which can act as simulation region boundaries that are invariant

across multiple application executions. We identify source level

program loops as possible checkpoints which form the basic

building blocks of a program.

Capturing BBVs is an essential way to understand the

fingerprint of an application execution region. We consider

the slice-size to be approximately N × 100 million global (all-

threads) instructions, that align with loop boundaries, for a N -

threaded application. For example, we collect BBVs in intervals

of approximately 800 million instructions for an 8-threaded

application. We ignore the instructions executed in spin-loops

or any other synchronization code while collecting the BBVs.

The end of a region specified by a BBV is the next loop entry

once the instruction-count target is achieved. Although this

can be implemented in several ways (as described in [19]),

we do not currently differentiate between inner and outer loop

markers, and do not restrict specific threads to indicate loop

boundaries. The loop entries that serve as region markers need

to be worker loops and not spin-loops. We assume that the

spin-loops are found only in the synchronization library (for

example, OpenMP) and therefore we end a region only at a

loop entry that is present in the main image of the application.

The per-region BBVs of each thread are concatenated into a

longer, global BBV that represents a multi-threaded region.

This guides the clustering phase when there are regions that

exhibit non-homogeneous thread behavior. Figure 3 shows the

ratio of the number of instructions executed by each thread as

the application progresses. The application 657.xz_s.2, as an

example, clearly exhibits a non-homogeneous thread behavior.

There are a number of reasons to maintain sufficiently large

per-thread slices (approximately 100 million instructions). If

a smaller slice-size is chosen, a large number of simulation

points may be required, and such regions are highly sensitive

to warmup and aliasing issues [11]. At the same time, we

also need to make sure that there are enough intervals in the

application for the clustering algorithm to work efficiently [22].

Prior analyses [1] on single-threaded applications showed that

fixed size (of 100 million instructions) intervals of execution

can be used to identify phase behavior. Using varying length

intervals [23] corresponding to the application periodicity

can help mark the phases more accurately. In LoopPoint,

we use approximately similar interval lengths, however, the

methodology can also be used with varying length intervals.

While we profile an application for BBVs or any feature

0 50 100 150 200 250 300 350
global slice number

0.0

0.2

0.4

0.6

0.8

1.0
th

re
ad

 ic
ou

nt
 ra

tio
pop2_s.1 active

thread0
thread1

thread2
thread3

thread4
thread5

thread6
thread7

(a)

0 10 20 30 40
global slice number

0.0

0.2

0.4

0.6

0.8

1.0

th
re

ad
 ic

ou
nt

 ra
tio

xz_s.2 active
thread0 thread1 thread2 thread3

(b)

Fig. 3: The above graphs show the variation in the share of

the per-thread instruction count on a per-slice (with a slice

size of 800M global instructions) basis as the application

progresses. If we consider a multi-threaded region, the basic-

block share is different for all threads. This is subtly captured

by concatenating the per-thread execution fingerprints.

vectors, we make sure that all threads in the application make

the same amount of forward progress during analysis. This

is to stabilize the collected profile for any thread imbalance

that is caused by external events on the host processor (and is

unrelated to the analysis environment). We call this method to

enforce equal progress between threads flow-control.

C. Marking Region Boundaries

Every region in an application has its boundaries at a

loop entry. The regions need to be represented so that it is

repeatable across multiple executions of the application. In the

case of single-threaded applications, instruction count can be

used to define regions reliably. However, for multi-threaded

applications, this does not hold. We describe the start and end

of each region as an ordered-pair (PC, count), where the PC

is the address of the corresponding region boundary marker

instruction and the count is the execution count of the marker

at the start and end of the region. The value of count for a

particular region size is invariant across multiple executions

which represents the unit of work done. Hence, these markers

remain valid simulation points even in the presence of spin-

loops.

D. Identifying Loops using DCFG

Loops are found often in typical applications and the number

of loop iterations can remain constant for an unmodified

application for a particular input over multiple executions.

This is the key to our generic methodology which is explained

below in detail.

We employ a Dynamic Control-Flow Graph (DCFG) to

identify the regions that represent loops. A DCFG is similar

to a classical control-flow graph with a primary difference:

Each edge of a DCFG is augmented with a trip count to

indicate the number of times the edge was traversed. The

source code locations whose executions correlate with a

phase change are called a software phase markers [19]. The

software phase markers identify the phase changes that occur

in an application execution irrespective of the underlying

microarchitecture. These phase markers need to repeat in

number and order across multiple program executions so that

this can meaningfully act as simulation region boundaries. We

choose headers of loops that are in the main image of the

program assuming that the synchronisation loops are in the

libraries. The number of iterations of synchronisation loops

may vary across different program executions. The DCFG of

the whole program execution is instrumented for loop header

instructions to identify a subset of loops from the main image.

Loop header instructions are instrumented to emit Basic Block

Vectors (BBVs) after slice-size number of instructions. Figure 4

shows a region identified using DCFG. The region is contained

in the 638.imagick_s.1 application with train inputs and 8

threads.

E. Clustering Representative Regions

Once an application is profiled, and region boundaries

marked, we will have a collection of variable-length regions.

These BBVs (with spin-loops filtered) represent the state of

the application, and also allow one to understand the amount

of work accomplished by each thread. For example, in regions

where a single thread is active, the thread will no longer

interfere with memory requests from other threads, potentially

leading to faster single-thread execution. But, a fully populated

system with N threads would continue to interfere, potentially

slowing overall progress. The amount of time the application

executes becomes the combination of the amount of work

executed in one quantum, together with the runtime attributed

to that quantum. These quanta can then be clustered in order

to identify similar work, and therefore identify similar runtime

behavior. Although BBVs are used in this work, other feature

vector information [12] can be concatenated on a per-thread

basis and can be used in this methodology.

The BBVs are projected down to 100 dimensions by random

linear projection to bring down the computing requirements

for the clustering algorithm. We use K-means clustering

technique [24] along with a BIC goodness criteria [25] to

select clustering in a method similar to previous work [1]. The

K-means algorithm requires the selection of the maximum

number of clusters that we can expect, maxK, for which we

use maxK = 50.

Because we use BBV data that represents both parallelism

and work executed, we can now cluster the regions, and use

the resulting clusters for workload extrapolation. We choose

the BBV that is closest to the centroid of each cluster to be

the representative of the cluster. We generate the region that

represents each cluster from the original application based on

the region boundaries and call them looppoints.

F. Warmup

For high-performance, we will want to simulate each

looppoint separately, in parallel, given enough resources. For

accurate results, the microarchitectural state needs to be

warmed up at the start of simulation of each region. There

are several techniques [26]–[28] proposed to warmup cache

state. For binary-driven simulation, we warm up each region

from the start of the application to minimize warmup error.

638.imagick_s/magick/morphology.c

2842 #if defined(MAGICKCORE_OPENMP_SUPPORT)

2843 #pragma omp parallel for schedule(static,4) shared(progress,status) \

2844 magick_threads(image,result_image,image->rows,1)

2845 #endif

2846 for (y=0; y < (ssize_t) image->rows; y++)

2847 {

……

2886 for (x=0; x < (ssize_t) image->columns; x++)

2887 {

3021 for (v=0; v < (ssize_t) kernel->height; v++) {

3022 for (u=0; u < (ssize_t) kernel->width; u++, k--) {

……

3034 } /* u */

……

3037 } /* v */

3342 } /* x */

3357 } /* y */

……

59007160

831086

2958

8

2
#iterations

(a)

0 500M 1000M 1500M 2000M 2500M 3000M
Time (cycles)

0

1

2

3

IP
C

0 5M 10M 15M 20M 25M
Time (cycles)

0

1

2

3

IP
C

(0
x5
40
99
f:
53
88
22
58
2)

(0
x5
40
99
f:
55
82
52
03
6)

(b)

Fig. 4: An example of a representative region identified by LoopPoint. (4a) The numbers represent iterations of the corresponding

loops that form the 8-threaded region. The start point and end point of the chosen region is at line 3022, the entry point of

loop u. (4b) The top graph shows the variation of IPC over time for the full application run, while the bottom graph shows that

of the chosen region. The (PC, count) boundaries are marked inside the IPC graph of the region.

Likewise, for checkpoint-driven constrained simulation, we use

a sufficiently large warmup region preceding the simulation

region. Determining the appropriate amount of warmup required

for each representative region falls outside the scope of this

work.

G. Runtime Extrapolation

Once the representatives are simulated, we can estimate the

overall application execution time through the use of weight-

based extrapolation. In this methodology, we use the percentage

of work that this region represents, based on the instruction

count of the entire collection of representatives that have been

clustered together relative to the total amount of work done

in the original application (quantum multiplier), to extrapolate

the final runtime performance. The instructions that contribute

to spin-loops are not considered here. The final step of this

methodology uses the simulation results of these identified

representatives, along with the multiplier, to reconstruct the

overall workload runtime.

Our runtime extrapolation uses the below mentioned formula

considering N looppoints identified as rep1 to repN :

total runtime =

repN∑

i=rep1

runtimei ×multiplieri (1)

The multiplier of a looppoint is the ratio of the sum of the

filtered instruction counts from all of the regions that are

represented by the looppoint to the filtered instruction count

of that looppoint.

multiplierj =

∑m

i=0
inscounti

inscountj
(2)

where m is the number of regions that are represented by the

jth looppoint.

We evaluate our region selection methodology by comparing

the extrapolated runtime based on region simulation with

the actual runtime based on the whole-application simulation

to compute the prediction error. We demonstrate runtime

extrapolation using the above formula, but this methodology

can be used for any event of interest, such as cache and branch

miss counts, for example.

H. Reproducible Application Execution for Accurate Analysis

The execution path of a multi-threaded application can

vary from run to run due to several factors. One requirement

to use this methodology is the ability to analyze a multi-

threaded application in a repeatable way. Traditional execution

environments do not support this type of execution to allow for

reliable, reproducible execution. We leverage Intel’s Pin [29]

and Pinplay [16] tools to generate reproducible, constrained,

multi-threaded execution snapshots, called pinballs, to allow

for repeatable analysis. Pinballs are more advanced than a

trace file in that they contain a snapshot of the execution state

of an application (registers and memory). By replaying the

Pinball, we can analyze the properties of an application to

collect the microarchitecture-independent execution signatures

of the application.

I. Putting it All Together

Together, the combination of reproducible replay of applica-

tions, along with the identification and clustering of workload

characteristics, allows us to build an end-to-end methodology to

identify workload representatives for performance extrapolation.

Previous works [12] have shown that extrapolation in this

manner does apply to runtime, as well as other metrics of

interest. The insights with respect to the identification of

application parallelism, as well as the constrained, reproducible

execution of the workloads allow us to analyze, cluster and

extrapolate multi-threaded workloads across a number of

synchronization types.

J. Speed-up Potential

One of the most significant benefits of a checkpoint-based

methodology is the ability to substantially reduce the amount

of work that needs to be simulated to estimate the entire

application performance. Simulator performance relates directly

to the required length and number of regions to simulate. In

addition, checkpoints can be simulated in parallel, with enough

resources available, speeding time-to-results significantly.

K. Workload Applicability

The methodology that we present here targets statically

scheduled generic multi-threaded workloads regardless of the

synchronization mechanisms used in order to simulate them

in a faster way that was not possible before. Dynamically

scheduled multi-threaded applications could require a different

methodology for sampling as such workloads might not be

able to be analysed or sampled based on an upfront analysis

of the application. This is because such applications can

interact with other threads in ways that were not seen in the

initial execution of the application, potentially leading to an

incorrect simulation run-time extrapolation. All checkpoint-

based methodologies (including BarrierPoint) require upfront

application analysis. We address the problem of workload

imbalance among the threads (a heterogeneous workload) by

keeping per-thread information intact while clustering the

individual regions. Like other checkpoint-based methodologies,

we also assume that the hardware configuration is known up-

front. This configuration is free from any run-time-dependent

configuration changes or unexpected events that trigger a

configuration change while the application is running. An

example of a dynamic event is thermal throttling resulting in a

dynamic voltage and frequency scaling (DVFS) event, which

can affect the application performance and is runtime- and

hardware-dependent.

IV. EXPERIMENTAL SETUP

In this section, we describe the setup on which we con-

ducted our experiments to evaluate our generic multi-threaded

sampling methodology.

A. Simulation Infrastructure

In this work, we use Sniper multicore simulation infras-

tructure [6] (version 7.4) with modifications to support PC-

based simulation region specification. We configured Sniper to

model a multicore out-of-order processor resembling the Intel

Gainestown microarchitecture using an 8 or 16-core processor

model to simulate 8 or 16-threaded (respectively) applications.

The simulated system characteristics that we use are detailed

in Table I.

B. Workloads

In order to evaluate the proposed methodology, we consider

the SPEC CPU2017 [31] benchmark suite. SPEC CPU2017 is

available in two different versions depending on the evaluation

purpose: rate and speed [32]. The rate version is used to

estimate the throughput of the underlying system whereas

TABLE I: The primary characteristics of the simulated system.

Component Features

Processor 8 & 16 cores, Gainestown-like microarch.
Core 2.66 GHz, 128 entry ROB
Branch predictor Pentium M
L1-I cache 32K, 4-way, LRU
L1-D cache 32K, 8-way, LRU
L2 cache 256K, 8-way, LRU
L3 cache 8M, 16-way, LRU

TABLE II: SPEC CPU2017 speed application attributes.

F=Fortran, KLOC=thousand lines of code. From [30]

Application Lang. KLOC Application Area

603.bwaves F 1 Explosion modeling
607.cactuBSSN F, C++ 257 Physics: relativity
619.lbm C 1 Fluid dynamics
621.wrf F, C 991 Weather forecasting
627.cam4 F, C 407 Atmosphere modeling
628.pop2 F, C 338 Wide-scale ocean modeling
638.imagick C 259 Image manipulation
644.nab C 24 Molecular dynamics
649.fotonik3d F 14 Comp. Electromagnetics
654.roms F 210 Regional ocean modeling

the speed version is used to estimate the runtime of the

benchmark on the system. Unlike prior versions of SPEC

benchmarks, CPU2017 includes a set of synchronizing multi-

threaded programs that share memory consisting of OpenMP-

compatible multi-threaded applications. We use the speed

version of SPEC CPU2017 with train inputs and eight

threads (See Table II for application descriptions) for our

evaluation. The train input set is used so as to keep the

full program simulation time to a reasonable length. As the

detailed simulation of the full SPEC CPU2017 applications

with ref inputs is not practical, computing the sampling error

is also not feasible. Therefore, we utilize the ref inputs to

estimate the potential speedup of the methodology in the paper.

The benchmarks we use include OpenMP directives, with a

summary of the primitives used described in (Table III).

TABLE III: SPEC CPU2017 speed synchronization primi-

tives used. sta4=static for, dyn4=dynamic for, bar=barrier,

ma=master, si=single, red=reduction, at=atomic, lck=lock.

Application sta4 dyn4 bar ma si red at lck

603.bwaves Y Y Y
607.cactuBSSN Y Y Y Y Y
619.lbm Y
621.wrf Y Y
627.cam4 Y Y Y Y
628.pop2 Y Y Y
638.imagick Y Y Y Y Y
644.nab Y Y Y Y
649.fotonik3d Y
654.roms Y

All SPEC CPU2017 workloads except 657.xz_s runs

are 8-threaded. 657.xz_s.2 runs with 4-threads whereas

657.xz_s.1 runs as a single-threaded application.

All the benchmarks in the SPEC CPU2017 benchmark suite

are compiled using the Intel compiler toolchain (Intel Parallel

Studio XE, version 2019 Update 2) with optimizations enabled

(-O2) and debug information available for binary to source-

level mapping, and built for the 64-bit x86 instruction-set

architecture.

We also use NAS Parallel Benchmarks (NPB) [33], [34]

version 3.3 with OpenMP based parallelization [35] that use

class C inputs. We evaluate all benchmarks in the suite with

both 8 and 16 threads, but do not evaluate the npb-dc (data

cube) benchmark because of the large amount of data generated

by that application. These benchmarks are compiled using GCC

5.5 for applications in C and GFortran for Fortran applications

with -O3 optimizations for the x86-64 architecture.

We consider both active and passive wait policies

for thread synchronization of the SPEC CPU2017 OpenMP

applications. We use the passive OpenMP wait policy to

configure NPB benchmarks. In passive wait policy, the threads

do not spin while waiting for other threads. Meanwhile in

the case of active wait policy, the threads remain active and

they consume processor cycles while waiting by executing spin-

loops. The use of (PC, count) region specification can accurately

represent a region over multiple runs even in the presence of

spin-loops, which is not possible if the region specification is

based on global or per-thread instruction counts.

For each benchmark, we record the execution path of the

whole application and keep it as a pinball so that it can be

replayed in both constrained and unconstrained mode later

on. We have developed Pintools [29] to generate BBVs of

the regions which are fed to Simpoint for clustering the

regions to identify the representative regions. We also have

employed Pintools to restrict the forward progress of all the

threads in a well balanced way thereby avoiding the chances

of recording a skewed trace because of CPU load imbalances.

The representative regions identified are simulated in parallel.

We evaluate the runtime accuracy of the chosen representatives

by simulating in constrained and unconstrained modes.

C. Constrained Execution Infrastructure

We use Intel’s PinPlay [16] infrastructure that provides tools

to record and replay arbitrary regions of a program execution.

The recorder captures the execution of an application in a

set of files collectively called a pinball [20] which can later

be replayed on any machine since pinballs are portable. A

pinball consists of a memory file (.text), the architecture

register values at the beginning of the execution region in

per-thread register files (.reg), a set of memory and register

values in per-thread injection files (.sel), and a subset of

shared-memory dependencies among various threads in per-

thread dependency files (.race). A pinball once captured is

self-contained, which means that both the application binary

and inputs are not needed during replay of the pinball.

The replayer loads the initial memory and register state and

starts executing the restored program region like a regularly

loaded binary. System calls are skipped and their side-effects

are injected. Shared-memory access in all threads are monitored

and the threads are artificially delayed as needed to enforce the

access order as recorded in the pinball. Finally, the replay is

ended gracefully when the exit condition is met. Since system

calls are skipped during replay, a pinball can be replayed across

different operating systems.

D. DCFG and Basic Blocks

The Dynamic Control Flow Graph (DCFG) is created by

executing the program via a pin-tool enabled with the DCFG

library [36], [37]. Internally, the pin-tool hooks the control-

flow instructions and records a count of each of the resulting

edges throughout the execution of the workload on a per-

thread basis. At the end of the execution, fall-through edges

are created to ensure non-overlapping basic blocks. These

basic blocks are guaranteed to have only one entry and one

exit point and not overlap with each other. In this way, they

differ from the basic block structures in Pin, which do not

have these guarantees. The resulting basic blocks and the

edges that connect them thus create a connected graph. From

this graph, routine boundaries are identified based on call

edges and heuristics to handle non-standard routines that are

sometimes found in non-compiled code. Inside the sub-graph

of each routine, the immediate dominators of each node are

found. Loops are then identified using the immediate dominator

relationships. The graph, including the identified routines and

loops are recorded.

E. Unconstrained Replay

PinPlay’s replayer enforces determinism among the threads

by injecting recorded system call side-effects and enforcing the

recorded shared memory access thread order. We use this mode

when analyzing the workload (collecting BBVs and DCFGs to

be used in the clustering phase), to ensure different steps of the

profiling methodology have a consistent view of the program’s

execution flow (as recorded during the initial whole-program

recording). However, during performance simulation, we want

the timing model to control thread progress and synchronization,

not PinPlay as this can introduce artificial thread stalls1.

F. Synchronization Handling

OpenMP active runs, enabled by setting the environment

variable OMP WAIT POLICY to ACTIVE [39], have threads

busy-waiting at user-level (as opposed to using futex() in

the passive runs). We replay a pinball that was recorded

earlier for reproducible analysis for the generation of BBVs.

If we directly use the recording we encounter the busy-

waiting code that was originally executed by the application.

However, the busy-waiting code can differ if the application is

executed another time with different conditions. While busy-

waiting consumes processor cycles, they do not contribute to

the real work done by the program. Therefore, we ignore

busy-waiting during BBV profiling, yet include it during

simulation. Identifying busy-waiting code automatically [40]

1See [38] for a methodology that uses constrained replay during multi-
threaded performance simulation, and which can, in limited cases, work around
the artificial stalls.

can be a challenge and is yet another research problem. In

our methodology, we ignore the entire code from the relevant

synchronization library (libiomp5.so in our case). Note

that this idea can easily be extended to other compilers and

threading libraries. For example, in the case of applications

using pthread synchronization, we can ignore the code from

the libpthread library. The filtered instruction count is up

to 40% (for 657.xz_s.2) fewer than the original instruction

count for the active runs.

V. EVALUATION

In this section, we present the evaluation results of Loop-

Point methodology. We analyse the effect of various model

parameters that make up the methodology. We also evaluate

the accuracy and the speedup achieved using LoopPoint.

A. Accuracy

We show the accuracy of LoopPoint methodology by

comparing the predicted runtime and the actual runtime of the

application. The predicted runtime is calculated by considering

the performance of all the representative regions as mentioned

in Section III-G. The representative regions are augmented

with a warmup region so that the microarchitectural state

is warmed when the detailed region starts simulating. The

prediction error of our methodology is the percentage difference

in the simulation performance of the whole application and

the extrapolated performance making use of the performance

of all the representative regions identified for the application.

1) Constrained and unconstrained simulations: The Loop-

Point methodology is tested for applications using the active

and passive wait policies, and the simulation results are given

here. Synchronizing multi-threaded applications with active

wait policy uses spinloops to synchronize the threads. Sampling

such an application can be considered a difficult problem to

solve. We ignore the instructions that contribute to spin-loops

during BBV generation and clustering phases as described in

Section IV-F.

We perform binary-driven unconstrained simulations of the

whole application as well as the representatives to measure

the performance. In order to mark the region boundaries using

(PC, count) correctly, we need to keep spin-loops away from

being the region boundaries as mentioned earlier. We limit the

region boundaries to be from the application code and not from

any of the library code. Here, we make an assumption that the

synchronization code can only be present in the libraries.

The region checkpoints are generated as pinballs which

can be used for constrained simulation. We assume a large

enough warmup region added to the representative region while

generating the pinball checkpoint. However, using constrained

simulation introduces artificial thread delays and are therefore

not reliable for performance extrapolation. There are several

ways to simulate these pinball checkpoints in an unconstrained

way. One such method is to convert them to ELF binaries, called

ELFies, as discussed in a prior work [21]. In this paper, however,

we are not evaluating ELFies. Instead, we consider the region

boundaries specified as (PC, count) to perform unconstrained

simulation using the application binaries by providing perfect

warmup before the start of detailed simulation. One caveat that

we want to mention is that not all region boundaries specified

using (PC, count) can provide stable regions. For instance,

applications can have certain code blocks that are selectively

executed with respect to the underlying microarchitecture.

Such code blocks or PCs cannot serve as stable (PC, count)

region boundaries. We assume that the users can choose the

appropriate stable regions, and that, while straight-forward to

accomplish in an automated way, we leave that analysis to

future work.

Results when simulating constrained simulation can be

misleading and can lead to high errors. For example, we

observe a runtime error for 657.xz_s.2 of up to 19.6% while

simulating in a constrained environment. One of the reasons

that using constrained simulation infrastructure can result in

high error rates is that the simulation itself does not properly

mimic the real application run. Instead, the application tries

to replicate the behavior that was recorded previously on a

specific machine. For instance, constrained execution forces

spin-loops to be replayed even though this would not occur in a

real execution. This introduces high error for applications, like

657.xz_s.2, that have fewer synchronization points compared

to other applications in the SPEC CPU2017 benchmark suite,

and therefore can see high variability from run to run.

The runtime prediction results (Figure 5a) using the un-

constrained simulation of active applications yield an average

absolute error of just 2.33%, whereas that of passive applica-

tions is 2.23%. These error rates are comparable to previous

sampling methodologies [12].

The looppoints identified are representative of the application

across microarchitectural configurations. Our up-front analysis

is solely based on architecture-level details, not microarchitec-

tural settings or simulation details. Figure 5b shows the error in

predicting the runtime of the same applications while simulated

for an inorder core instead of the out-of-order Gainestown-like

core, while keeping all other simulation parameters the default

as in Table I. The graph clearly shows that looppoints can be

portable across microarchitectures.

2) Varying the number of threads: We show that LoopPoint

supports varying the number of application threads. Figure 6

shows the error rates while predicting the runtime of the NPB

benchmarks. The applications are evaluated using 8 threads

and 16 threads. Note that the applications using a different

number of threads need to be profiled separately, as discussed

in Section III. We observe that the average absolute error

obtained is 2.87% for 8-threaded applications while for the

16-threaded applications it is as low as 1.78%.

3) Comparison of other metrics: Figure 7 shows the

performance prediction of several metrics while simulated on

an unconstrained environment for applications using active

and passive wait policies. LoopPoint can determine microar-

chitectural metrics like the number of cycles (Figure 7a), branch

miss rate or MPKI (Figure 7b), the miss rates or MPKI of

different components in the memory hierarchy (Figure 7c), etc.

In Figure 7b and Figure 7c, we show the absolute differences

60
3.

bw
av

es
-s

.1

60
3.

bw
av

es
-s

.2

60
7.

ca
ct

uB
SS

N-
s.1

61
9.

lb
m

-s
.1

62
1.

wr
f-s

.1

62
7.

ca
m

4-
s.1

62
8.

po
p2

-s
.1

63
8.

im
ag

ick
-s

.1

64
4.

na
b-

s.1

64
4.

na
b-

s.2

64
9.

fo
to

ni
k3

d-
s.1

65
4.

ro
m

s-
s.1

65
7.

xz
-s

.1

65
7.

xz
-s

.2

0
1
2
3
4
5
6
7
8

ab
s.

ru
nt

im
e

er
ro

r%
active passive

(a) Gainestown core

60
3.

bw
av

es
-s

.1

60
3.

bw
av

es
-s

.2

60
7.

ca
ct

uB
SS

N-
s.1

61
9.

lb
m

-s
.1

62
1.

wr
f-s

.1

62
7.

ca
m

4-
s.1

62
8.

po
p2

-s
.1

63
8.

im
ag

ick
-s

.1

64
4.

na
b-

s.1

64
4.

na
b-

s.2

64
9.

fo
to

ni
k3

d-
s.1

65
4.

ro
m

s-
s.1

65
7.

xz
-s

.1

65
7.

xz
-s

.2

0
1
2
3
4
5
6
7
8

ab
s.

ru
nt

im
e

er
ro

r%

active passive

(b) Inorder core

Fig. 5: The runtime prediction errors of SPEC CPU2017 applications (train inputs) using active and passive wait policies that

use 8 threads for unconstrained simulation. The y-axis represents the percent error in predicting the runtime of each of the

applications along x-axis.

bt cg ep ft is lu mg sp ua
0

1

2

3

4

5

ab
s.

ru
nt

im
e

er
ro

r%

8 cores 16 cores

Fig. 6: The runtime prediction results of the NPB benchmarks

that use 8 and 16 threads. The applications use a passive

wait policy and class C inputs. The y-axis represents the error

percentage in predicting the runtime of each of the applications

on the x-axis.

in the metrics predicted, rather than the percentage error in

prediction, because those metrics have small absolute values

and a small difference can result in a high percentage error.

Previous research [12], [41] has presented differences in a

similar manner.

B. Speedup

We consider speedup in two different ways: theoretical

speedup and actual speedup. Theoretical speedup is the reduc-

tion in the number of instructions (ignoring the instructions that

contribute to spinloops) to be simulated in detail when using

LoopPoint methodology. We also define the actual speedup as

the reduction in the simulated runtime using LoopPoint with

respect to the simulated runtime of the whole application.

Serial speedup is the speedup achieved when all the repre-

sentatives are simulated back-to-back. It is the overall reduction

in work given the serial execution of both the full, and reduced

workload. Parallel speedup assumes sufficient parallel resources,

and evaluates the speedup given the execution of all regions

in parallel.

In Figures 8 and 9, we see both the serial and parallel

speedups for these applications. We obtain a maximum speedup

of 801× for the applications with train inputs and 31,253×

for the applications with ref inputs. The average serial

speedup for applications using train inputs and ref inputs are

respectively 9× and 244× whereas the average parallel speedup

for the applications are 303× and 11,587× respectively for

train and ref inputs. This implies that a significant reduction

of simulation resources is now possible using the LoopPoint

methodology, where simulations that would take months to

complete can now be finished in hours.

In Figure 9, we compare the theoretical simulation speedup

using LoopPoint and BarrierPoint for the benchmarks using

ref inputs. Note that we do not plot the actual speedup values

using the ref inputs. We first validate our methodology with

train inputs, and by extension, we analyze and simulate ref

input representatives to estimate the performance of the larger

application with confidence. Unfortunately, it is not possible

to validate the error rates for applications with ref inputs

because the full runs take too long to simulate (a few months

to years as shown in Figure 1).

We observe that LoopPoint consistently achieves good

speedup whereas BarrerPoint lags behind for a number of

applications. LoopPoint is able to reduce the application into

representative regions that can finish simulation in a reasonable

time. Additionally, with the BarrierPoint methodology, there is

no guarantee on the size of a representative region. For example,

the 8-threaded 638.imagick_s.1 benchmark has a very large

inter-barrier region (93.06 B instructions) that is comparable

to the size of the entire application (93.35 B instructions),

defeating the purpose of sampling. However, there are a few

applications for which BarrierPoint outperforms LoopPoint.

Those applications have a large number of barriers and the

inter-barrier regions are typically smaller than the LoopPoint

60
3.

bw
av

es
_s

.1

60
3.

bw
av

es
_s

.2

60
7.

ca
ct

uB
SS

N_
s.1

61
9.

lb
m

_s
.1

62
1.

wr
f_

s.1

62
7.

ca
m

4_
s.1

62
8.

po
p2

_s
.1

63
8.

im
ag

ick
_s

.1

64
4.

na
b_

s.1

64
4.

na
b_

s.2

64
9.

fo
to

ni
k3

d_
s.1

65
4.

ro
m

s_
s.1

65
7.

xz
_s

.1

65
7.

xz
_s

.2

0

1

2

3

4

5

6

7
ab

s.
cy

cle
s e

rro
r%

active passive

(a) Number of Cycles

60
3.

bw
av

es
_s

.1

60
3.

bw
av

es
_s

.2

60
7.

ca
ct

uB
SS

N_
s.1

61
9.

lb
m

_s
.1

62
1.

wr
f_

s.1

62
7.

ca
m

4_
s.1

62
8.

po
p2

_s
.1

63
8.

im
ag

ick
_s

.1

64
4.

na
b_

s.1

64
4.

na
b_

s.2

64
9.

fo
to

ni
k3

d_
s.1

65
4.

ro
m

s_
s.1

65
7.

xz
_s

.1

65
7.

xz
_s

.2

0.0

0.2

0.4

0.6

0.8

br
an

ch
 M

PK
I a

bs
. d

iff
.

1.
36active passive

(b) Branch MPKI

60
3.

bw
av

es
_s

.1

60
3.

bw
av

es
_s

.2

60
7.

ca
ct

uB
SS

N_
s.1

61
9.

lb
m

_s
.1

62
1.

wr
f_

s.1

62
7.

ca
m

4_
s.1

62
8.

po
p2

_s
.1

63
8.

im
ag

ick
_s

.1

64
4.

na
b_

s.1

64
4.

na
b_

s.2

64
9.

fo
to

ni
k3

d_
s.1

65
4.

ro
m

s_
s.1

65
7.

xz
_s

.1

65
7.

xz
_s

.2

0

1

2

3

4

5

6

L2
 M

PK
I a

bs
. d

iff
.

active passive

(c) L2 MPKI

Fig. 7: The prediction errors of various metrics for SPEC CPU2017 benchmarks using LoopPoint. The benchmarks use active

and passive wait policies with train inputs and 8 threads, and are simulated in realistic unconstrained mode.

60
3.
bw

av
es
_s
.1

60
3.
bw

av
es
_s
.2

60
7.
ca
ct
uB

SS
N_

s.1

61
9.
lb
m
_s
.1

62
1.
wr

f_
s.1

62
7.
ca
m
4_
s.1

62
8.
po

p2
_s
.1

63
8.
im

ag
ick

_s
.1

64
4.
na

b_
s.1

64
4.
na

b_
s.2

64
9.
fo
to
ni
k3

d_
s.1

65
4.
ro
m
s_
s.1

65
7.
xz
_s
.1

65
7.
xz
_s
.2

101

102

103

Sp
ee

du
p

Serial
Actual Theoretical

Parallel
Actual Theoretical

Fig. 8: A comparison of theoretical and actual speedups

achieved by LoopPoint. The workload used is SPEC CPU2017

applications (active wait policy) using train inputs.

60
3.
bw

av
es
_s
.1

60
3.
bw

av
es
_s
.2

60
7.
ca
ct
uB

SS
N_

s.1

61
9.
lb
m
_s
.1

62
1.
wr

f_
s.1

62
7.
ca
m
4_
s.1

62
8.
po

p2
_s
.1

63
8.
im

ag
ick

_s
.1

64
4.
na

b_
s.1

64
9.
fo
to
ni
k3

d_
s.1

65
4.
ro
m
s_
s.1

65
7.
xz
_s
.1

65
7.
xz
_s
.2

100

101

102

103

104

Sp
ee

du
p

LoopPoint
Serial Parallel

BarrierPoint
Serial Parallel

Fig. 9: LoopPoint and BarrierPoint theoretical speedup for

SPEC CPU2017 applications (passive wait policy) using ref

inputs.

regions. BarrierPoint is unsuitable to evaluate both of the

657.xz_s applications as they do not contain barriers at all.

Overall, a hybrid approach can be chosen to speed up smaller

applications, but LoopPoint provides the first methodology to

allow for generic sampling of applications that results both in

a high simulation speedup and accuracy.

We also show the speedup achieved using NPB applications

in Figure 10. LoopPoint achieves good speedups while the

applications are evaluated for 8 threads as well as 16 threads.

The maximum parallel speedup achieved while evaluating the

8-threaded applications is 2,503× with an average of 1,031×,

whereas for the 16-threaded applications, the maximum speedup

achieved is 1,498× and an average of 606×. Do note that NPB

applications are less complex and more repetitive in nature

than SPEC CPU2017 applications. Therefore, the error rates

are lower and the speedups achieved are larger when compared

to the train inputs of the SPEC CPU2017 suite.

VI. RELATED WORK

Before architects build new hardware designs, it is extremely

useful to predict the hardware design’s power, performance and

area (cost). Existing circuit-design tools are able to simulate

bt cg ep ft is lu mg sp ua

101

102

103

Sp
ee

du
p

8 Core
Serial Parallel

16 Core
Serial Parallel

Fig. 10: A comparison of actual speedups achieved by Loop-

Point when the applications use 8 and 16 cores. Speedups

listed for the NPB suite using the C input set and a passive

wait policy.

complex, modern applications on large, multi-core systems, but

at a cost of significant simulation time that can be intractable

(requiring months to years of simulation time for the SPEC

CPU2017 benchmarks).

While there have been many attempts to solve this problem,

previous works were unable to provide a combination of three

things for multi-threaded workloads: (1) choosing accurate

representatives without detailed simulation, (2) demonstrating

simulation speedup based on application representatives, not on

overall application runtime and (3) allowing the simulation of

hardware designs that might not yet have analytical models. Our

proposal addresses all these concerns through the determination

of application parallelism, clustering and the extrapolating the

results based on this information.

Single-threaded Sampling Methodologies. One of the first

works to utilize the structure within the code to create a repre-

sentative sample application was the Simpoint methodology [1].

The authors show that applications can be broken down into

N smaller chunks of size 100M instructions, where N is the

number of clusters to which the whole program can be clustered.

This helps to determine where to simulate for a large single-

threaded application. SMARTS [2] is another methodology

which uses alternating fast-forward and detailed simulation

phases for a large number of samples. They used a large

number of intervals with regions having very small numbers

of instructions. Large structures like caches are warmed in

the fast-forward mode. The methodology could estimate the

average IPC with high confidence. LiveSim [42] is another

such methodology that enables interactive simulation making

use of in-memory checkpoints. A prior work on software phase

markers [19] uses loops to determine simulation regions, but

is limited in that they only provide support for single-threaded

applications using phase markers denoting phase changes.

Multi-threaded Sampling Methodologies. Ekman et al.

[43] propose a methodology to reduce the number of simulation

points using a matched-pair comparison method to estimate the

full application performance. SimFlex [9] extends SMARTS

methodology to support multiprocessor applications with an

increased sample length. SMARTS and SimFlex use random

sampling and therefore the samples are not necessarily represen-

tative. Perelman et al. in [44] extend the Simpoint methodology

to use for phase analysis of multi-threaded workloads.

The instruction-count-based sampling mechanisms for single-

threaded applications cannot be used directly for synchro-

nizing multi-threaded applications. To sample multi-threaded

applications, [10] and [11] were proposed which use time

as a sampling unit by fast-forwarding between the detailed

simulation intervals. The execution time during the fast-

forwarding phase is extrapolated. But these techniques need to

functionally simulate the entire application, which limits the

speedup of simulation. Another methodology which reduces

the simulation time of MT applications significantly is [12], a

microarchitecture-independent, Simpoint-like approach which

operates on OpenMP barrier synchronized applications by

identifying inter-barrier regions as the unit of work. This

technique takes into account the fact that all the threads are

synchronized after a barrier, but is less effective when inter-

barrier regions are very large or non-existent.

TaskPoint [13] is another work which proposes a sampling

methodology which is applicable to a subset of multi-threaded

applications. The technique is applicable to task-based pro-

grams and considers task instances as sampling units. The

intervals between detailed simulation phases are fast-forwarded.

Analytical Modeling. There has recently been some

progress on the development of a completely analytical model

for single-threaded [45] [46] and multi-threaded [47] workloads.

One major drawback of analytical models is the inability

to estimate the performance of next-generation hardware

designs. New processor, cache, and memory techniques without

analytical models will not be able to use these methodologies.

The general evaluation of future hardware designs can therefore

require the use of execution-driven analysis.

Constrained simulation. Multi-threaded checkpoints were

used [38] for constrained simulation. Their goal was to estimate

the relative performance analysis of regions-of-interest across

multiple micro-architectures. They describe a mechanism for

speedup computation in the presence of artificial stalls added by

the constrained replay of checkpoints during simulation. There

could be cases where the speedup computation is inconclusive.

We support unconstrained simulation as well as constrained

simulation and also provide an absolute performance extrap-

olation methodology. For relative, cross-micro-architectural

performance analysis, unconstrained simulation is desirable as

it need not have to deal with artificial stalls.

Handling busy-waiting. The problem of busy-waiting is

mentioned in [16] although in the context of multi-process

programs using Message Passing Interface (MPI). The work

focuses on simulating a specific single-threaded process from

multiple processes in an MPI program and uses the selective

logging feature of PinPlay to exclude the busy waiting code

from consideration, both in the profiling and simulation phases.

Statistical workload generation. There are different works

that study the time-varying runtime behavior of standard

benchmarks. Wu et al. [48] study the phase behavior of SPEC

CPU2017 workloads. Moreover, the work identifies the single-

threaded simulation points using SimPoint methodology and

correlates them with the phase behavior. Nair et al. [49] study

the phase behavior of SPEC CPU2006 and SPEC CPU2000

using SimPoint methodology. The work identifies similar CPI

prediction results using SimPoint for the applications in both

suites and concludes that these applications have similar phase

behavior.

VII. CONCLUSION

The need to understand larger, more complex multi-core

processors continues to increase. This becomes even more

critical as the multi-core processors (and the serial code) tend

to be the bottleneck in highly parallel applications. General-

purpose applications are found on embedded devices, mobile

phones, and back-end data center servers. While each platform

has its requirements and demands, the need for an accurate

understanding of the applications at hand is clear.

Simulation solutions alone are insufficient because of the

significant slowdown (10,000× or more [50]) seen when

simulating applications with industrial-quality simulators. Sim-

ulation solutions today require alternatives like sampling to

reduce the workloads to realistic simulation times. But, current

sampling solutions either target single-threaded workloads or

are only applicable to specific workload types.

In this work, we present a generic multi-threaded sampling

methodology, one that considers the inherent parallelism of the

application and allows for automatic reduction of workloads

to sizes that are on the order of the representatives of the

workloads themselves. We demonstrate how our classification

methodology automatically partitions the workload into rep-

resentatives and allows us to predict the performance of the

workloads at hand with high accuracy.

ACKNOWLEDGMENTS

This work has benefited tremendously from the support,

contribution, and suggestions of many individuals. We sincerely

thank all of them. In particular, we acknowledge Chuck Yount,

Carl Beckmann, Alexey Klimkin, Igor Ermolaev, and Ady

Tal at Intel. We also thank the anonymous reviewers and our

colleagues at NUS for their valuable comments.The work was

partially supported by a grant from Intel.

REFERENCES

[1] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically
characterizing large scale program behavior,” in International Conference

on Architectural Support for Programming Languages and Operating

Systems (ASPLOS), Oct. 2002, pp. 45–57.
[2] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe, “SMARTS:

Accelerating microarchitecture simulation via rigorous statistical sam-
pling,” in International Symposium on Computer Architecture (ISCA),
Jun. 2003, pp. 84–97.

[3] A. J. KleinOsowski and D. J. Lilja, “Minnespec: A new SPEC benchmark
workload for simulation-based computer architecture research,” Computer

Architecture Letters (CAL), vol. 1, no. 1, pp. 7–7, 2002.
[4] R. H. Bell and L. K. John, “Improved automatic testcase synthesis

for performance model validation,” in International Conference on

Supercomputing (SC), Jun. 2005, pp. 111–120.
[5] S. Karandikar, H. Mao, D. Kim, D. Biancolin, A. Amid, D. Lee,

N. Pemberton, E. Amaro, C. Schmidt, A. Chopra, Q. Huang, K. Kovacs,
B. Nikolic, R. Katz, J. Bachrach, and K. Asanovic, “FireSim: FPGA-
accelerated cycle-exact scale-out system simulation in the public cloud,”
in International Symposium on Computer Architecture (ISCA), Jun. 2018,
pp. 29–42.

[6] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Exploring the level
of abstraction for scalable and accurate parallel multi-core simulation,” in
International Conference for High Performance Computing, Networking,

Storage and Analysis (SC), Nov. 2011, pp. 52:1–52:12.
[7] D. Sanchez and C. Kozyrakis, “ZSim: Fast and accurate microarchitectural

simulation of thousand-core systems,” in International Symposium on

Computer Architecture (ISCA), Jun. 2013, pp. 475–486.
[8] A. Alameldeen and D. Wood, “Variability in architectural simulations

of multi-threaded workloads,” in International Symposium on High-

Performance Computer Architecture (HPCA), Feb. 2003, pp. 7–18.
[9] T. F. Wenisch, R. E. Wunderlich, M. Ferdman, A. Ailamaki, B. Falsafi,

and J. C. Hoe, “SimFlex: Statistical sampling of computer system
simulation,” IEEE Micro, vol. 26, no. 4, pp. 18–31, 2006.

[10] E. K. Ardestani and J. Renau, “ESESC: A fast multicore simulator using
time-based sampling,” in International Symposium on High Performance

Computer Architecture (HPCA), Feb. 2013, pp. 448–459.
[11] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sampled simulation of

multi-threaded applications,” in International Symposium on Performance

Analysis of Systems and Software (ISPASS), Apr. 2013, pp. 2–12.
[12] T. E. Carlson, W. Heirman, K. Van Craeynest, and L. Eeckhout,

“BarrierPoint: Sampled simulation of multi-threaded applications,” in
International Symposium on Performance Analysis of Systems and

Software (ISPASS), Mar. 2014, pp. 2–12.
[13] T. Grass, A. Rico, M. Casas, M. Moreto, and E. Ayguadé, “TaskPoint:

Sampled simulation of task-based programs,” in International Symposium

on Performance Analysis of Systems and Software (ISPASS), Apr. 2016,
pp. 296–306.

[14] T. Grass, T. E. Carlson, A. Rico, G. Ceballos, E. Ayguadé, M. Casas, and
M. Moreto, “Sampled simulation of task-based programs,” Transactions

on Computers (TC), vol. 68, no. 2, pp. 255–269, 2019.

[15] A. R. Alameldeen, C. J. Mauer, M. Xu, P. J. Harper, M. M. Martin, D. J.
Sorin, M. D. Hill, and D. A. Wood, “Evaluating non-deterministic multi-
threaded commercial workloads,” in Workshop on Computer Architecture

Evaluation using Commercial Workloads (CAECW), Feb. 2002.

[16] H. Patil, C. Pereira, M. Stallcup, G. Lueck, and J. Cownie, “PinPlay:
A framework for deterministic replay and reproducible analysis of
parallel programs,” in International Symposium on Code Generation

and Optimization (CGO), Apr. 2010, pp. 2–11.

[17] A. Alameldeen and D. Wood, “IPC considered harmful for multiprocessor
workloads,” IEEE Micro, vol. 26, no. 4, pp. 8–17, 2006.

[18] D. Bailey, T. Harris, W. Saphir, R. Van Der Wijngaart, A. Woo, and
M. Yarrow, “The NAS parallel benchmarks 2.0,” NAS-95-020, NASA
Ames Research Center, Tech. Rep., 1995.

[19] J. Lau, E. Perelman, and B. Calder, “Selecting software phase markers
with code structure analysis,” in International Symposium on Code

Generation and Optimization (CGO), Mar. 2006, pp. 135–146.

[20] H. Patil and T. E. Carlson, “Pinballs: portable and shareable user-level
checkpoints for reproducible analysis and simulation,” in Workshop on

Reproducible Research Methodologies (REPRODUCE), Feb. 2014.

[21] H. Patil, A. Isaev, W. Heirman, A. Sabu, A. Hajiabadi, and T. E.
Carlson, “ELFies: Executable region checkpoints for performance analysis
and simulation,” in International Symposium on Code Generation and

Optimization (CGO), Feb./Mar. 2021, pp. 126–136.

[22] G. Hamerly, E. Perelman, and B. Calder, “How to use SimPoint to pick
simulation points,” ACM SIGMETRICS Performance Evaluation Review,
vol. 31, no. 4, pp. 25–30, Mar. 2004.

[23] J. Lau, E. Perelman, G. Hamerly, T. Sherwood, and B. Calder, “Mo-
tivation for variable length intervals and hierarchical phase behavior,”
in International Symposium on Performance Analysis of Systems and

Software (ISPASS), Mar. 2005, pp. 135–146.

[24] E. W. Forgy, “Cluster analysis of multivariate data: efficiency versus
interpretability of classifications,” Biometrics, vol. 21, pp. 768–769, 1965.

[25] G. Schwarz, “Estimating the dimension of a model,” The Annals of

Statistics, pp. 461–464, 1978.

[26] K. C. Barr, H. Pan, M. Zhang, and K. Asanovic, “Accelerating multi-
processor simulation with a memory timestamp record,” in International

Symposium on Performance Analysis of Systems and Software (ISPASS),
Mar. 2005, pp. 66–77.

[27] T. F. Wenisch, R. E. Wunderlich, B. Falsafi, and J. C. Hoe, “Simulation
sampling with live-points,” in International Symposium on Performance

Analysis of Systems and Software (ISPASS), Mar. 2006, pp. 2–12.

[28] N. Nikoleris, L. Eeckhout, E. Hagersten, and T. E. Carlson, “Directed
statistical warming through time traveling,” in International Symposium

on Microarchitecture (MICRO), Oct. 2019, pp. 1037–1049.

[29] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building customized
program analysis tools with dynamic instrumentation,” in Conference on

Programming Language Design and Implementation (PLDI), Jun. 2005,
pp. 190–200.

[30] “SPEC CPU®2017 documentation index,” http://spec.org/cpu2017/Docs/
index.html.

[31] J. Bucek, K.-D. Lange, and J. v. Kistowski, “SPEC CPU2017: Next-
generation compute benchmark,” in International Conference on Perfor-

mance Engineering (ICPE), Apr. 2018, pp. 41–42.

[32] A. Limaye and T. Adegbija, “A workload characterization of the SPEC
CPU2017 benchmark suite,” in International Symposium on Performance

Analysis of Systems and Software (ISPASS), Apr. 2018, pp. 190–200.

[33] E. Barszcz, J. Barton, L. Dagum, P. Frederickson, T. Lasinski,
R. Schreiber, V. Venkatakrishnan, S. Weeratunga, D. Bailey, D. Browning
et al., “The NAS parallel benchmarks,” in International Journal of

Supercomputer Applications, 1991.

[34] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.
Schreiber, H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga,
“The NAS parallel benchmarks summary and preliminary results,” in
Conference on Supercomputing (SC), 1991, pp. 158–165.

[35] H. Jin, M. Frumkin, and J. Yan, “The OpenMP implementation of NAS
parallel benchmarks and its performance,” NAS-99-011, NASA Ames
Research Center, Tech. Rep., Oct. 1999.

[36] “DCFG generation with PinPlay,” https://software.intel.com/content/
www/us/en/develop/articles/pintool-dcfg.html.

http://spec.org/cpu2017/Docs/index.html
http://spec.org/cpu2017/Docs/index.html
https://software.intel.com/content/www/us/en/develop/articles/pintool-dcfg.html
https://software.intel.com/content/www/us/en/develop/articles/pintool-dcfg.html

[37] C. Yount, H. Patil, and M. S. Islam, “Graph-matching-based simulation-
region selection for multiple binaries,” in International Symposium on

Performance Analysis of Systems and Software (ISPASS), Mar. 2015, pp.
52–61.

[38] C. Pereira, H. Patil, and B. Calder, “Reproducible simulation of
multi-threaded workloads for architecture design exploration,” in IEEE

International Symposium on Workload Characterization (IISWC), Sep.
2008, pp. 173–182.

[39] “OpenMP 3.1 API C/C++ Syntax Quick Reference Card,” https://www.
openmp.org/wp-content/uploads/OpenMP3.1-CCard.pdf.

[40] T. Li, A. R. Lebeck, and D. J. Sorin, “Spin detection hardware for
improved management of multithreaded systems,” Transactions on

Parallel and Distributed Systems (TPDS), vol. 17, no. 6, pp. 508–521,
2006.

[41] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and A. Karunanidhi,
“Pinpointing representative portions of large Intel Itanium programs with
dynamic instrumentation,” in International Symposium on Microarchitec-

ture (MICRO), Dec. 2004, pp. 81–92.

[42] S. Hassani, G. Southern, and J. Renau, “LiveSim: Going live with
microarchitecture simulation,” in International Symposium on High

Performance Computer Architecture (HPCA), Mar. 2016, pp. 606–617.

[43] M. Ekman and P. Stenstrom, “Enhancing multiprocessor architecture
simulation speed using matched-pair comparison,” in International

Symposium on Performance Analysis of Systems and Software (ISPASS),
Mar. 2005, pp. 89–99.

[44] E. Perelman, M. Polito, J.-Y. Bouguet, J. Sampson, B. Calder, and
C. Dulong, “Detecting phases in parallel applications on shared memory
architectures,” in International Parallel Distributed Processing Sympo-

sium (IPDPS), Apr. 2006.

[45] S. Van den Steen, S. Eyerman, S. De Pestel, M. Mechri, T. E. Carlson,
D. Black-Schaffer, E. Hagersten, and L. Eeckhout, “Analytical processor
performance and power modeling using micro-architecture independent
characteristics,” Transactions on Computers (TC), vol. 65, no. 12, pp.
3537–3551, 2016.

[46] S. Van den Steen, S. De Pestel, M. Mechri, S. Eyerman, T. Carlson,
D. Black-Schaffer, E. Hagersten, and L. Eeckhout, “Micro-architecture
independent analytical processor performance and power modeling,”
in International Symposium on Performance Analysis of Systems and

Software (ISPASS), Mar. 2015, pp. 32–41.

[47] S. De Pestel, S. Van den Steen, S. Akram, and L. Eeckhout, “RPPM:
Rapid performance prediction of multithreaded workloads on multicore
processors,” in International Symposium on Performance Analysis of

Systems and Software (ISPASS), Mar. 2019, pp. 257–267.

[48] Q. Wu, S. Flolid, S. Song, J. Deng, and L. K. John, “Invited paper
for the hot workloads special session hot regions in SPEC CPU2017,”
in International Symposium on Workload Characterization (IISWC),
Sep./Oct. 2018, pp. 71–77.

[49] A. A. Nair and L. K. John, “Simulation points for SPEC CPU 2006,” in
International Conference on Computer Design (ICCD), Oct. 2008, pp.
397–403.

[50] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
SIGARCH Computer Architecture News, vol. 39, no. 2, pp. 1–7, Aug.
2011.

[51] A. Sabu, H. Patil, W. Heirman, and T. E. Carlson, “LoopPoint artifacts,”
https://doi.org/10.5281/zenodo.5667620.

[52] “LoopPoint source code,” https://github.com/nus-comparch/looppoint.

[53] “Sniper simulator,” https://snipersim.org.

A. ARTIFACT DESCRIPTION APPENDIX

A. Abstract

In this artifact, we provide the required tools and information

needed to replicate the primary experiments demonstrated in

this paper. The artifact provides the necessary tools and scripts

to run the three parts:

1) profiling the application to collect the necessary data

needed for multi-threaded sampling;

2) sampled simulation of the selected regions; and

3) extrapolation of performance results, and plotting the key

results

This appendix describes these parts and how to run them

to replicate our experiments. We have also included a demo

multi-threaded application to test the methodology end-to-end.

B. Artifact check-list (meta-information)

Parameter Value

Program C++ program and Python/shell scripts
Compilation C++11 compiler
Benchmarks Any multi-threaded benchmark suite
Run-time environment Ubuntu 18.04, Docker
Hardware x86-based Linux machine
Output Plain text, tables
Experiments Run profiling, run simulations, and run

extrapolation scripts
Experiment customization Benchmarks to verify the methodology,

number of threads
Disk space requirement ≈50 GB
Workflow preparation time ≈1 day
Experiment completion time ≈1-4 weeks
Publicly available? Zenodo [51] and GitHub [52]
Code licenses Academic and Proprietary

C. Description

How to access: We use SPEC CPU2017 benchmark suite to

evaluate the proposed methodology, LoopPoint. In this artifact,

however, we do not include SPEC CPU2017 binaries and

provide a demo application to test the end-to-end methodology.

The setup can be used to replicate any results that we show in

the paper. Pin kit and Sniper will be downloaded while setting

up the artifact (see Installation section for instructions). The

tool binaries are provided that works with Intel Pin. The artifact

is available on Zenodo with DOI 10.5281/zenodo.5667620 [51]

and on GitHub [52].

Hardware dependencies: The artifact is developed such that it

runs on an x86-based Linux machine. We strongly recommend

running the artifact using the provided Dockerfile. We expect

the size of files generated in the profiling stage of LoopPoint

to be a few GBs, hence we suggest a minimum free space of

50 GB when profiling SPEC CPU2017 with the train input

set. Memory and space requirements are much lower for the

included demo application.

Software dependencies:

• GNU Make

• C++11 build toolchain

• Python2, Python3, numpy, tabulate

• Docker

Data sets:

• matrix-omp: An OpenMP based demo application that can

be used to test the end-to-end methodology in a reasonable

amount of time.

D. Installation

1) Download the artifact from the Zenodo link and navigate

to the artifact base directory.

https://www.openmp.org/wp-content/uploads/OpenMP3.1-CCard.pdf
https://www.openmp.org/wp-content/uploads/OpenMP3.1-CCard.pdf
https://doi.org/10.5281/zenodo.5667620
https://github.com/nus-comparch/looppoint
https://snipersim.org

2) Request access to the Sniper git repository [53] to

download Sniper. Provide a valid email address to receive

the link to the Sniper Simulator (we used version 7.4 in

this artifact).

3) Follow the below steps to setup and build the artifact once

you have received the path to the Sniper git repository.

a) Build the docker image

$ make build

b) Run the docker image

$ make

c) Build the provided applications

$ make apps

d) Download and build the required tools once you

have the Sniper gitid link

$ make tools SNIPER_GIT_REPO="http://

snipersim.org/<path-to-git-repo>.git"

4) These steps should automatically download the required

versions of Pin kit and Sniper, and apply the required

patches. All the other tools that we use are provided

along with the artifact.

E. Experiment workflow

In this section, we describe the steps to generate the results

shown in the paper. The end-to-end methodology of LoopPoint

involves several steps. However, we have automated the process

so that the user need not run every single step.

In the first stage, the selected benchmark is executed to record

it as a pinball in whole_program.<input> directory. This

pinball is then profiled by generating BBV data and making

use of DCFG information generated by Pin. This is stored in

<basename>.Data directory. The BBVs are clustered using

K-means clustering and the representative region boundaries

are identified.

In the following stage, the representative region information

is used to launch region simulations, one after the other. Note

that the region simulations can be launched in parallel as the

runs are independent of each other. One can update these

scripts to run several simulations in parallel or to run them on

a collection of machines.

When all the region simulations are completed, the runtime

of the full application is extrapolated using the runtimes of

the representative regions and compared with that of the full

application run. The estimated error and speedup numbers are

displayed as the final output on the console.

All the profiling and simulation results are stored in the

results directory. The end-to-end methodology is automated

completely for ease of use.

The driver tool to process and evaluate the key results of sam-

pling a multi-threaded application is the run-looppoint.py

script which controls launching the profiling and simulation

runs. The arguments are defined as follows:

• -p or --program: program to be executed, supplied in

the format <suite>-<application>-<input-num>

Multiple programs can be submitted as comma-separated

values

Default: demo-matrix-1

• -n or --ncores: number of threads

Default: 8

• -i or --input-class: input class

Default: test

• -w or --wait-policy: OpenMP wait policy

Options: passive, active

Default: passive

• --force: start a new set of end-to-end run

• --reuse-profile: reuse the default profiling data (used

along with --force)

• --reuse-fullsim: reuse the default full application

simulation (used along with --force)

• --native: Run the application natively

Below are some example commands that can be used for the

users to readily run the tool after installation.

Usage Examples:

1) ./run-looppoint.py -p demo-matrix-1 -n 8

--force

This example starts a new end-to-end run for the

demo-matrix-1 program using test inputs with 8

cores and using the passive wait policy.

2) ./run-looppoint.py -p

demo-matrix-2,demo-matrix-3 -w active

-i test --force

This example starts a new end-to-end run for

the demo-matrix-2 program followed by the

demo-matrix-3 program using the active wait

policy, 8 threads, and test inputs.

F. Evaluation and expected results

To replicate the results shown in this paper, it is necessary to

run each of the applications in SPEC CPU2017 benchmark suite.

One can integrate any multi-threaded application in a similar

fashion (the demo application matrix-omp, can be used as

an example). Note that launching an end-to-end evaluation can

be long-running for large applications as the full application

simulation can take a long time.

	Introduction
	Fast and Generic Multi-threaded Simulation Requirements
	The LoopPoint Methodology
	Selecting a Unit of Work
	Understanding Parallelism
	Marking Region Boundaries
	Identifying Loops using DCFG
	Clustering Representative Regions
	Warmup
	Runtime Extrapolation
	Reproducible Application Execution for Accurate Analysis
	Putting it All Together
	Speed-up Potential
	Workload Applicability

	Experimental Setup
	Simulation Infrastructure
	Workloads
	Constrained Execution Infrastructure
	DCFG and Basic Blocks
	Unconstrained Replay
	Synchronization Handling

	Evaluation
	Accuracy
	Constrained and unconstrained simulations
	Varying the number of threads
	Comparison of other metrics

	Speedup

	Related Work
	Conclusion

	References
	Artifact Description Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	Installation
	Experiment workflow
	Evaluation and expected results

