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Abstract—Heterogeneous computing has become increasingly
prevalent, driven by the huge computational demands of high-
performance computing (HPC) and artificial intelligence (AI)
workloads. Yet, evaluating these workloads on modern systems
poses significant challenges. Existing tools for the instrumentation
and analysis of CPU and GPU applications run separately,
introducing timing differences and limiting the ability to capture
their runtime interactions. To address this problem, we introduce
XPU-Pin, a framework that enables simultaneous CPU and
GPU binary instrumentation in a single execution. XPU-Pin
integrates the CPU instrumentation framework Pin with GPU
instrumentation frameworks such as NVBit (for NVIDIA GPUs)
and GTPin (for Intel GPUs). This approach allows for the holistic
analysis of heterogeneous workloads irrespective of the platform
it executes.

Leveraging the co-analysis capabilities of XPU-Pin, we present
a novel methodology called XPU-Point to select simulator-
agnostic representative samples of heterogeneous CPU-GPU
workloads. The XPU-Point methodology employs tools developed
with the XPU-Pin framework to: (a) capture the execution sig-
nature of heterogeneous programs and (b) evaluate the accuracy
of selected samples on silicon, which were not possible before.
We evaluate XPU-Point on diverse hardware platforms (x86 CPU
with Intel/NVIDIA GPUs) using workloads such as SPECaccel
2023, SPEChpc 2021, GROMACS, AutoDock, and PyTorch.
We demonstrate that XPU-Point predicts overall application
performance with sampling errors typically less than 5% as
measured on native hardware.

Index Terms—Heterogeneous systems, performance evaluation,
sampled simulation, binary instrumentation

I. INTRODUCTION

Computation exists everywhere in this era, spanning from
large-scale systems to low-power devices and mobile CPUs.
As an example, there has been a profound increase in the
demand for high-performance computing (HPC) resources
in recent years [1]. However, the limitations of multi-core
architectures to scale due to the associated power and thermal
constraints (power wall) restricts their ability to deliver signifi-
cant performance improvements [2], [3]. This has resulted in a
shift toward domain-specific architectures and accelerators like
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Fig. 1: A high-level schematic of XPU-Pin. The x86 CPU
instrumentation tool Pin interacts with GPU instrumentation
tools (like GTPin and NVBit) for event-based callbacks.
Integration with similar tools for other hardware components
(x=TPUs, NPUs, accelerators, etc.) is feasible. The simulation
phase (not discussed in this work), which is performed using
a variety of tools, is handled separately.

GPUs [4], TPUs [5], and FPGAs [6]. Embracing heterogeneity
in architectures is one way forward for continued performance
improvements [7] to meet these growing computational de-
mands. The use of a combination of architectures is needed
to continue to scale the performance of future systems [8], to
achieve accelerator-level parallelism [9].

The prevalence of CPU-GPU architectures in heterogeneous
computing arises from their ability to address the evolving
demands of modern workloads, coupled with their well-
established programming models and their ability to exploit
parallelism at a massive scale. GPUs have emerged as the
most widely used general-purpose accelerators in modern data
centers [10] and supercomputers [11] that accelerate massively
parallel big data analysis [12], [13] and machine learning [14],
[15] workloads. While previous works have investigated char-
acterizing workloads that consist of CPU components [16]–
[20] and GPU [21]–[24] components independently, as well as
their comparative analyses [25], hybrid solutions that support
analysis and workload reduction, like sampling, for multiple
types of heterogeneous workloads from CPUs, GPUs, and even
custom hardware accelerators have not yet been identified.
Given the importance of these workloads, from HPC systems
to data center use, simulation of heterogeneous workloads
is key to understanding the interactions between compute



components and how those affect overall runtime performance.
The growing significance of heterogeneous computing ar-

chitectures necessitates a refined approach to performance
analysis. While GPUs have become indispensable for acceler-
ating workloads like AI training and inference, the CPU plays
a critical role in scheduling tasks and managing memory. A
performance bottleneck within the CPU can have a cascading
effect, given Amdahl’s law [26], impacting overall system
performance. Prior works [27] discuss the shortcomings of
traditional GPU-centric analysis methods that overlook the role
of the CPU in data movement and task management. Sampled
simulation techniques, while prevalent for independent CPU
and GPU performance analysis, suffer limitations when ap-
plied to tightly coupled CPU-GPU systems. Such simulations
or performance analyses often neglect the effects of inter-
core communication and cache coherency, that significantly
impact the microarchitectural state. Additionally, they may
not accurately capture synchronization behavior, leading to
unrealistic execution order and resource usage.

Existing instrumentation and analysis tools are insuffi-
cient to capture the interactions between CPU and GPU in
heterogeneous applications. While there are instrumentation
and analysis frameworks for CPUs, such as Pin [28] or
DynamoRIO [29], [30] for x86 programs, and for GPUs,
such as GTPin [31] for Intel GPU programs and NVBit [32]
for NVIDIA GPU programs, there is no framework for co-
analysis of CPU and GPU code. In this paper, we introduce
XPU-Pin, a novel framework designed to bridge this gap by
enabling simultaneous analysis of both CPU (x86) and GPU
(Intel, NVIDIA) code. XPU-Pin has a Pin-based driver that
loads the GPU tool library (GTPin or NVBit) explicitly and
triggers it, as shown in Figure 1. CPU and GPU analyses can
thus be integrated within the same environment, simplifying
development and allowing for a unified and more accurate
analysis. Additionally, the GPU tool can trigger functions
registered by the driver on certain GPU events, such as the
start or end of a GPU kernel. The CPU and GPU tools can
thus coordinate their analyses around GPU events.

Evaluating the performance of large workloads on hetero-
geneous systems presents significant challenges due to long
simulation times, which can take several months or years,
as illustrated in Figure 2. Training large language models
(LLMs) with multi-billion parameters [35]–[37] can take
several months, while the inference runs may take several
seconds even on powerful hardware [38], [39]. Simulation
serves as a powerful tool for architects to explore poten-
tial hardware improvements that suit certain workload types.
However, simulating such workloads in their entirety can be
prohibitively long. Workload sampling stands as a popular
technique for CPUs [16], [17], [19], [40], [41] and GPUs [21]–
[23], [42], presenting a compelling solution by selecting a
representative subset of the workload for detailed simulation.
This approach delivers substantial speedups while maintaining
accurate performance estimates. However, there are currently
no sample selection solutions that apply to heterogeneous
workloads. We build on XPU-Pin to propose XPU-Point, a
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Fig. 2: The wall time (in seconds) comparison between na-
tive execution and full-detailed simulation for realistic het-
erogeneous CPU-GPU workloads, such as SPEChpc 2021
benchmarks (tiny set) using ref inputs and PyTorch Inference
runs, on machines with Intel Sapphire Rapids CPU and Intel
Ponte Vecchio GPU. The simulation wall times were estimated
using the simulation rates of gem5 [33] and Accel-Sim [34].
im=Imperative, ts=TorchScript.

unified sample selection solution for heterogeneous workloads
that can accurately build a representative sample for the fast
and accurate performance analysis of such workloads. Through
XPU-Point, we propose a comprehensive methodology across
a broad spectrum of real-world workloads, from scientific
simulations to artificial intelligence. This enables computer
architects and performance researchers to quickly estimate the
performance of long-running, heterogeneous workloads using
sampled simulation on existing simulators [43], [44] which
was not possible before.

The accuracy of the XPU-Point methodology is assessed
(sample validation) based on sampling errors – the difference
between the full workload performance and the performance
extrapolated from the samples. Traditionally, sample validation
is performed based on a detailed, and slow, timing simulation
platform. We have identified two issues with simulation-based
sample validation (i) it assumes that an accurate simulator for
the target system is available which is not the case in the
early stages of system design and (ii) it requires simulation of
the entire test program to get the full workload performance
which can be impractically slow as illustrated in Figure 2.
We instead separate sample validation from simulation and
perform the validation on real hardware with XPU-Timer (Fig-
ure 3). Using XPU-Timer, sample validation can be performed
at near-native speed, whereas simulation-based validation can
be significantly slower.

The high-level overview of the entire framework is shown
in Figure 3. The focus of XPU-Point methodology is on
selecting samples for simulation and validating those samples
in a simulator-independent manner. The samples can be used
to drive simulation using the platform of choice. Leveraging
XPU-Point samples for simulation is left for future work.

In this work, we make the following contributions:
i. We propose XPU-Point, a methodology that goes beyond
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Fig. 3: The end-to-end workflow of the XPU-Point method-
ology to sample heterogeneous workloads. XPU-Point uses
XPU-Profiler to capture execution profiles of a heterogeneous
workload. Once the representative regions (samples) are iden-
tified for the workload, their performance, as estimated by
XPU-Timer (or a heterogeneous simulator), is extrapolated and
compared with that of the full workload to validate the sample.

prior sample selection techniques to be the first to allow
for the support of heterogeneous applications. This en-
ables researchers to conduct a unified and accurate per-
formance evaluation of large-scale applications through
sampled simulation.

ii. We introduce XPU-Pin, an instrumentation framework
that we developed in this work to evaluate heterogeneous
CPU-GPU applications. XPU-Point is built upon XPU-
Pin, and supports both Intel- and NVIDIA-based CPU-
GPU workloads.

iii. We experimentally assess the efficacy of XPU-Point in
terms of sampling accuracy and potential simulation
speedup of CPU-GPU workloads on various hardware
platforms using our XPU-Timer tool instead of using a
simulator. We have open-sourced the XPU-Pin frame-
work and the XPU-Point project on GitHub [45].

iv. We extensively evaluate XPU-Point across several
heterogeneous workloads, including industry-standard
benchmarks such as SPECaccel 2023, SPEChpc 2021,
AutoDock, GROMACS, and PyTorch inference demon-
strating high accuracy (absolute sampling errors less than
5%).

The rest of the paper is organized as follows. In Section II
and Section III, we discuss the background and challenges
involved in the performance evaluation of heterogeneous work-
loads on modern architectures. Section IV presents the XPU-
Point methodology in detail. We then describe the experi-
mental infrastructure in Section V, followed by an extensive
evaluation of XPU-Point in Section VI to demonstrate the
applicability of the proposed methodology. Finally, we present
the related work in Section VII and conclude the paper in
Section VIII.

II. XPU-PIN FRAMEWORK

In this section, we explore prominent solutions for binary
instrumentation, along with insights into programming models

designed for heterogeneous workloads. We also delve into the
development of XPU-Pin, a tool we specifically built to facil-
itate the co-analysis of CPU-GPU heterogeneous workloads.

A. Instrumentation and Analysis Tools

1) Intel Pin: Pin [28] is an x86 binary instrumentation
framework that allows users to write Pin tools, which are
C/C++ programs specifying analysis to be done at certain
points (for example, every instruction, basic block, etc.) in
program execution. Pin works in two modes, namely JIT mode
and Probe mode. JIT mode works by loading an input x86
binary in memory and translating (just-in-time) its x86 code
into x86 code to another region of memory called the code
cache. During translation, Pin inserts extra code, specified by
a PinTool, at specific points (such as an instruction, basic
block, or routine) within the translated code. The translation
overhead in the JIT mode can result in a 40% slowdown [46] in
performance even without instrumentation taking place. The
slowdown and performance perturbation can be exacerbated
further by the additional analysis routines. In contrast to JIT
mode, probe mode works by loading an input x86 binary
in memory and patching the code at certain probe points as
specified by the Pin tool. Probe mode does not translate the
code, but instead redirects the code inline to analysis routines.
In general, Probe mode demonstrates lower overheads at the
cost of programmer effort.

2) Intel GTPin: Intel’s GPU instrumentation framework,
GTPin [31], works by inserting analysis code into the GPU
program via GTPintools as shared libraries. The Intel Graphics
compiler generates code for the specific Intel GPUs at run
time. GTPin then dynamically adds extra code specified by a
GTPintool into the generated code. This modified code is then
offloaded to the GPU and runs there. Any results created by
the extra GTPintool code are stored in a memory buffer, and
that buffer is processed on the CPU at various synchronization
points.

3) NVIDIA NVBit: NVBit [32] is a dynamic binary instru-
mentation framework for NVIDIA GPUs that works on the
Linux operating system. It provides a high-level Application
Programmer’s Interface (API) for writing instrumentation tools
as Linux-shared libraries. A tool library is injected in a
GPU application using the LD PRELOAD [47] feature in
Linux. NVBit tools can inspect and modify the NVIDIA GPU
assembly code (SASS) of GPU applications without requiring
recompilation.

B. Implementation of XPU-Pin Framework

Existing tools mainly focus on either CPU or GPU compo-
nents of an application due to the limitations of traditional in-
strumentation tools. Intel Pin [28] and DynamoRIO [29], [30]
are used to analyze CPU applications, while GTPin [31] and
NVBit [32] are used for GPU kernel analysis. In contrast, our
newly designed framework, XPU-Pin, allows users to analyze
and instrument heterogeneous CPU-GPU workloads with a
single tool. XPU-Pin starts as an x86 analysis tool based on Pin
(either JIT or Probe mode) and then invokes the GPU analysis
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Fig. 4: The control flow of XPU-Pin co-analysis tool for an
x86 CPU and Intel GPU or NVIDIA GPU.

shared library. The straightforward approach of linking in a
GPU analysis library is not an option, as Pin requires all the
libraries a Pin tool uses to be built with a special Pin runtime
provided. Modifying GPU analysis tools to use special Pin
runtime can be restrictive and not practical with a large number
of legacy GPU analysis tools. For Intel GPUs, an alternative
to linking in a GTPin tool library is to explicitly load it at
runtime from the driver Pin tool. However, this requires using
dlopen() from the the application’s runtime instead of Pin
runtime. For NVIDIA GPUs, the NVBit analysis framework
utilizes the LD PRELOAD feature to inject itself into the
application. This mechanism remains effective when combined
with x86 Pin. CPU and GPU analyses can thus be integrated
within the same environment, simplifying development and
allowing for a unified and more accurate analysis.

Legacy GPU analysis tools can thus be executed unmodified
with x86 CPU analysis using Pin (either using dlopen or
LD PRELOAD). For coordinated CPU and GPU analysis,
GPU analysis tools can implement an optional callback han-
dler registration. When the Pin driver explicitly loads the GPU
analysis library, it calls this registered handler. The GPU tool
then uses this handler to obtain and store pointers to Pin driver
functions, which it can later invoke in response to specific GPU
events (like kernel start and end). This mechanism enables
CPU and GPU tools to synchronize their analysis based on
these GPU events. Figure 4 shows the control flow for an XPU-
Pin tool combining x86 Pin tool (xpu-pin-driver.so) and GTPin
analysis tool (GPUAnalysis.so). Including a GPU analysis
library can inadvertently cause the CPU analysis tool to treat
it as part of the application. To prevent this, the CPU tool
must explicitly exclude it from instrumentation. The XPU-Pin
framework provides an API enabling the CPU analysis tool to
retrieve the name of the GPU analysis library for this purpose.

III. THE IMPERATIVE FOR EFFICIENT HETEROGENEOUS
SIMULATION

This section highlights the need for efficient methodologies
to evaluate the performance of large workloads running on
heterogeneous computing systems in a fast and accurate way.

A. Limitations of Traditional Analysis Methodologies

Traditional heterogeneous systems tend to underutilize the
available computing power of CPU and GPU [48], [49]. Most
traditional heterogeneous applications use the CPU to schedule

XPU-BBV
CPU-GPU 
Workload

XPU-Profiler
ROIsShared 

Libs

Cluster

Tuning

Weights

Fig. 5: The workflow of XPU-Point methodology to capture
representative regions (or ROIs) along with their correspond-
ing weights suitable for the sampled simulation of heteroge-
neous workloads.

computing tasks for accelerators like GPUs. While the highly
parallel computation happens in the GPU, the CPU waits,
causing the CPU cycles to be wasted. However, this may not
be the case with emerging applications that may fully utilize
the CPU resources by executing tasks concurrently on the CPU
and GPU. Independent performance evaluations using simula-
tion techniques can yield misleading microarchitectural state
estimations due to the misrepresentation of synchronization
between the processing units. These evaluations cannot accu-
rately capture the shared memory and cache access patterns,
which are influenced by the underlying cache coherency proto-
cols. Consequently, resource usage and execution order might
be misrepresented. Therefore, co-analysis and co-simulation
techniques are essential for accurate microarchitectural state
evaluation in CPU-GPU systems.

B. Effective Sample Selection of Heterogeneous Workloads

There are several methodologies that address the prob-
lem of sampling single-threaded [16], [17], [50] and multi-
threaded [19], [20], [40], [41], [51] CPU workloads. There
are several sampled simulation techniques that consider GPU
workloads [21]–[24], [42], [52], [53] to speed up GPU-only
simulation. Among the prior works for the sampled simulation
of GPU workloads, Kambadur et al. [22] proposed a GTPin-
based methodology for the sample selection of Intel GPU
workloads, utilizing basic block information (along with other
program features) to characterize program execution. Prior
works like TBPoint [21] and PKA [23] utilize handpicked
feature vectors, including kernel size and control flow diver-
gence, to classify similar GPU regions. Photon [42] employs
a cluster-based summarization technique that groups similar
warps based on their behavior and constructs BBVs for each
cluster by aggregating individual warp profiles and concate-
nating them. All these works consider GPUs as independent
computing units, which rely on the assumption that the hetero-
geneous workload could be divided into CPU-only and GPU-
only components. Under this assumption, the total execution
time of the heterogeneous application can be calculated by
summing up the CPU execution time, GPU execution time,
and the data transfer time between CPU and GPU. How-
ever, this assumption may no longer be valid for emerging
workloads. Independent analyses may result in inconsistent
timings for workload-specific CPU and GPU events, such as
kernel launches, memory allocations, and warp divergence.
Therefore, a combination of CPU-only and GPU-only sample
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selection methods for heterogeneous systems could lead to
inaccurate performance measurements.

C. Effects of Microarchitectural Warmup

In sampled simulation, microarchitectural warmup is nec-
essary to ensure the simulated microarchitecture reflects a
realistic state prior to detailed performance measurements.
Previously proposed microarchitecture warmup methodolo-
gies [54]–[57] enable the detailed simulation of the regions
of interest starting at the right state. Warmup methodologies
can be categorized into functional warming and statistical
warming. Functional warming techniques [19], [40] rely on ac-
tual program execution, whereas statistical warming [54]–[57]
leverages profiling tools to gather memory access information.

XPU-Point provides a framework for collecting memory
access data necessary for developing integrated CPU-GPU
warmup methodologies. Architects tend to integrate computing
devices like CPUs and GPUs to share last-level cache, mem-
ory, etc. For instance, NVIDIA Grace-Hopper [58] utilizes
a CPU-GPU coherent memory model. The trend towards
tightly coupled CPU-GPU computing will continue, especially
with the advancement in interconnects (like CXL [59] and
NVLink [60]) and chiplet-based [61] IC packaging [62] tech-
nologies. XPU-Point can be extended to gather shared memory
access patterns, enabling the generation of combined warmup
data that addresses this crucial requirement in integrated GPU
systems and multi-GPU systems.

IV. XPU-POINT SAMPLE SELECTION METHODOLOGY

In this section, we introduce XPU-Point, a novel method-
ology to sample heterogeneous CPU-GPU workloads. To
the best of our knowledge, XPU-Point represents the first
solution to efficiently co-sample heterogeneous workloads.
The overall workflow for the XPU-Point methodology is
outlined in Figure 5. The methodology relies on our XPU-
Profiler to generate the combined execution signature vectors
of CPUs and GPUs. These heterogeneous execution vectors
are clustered to identify representative regions that can be
used for simulation-based performance evaluations of future
heterogeneous architectures.

A. Workload Distribution on GPUs

GPUs follow a hierarchical structure in both their hardware
and programming models to efficiently manage the massive
number of threads. NVIDIA GPUs typically comprise multiple

Streaming Multiprocessors (SMs), with each SM containing
several CUDA cores. To leverage the parallel architecture of
NVIDIA GPUs, several threads (usually 32 or 64 threads) are
grouped into a warp (or wavefront). NVIDIA GPUs primarily
utilize a Single Instruction, Multiple Thread (SIMT) [63]
model of CUDA, where threads within a warp share the same
program counter (PC) and consequently execute the same in-
struction concurrently on the same CUDA core. Furthermore,
multiple warps are grouped into thread blocks, which are then
scheduled for execution on the same SM and utilize the shared
cache. The GPU kernels (functions offloaded to the GPUs for
parallel processing) are structured as Grids to orchestrate the
execution across all thread blocks.

The concept of work groups in SYCL directly maps to
how Intel’s Xe [64] cores distribute tasks. Work-groups,
analogous to thread blocks, group a defined number (SIMD-
width) of threads for cooperative execution and data sharing.
Intel GPUs typically employ a more flexible SIMD (Single
Instruction, Multiple Data) [65] model redesigned for high
performance [66] on Intel GPUs in the SYCL programming
model. This means that threads within a work-group can
execute a single instruction on multiple data elements simulta-
neously. Work-groups are subdivided into sub-groups (similar
to warps) that share resources like local memory. Execution
occurs on Vector Engines (VE) within the Xe cores. SYCL
employs queues to manage the submission of work-groups for
execution on the VE. ND-range defines the high-level structure
of the kernel for parallel execution across the processing
elements, specifying a multidimensional grid of thread blocks
to be launched on the GPU. Figure 6 shows the workflow of
a GPU kernel execution on Intel and NVIDIA systems.

XPU-Point takes into account both CUDA and SYCL pro-
gramming models to represent the amount of execution done
by the device. The execution in traditional CPU workloads can
be quantified by the number of instructions or basic blocks
(code blocks that have single entry and exit points) executed
by each thread. In this work, we adopt a similar approach
to quantify the execution of GPUs. However, GPU execution
differs due to the SIMT/SIMD paradigm, where multiple
threads or work-items collaborate to execute an instruction. To
account for this, XPU-Point uses warp (or subgroup) as the
fundamental unit of execution for GPUs, whereas instruction
is the fundamental unit of execution for CPUs.
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B. Slices of Heterogeneous Applications

A slice (or region) represents a chosen segment of the appli-
cation’s execution flow generated by splitting the application
at a well-defined point. For a slice to be effective for work-
load characterization, it must be repeatable across multiple
runs of the application to ensure consistency in the behavior
for accurate sampled simulation and performance evaluation.
Traditional CPU workload sampling methodologies such as
SimPoint [16], BarrierPoint [20], and LoopPoint [41] identify
slices based on repeatable program constructs. Simpoint, for
instance, focuses on identifying intervals based on fixed-size
instructions. Meanwhile, BarrierPoint and LoopPoint target
regions that are delineated by synchronization barriers and
loops, respectively. Previously proposed sampled simulation
techniques for GPU workloads [21], [23], [42] focus solely
on the GPU kernels, completely ignoring any interactions
with the CPUs. In this work, we propose a novel approach
for slice identification, which is a contiguous code segment
that spans from the end of one kernel call to the end of the
subsequent kernel call, as shown in Figure 7. Therefore, the
slice of a heterogeneous application includes both CPU and
GPU execution. Similar to loops in LoopPoint or inter-barrier
regions in BarrierPoint, the slices identified by XPU-Point are
repeatable across multiple executions on platforms with similar
compute capabilities.

C. Capturing CPU-GPU Execution Profiles

Understanding execution profiles within CPU-GPU systems
demands a comprehensive representation that integrates exe-
cution profiles from both processing units. Traditionally, the
classification of regions based on the similarity of the code
executed [67], [68] works well for CPU workloads. The
regions are represented as basic block vectors (BBVs), which
comprise basic blocks and their frequency. A number of prior
works on selecting representative regions of a workload have
been built on this idea of representing regions using code
signatures. In the case of multi-threaded workloads where
threads split the work to execute on multiple cores, the amount
of work done by the threads is represented by concatenating
the BBVs of each thread. Concatenating BBVs across CPU

BBVt0 BBVt1 BBVtN… BBVw0 BBVwKBBVw1 …

XPU-BBV

CPU BBV GPU BBV

Concatenate

Fig. 8: The concatenation of CPU and GPU BBVs into a
longer, combined XPU-BBV that represents a heterogeneous
region in XPU-Point methodology.

and GPU threads is evident to be a promising technique, as it
merges CPU thread profiles with detailed GPU data, including
both global and individual thread profiles. Prior works show
that concatenating per-thread profiles to form CPU BBV [20],
[41], [69] or per-warp profiles to form GPU BBV [42] leads
to the accurate representation of thread-level parallelism.

In this work, we devise a technique to represent the hetero-
geneous regions of the workload. We utilize XPU-Profiler, the
profiling tool that we built upon XPU-Pin, to simultaneously
generate BBVs for CPU and GPU execution. Within this
framework, we refer to CPU BBVs as those derived from
program execution on the CPU, while GPU BBVs refer to
those obtained during program execution on the GPU. We
demonstrate that concatenating all GPU warps (or sub-groups)
is efficient in representing the GPU BBV. By concatenating
the CPU BBV and GPU BBV forming XPU-BBV (shown in
Figure 8), we construct a unified representation that captures
the behavior of a heterogeneous region. Previous studies [20],
[41] have demonstrated that concatenating feature vectors
effectively captures individual thread behavior.

D. Selecting the Representative Slices

Representing the sheer number of GPU threads (or warps)
in an XPU-BBV leads to a significant increase in vector
dimensionality, resulting in the curse of dimensionality [70].
This phenomenon slows down clustering algorithms, which
are critical for identifying representative regions from the
profile data. To address this challenge, we employ traditional
dimensionality reduction techniques such as random linear
projections. The algorithm selected for a desired level of
dimensionality reduction is pivotal in minimizing information
loss within the profile data [71]. This ensures that the resul-
tant lower-dimensional space retains the vital characteristics
necessary for accurate workload characterization. Due to the
differences in magnitude between CPU and GPU dimensions,
these feature vectors need to be projected separately. Fur-
ther, we employ k-means clustering algorithm [72] to cluster
these heterogeneous regions as represented by the lower-
dimensional BBVs. The region closest to the centroid of
each cluster serves as the representative of the cluster [16].
Typically, the clustering phase involves fine-tuning parameters,
such as maxk, to achieve optimal results. Advances have been
made in program representation using embeddings [73] and in
clustering using deep neural nets [74]. We believe that such
improvements are orthogonal to the basic idea of XPU-Point
and can be incorporated here.



E. Sample Validation and Tuning

The representativeness of the regions selected using the
proposed methodology needs to be validated. In addition
to simulations, sample validation employing real hardware
measurements like those demonstrated in prior works [24] can
be leveraged here. To validate the representativeness of the
selected slices within heterogeneous workloads, we introduce
XPU-Timer, a tool built upon XPU-Pin. XPU-Timer leverages
the x86 rdtsc instruction to provide system timestamps
(TSCs) at critical points during the native execution of the
workload: program start, program end, and the boundaries of
each predefined slice. These timestamps allow us to extract
the execution time for each representative slice, eliminating
the need for long-running simulations. By weighing these
region execution times with their corresponding weights, we
extrapolate the execution time of the entire program. The
difference between the full execution time and the extrapolated
time is known as the sampling error (or prediction error). A
lower sampling error indicates a more accurate selection of
representative slices.

F. Estimating Full Application Performance

Microarchitecture simulation and exploration greatly benefit
from sampling large, heterogeneous workloads. Instead of
simulating entire workloads for microarchitecture exploration,
which is computationally expensive, representative slices of
the workload can be simulated rapidly. These slices capture the
complex characteristics of heterogeneous workloads, enabling
researchers to explore how future microarchitectures can be
optimized for such workloads.

XPU-Point identifies representative slices of a heteroge-
neous workload that can be used for detailed cycle-level or
cycle-accurate microarchitecture simulations. The regions can
also be simulated on execution-driven heterogeneous simula-
tors like Multi2Sim [75] and gem5-gpu [43]. We would like
to point out that the XPU-Pin framework can be used for
heterogeneous trace generation to support trace-driven simula-
tors like MacSim [76]. Accurate performance measurements in
sampled simulations rely on a warmed-up microarchitectural
state before detailed simulation. However, warmup reconstruc-
tion for heterogeneous systems remains an open research area.
As this falls outside the scope of our current work, we will
not explore it further in the paper.

V. EXPERIMENTAL SETUP

Establishing the fidelity of sample selection techniques
– the ability to accurately represent full program behavior
using the selected sample set – is essential. Simulation-based
performance comparisons are typically employed to assess this
characteristic. However, this approach is impractical for large,
heterogeneous workloads. Thus, we follow a hardware-based
performance measurement methodology using XPU-Timer for
all applications. XPU-Timer utilizes system timestamps to
accurately measure the execution time of large applications
and their selected samples on native hardware, eliminating the
need for long-running simulations.

TABLE I: The CPU-GPU combinations of Intel- and NVIDIA-
based systems used to evaluate XPU-Point methodology.

CPU GPU

Intel Alder Lake [84] Intel Discrete Graphics 2 (DG2)
Intel Alder Lake Intel Iris Xe (integrated)
Intel Ice Lake-SP [85] Intel Ponte Vecchio (PVC) [86]
Intel Sapphire Rapids [87] Intel Ponte Vecchio (PVC)
Intel Cascade Lake [88] NVIDIA A100 [89]
Intel Skylake [90] NVIDIA GeForce GTX 1080
Intel Skylake NVIDIA TITAN Xp

We evaluate a combination of standard heterogeneous
benchmarks as well as real-world HPC and AI workloads
that use both CPUs and a GPU for computation. We
evaluate SPECaccel 2023 [77] benchmarks and SPEChpc
2021 [78] benchmarks, along with real-world workloads like
AutoDock [79]–[81], GROMACS [82], and PyTorch [83]
inference runs.

We evaluate all of the workloads with XPU-Timer using
native hardware runs on both Intel-GPU-based and NVIDIA-
GPU-based heterogeneous systems, and, therefore, we sepa-
rately compile the benchmarks suitable for these systems. For
Intel-based systems, we use Intel’s oneAPI [91], [92] toolkit
to build the benchmarks, whereas for NVIDIA-based systems,
we use the NVIDIA CUDA toolkit [93]. The machines that
we used for our evaluation are listed in Table I. Our focus is
on demonstrating the methodology’s efficacy across heteroge-
neous workloads on both Intel-based and NVIDIA-based GPU
systems. The results presented here are not a direct comparison
of individual machine performance but rather highlight the
broad applicability of the methodology.

VI. EVALUATION

This section evaluates the effectiveness of XPU-Point in
selecting representative regions using realistic CPU-GPU het-
erogeneous workloads. The aim of this work is to allow for fast
and accurate microarchitecture simulations of these workloads
to explore future heterogeneous systems.

We extrapolate the performance of the full workload from
the performance of N representative regions using the formula:

Pproj =

N∑
i=1

Pi ×multiplieri,

where Pproj denotes the projected or extrapolated performance
of the full workload. In addition, Pi and multiplieri denote
the performance obtained and the multiplier associated with
the representative region regioni, respectively. The multiplier
of a representative region is dependent on the number of
regions that belong to the cluster that regioni represents [20].
This formula allows us to extrapolate performance metrics like
runtime, cache behaviors, branch behaviors, and IPC for the
entire workload.

Sampling Error and Speedup. We quantify the difference
between the extrapolated performance metrics and the actual
measured performance of the full workload to obtain sampling
error or prediction error [16]. We estimate the performance
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Fig. 9: Analysis of loop execution for SPECaccel 2023
benchmarks using train inputs. The top graph (a) shows the
instruction split while the bottom graph (b) shows the number
of loops executed on CPU and GPU.

of the workloads and the representative regions leveraging
the system timestamp counter (TSC) on real hardware, which
is equivalent to runtime obtained through microarchitecture
simulation. The long simulation times required for full work-
loads make simulation-based validation impractical for large
workloads.

The sampling error ∆sample can be computed using the
formula:

∆sample =

∣∣∣∣1− Pproj

Preal

∣∣∣∣ ,
where Preal is the actual performance obtained through the
measurement of the full workload. Usually, sampling error is
expressed as a percentage (error rate). This is obtained by
multiplying the absolute value of the sampling error (∆sample)
by 100.

We define the speedup obtained using XPU-Point as the
reduction in the number of instructions to be simulated in
detail after sampling [20]. That means,

speedup =
num slices

N
,

where N is the number of representative regions, and
num slices is the total number of slices in the entire work-
load. This is equivalent to the serial speedup, which is achieved
by simulating the representative regions sequentially. Note that
this speedup represents the minimum achievable reduction in
simulation time. The simulation of these representative regions
can be parallelized, which could lead to significantly higher
speedups than the values presented here.

Cross-microarchitecture Validation. XPU-Point method-
ology relies on the microarchitecture-independent selection
of representative regions. This allows researchers to profile
an application binary on one hardware and reuse the cho-
sen regions for simulations on different hardware within the
same architecture. This is possible because XPU-Point utilizes
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Fig. 10: The sampling errors for the SPECaccel 2023 bench-
marks with GPU-only profiles (GPU-Point) vs. CPU-GPU
profiles (XPU-Point).

BBVs to capture the control flow structure of the program, a
characteristic independent of the underlying architecture. To
verify the effectiveness of this approach across microarchitec-
tures, XPU-Point employs cross-microarchitecture validation.
This validation involves selecting regions on one machine
using XPU-Profiler and then validating their representativeness
on another machine with a different CPU-GPU combination
within the same architecture using XPU-Timer.

Runtime Overhead. XPU-Point, like other dynamic binary
instrumentation tools, introduces analysis-dependent runtime
overhead. XPU-Profiler has a large overhead due to extensive
library usage and process/thread creation of large workloads.
By default, it instruments all libraries, processes, and threads.
However, XPU-Point offers the flexibility to reduce the anal-
ysis overhead by instrumenting specific processes/threads and
libraries. The XPU-Timer tool employs a Pin-probes mode
driver, avoiding CPU instrumentation altogether. The GPU
component of the tool utilizes low-overhead instrumentation to
track key events like GPU initialization and kernel start/stop.

A. Comparison with GPU Sample Selection

We present a detailed analysis of SPECaccel 2023 [77],
a benchmark suite with computationally intensive parallel
heterogeneous applications that exercises the performance of
the accelerator (GPU in our case), host CPU, memory transfer
between host and accelerator, compilers, and the runtime
system [94]. We used Intel x86 Sapphire Rapids server with
Intel Data Center GPU Max 1100 for this evaluation.

Figure 9 shows the analysis of loops in the main image of
the benchmarks identified using Intel Software Development
Emulator (Intel SDE) [95]. The number of loops on the GPU
was obtained using Intel GTPin [31]. For SPECaccel 2023
workloads using CPU and GPU, we wanted to test the effect of
focusing just on the GPU computation. We tested two profilers:
XPU-Profiler that collects combined CPU-GPU BBVs; and
GPU-Profiler that collects the GPU BBVs. In both the cases,
the region boundaries are kernel boundaries leading to the
same number of BBVs. GPU-Profiler uses Intel GTPin to
collect per-thread BBVs for the entire computation which are
copied to the CPU at the end of each GPU kernel execution.
The average slowdown of the GPU-Profiler for SPECaccel test
cases was 4.7×. XPU-Profiler on the other hand uses Pin JIT
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Fig. 11: The sampling errors (a) and speedup (b) plotted with
shared x-axis obtained for the SPEChpc 2021 benchmarks
with test inputs from the tiny set. The benchmarks are sampled
on an Intel PVC machine are cross-validated on an Intel DG2
machine. The benchmarks were also sampled and validated on
an NVIDIA A100 machine.

mode instrumentation at the basic block level. Synchronization
between multiple threads is necessary in this case. The average
slow-down for the XPU-Profiler for the SPECaccel test cases
was 102×.

Figure 10 plots the sampling errors for SPECaccel 2023
benchmarks using XPU-Point and GPU-Point evaluations.
Overall, the sampling errors with GPU-only approach (ge-
ometric mean of 23.9%) are higher than those with the
combined CPU-GPU approach (geometric mean of 0.99%).
In the case of 452.ep, focusing on just the GPU computation
in isolation predicts the overall performance with a low error
(1.34%) although still higher than the combined CPU-GPU
approach (0.10%). 404.lbm demonstrates another extreme,
where the GPU-only approach only found one representative
region leading to 210% sampling error. Using heterogeneous
profile, 15 regions were identified by XPU-Point leading to a
much lower sampling error (0.56%).

B. Sample Validation using Native Hardware

While simulation provides a controlled environment for
workload analysis, validating samples on native hardware is
often practical for large workloads. To enable this, we employ
XPU-Timer to gather precise performance metrics from native
hardware executions, as mentioned in Section IV-E. The
results of sample validation using XPU-Timer, categorized by
benchmark suite, are presented here.

1) SPEChpc 2021: The SPEChpc 2021 benchmark
suites [78] provide application benchmarks from selected
science and engineering applications that are portable across
CPUs and accelerators. The suites include Tiny, Small,
Medium, and Large workloads, supporting multiple program-
ming models and requiring varying amounts of memory and
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Fig. 12: The sampling errors (a) and speedup (b) obtained for
the representative regions identified for SPEChpc 2021 bench-
marks that use ref inputs from the tiny set. The benchmarks
are sampled and validated on an Intel PVC machine.
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Fig. 13: Sampling errors (a) and speedup (b) for AutoDock
(work-item=8) using different inputs on Intel and NVIDIA
GPU platforms.

number of ranks to run. We chose the Tiny workload (60
GB memory requirement) and limited our testing to a single
node/rank. We tested both the test and ref inputs for evalu-
ation. The sampling errors and speedups for the benchmarks
running test inputs are shown in Figure 11 for the Intel-based
systems and NVIDIA-based systems. Due to the huge memory
requirements, we evaluated the ref input set of SPEChpc
benchmarks only on the Intel-based systems, and the results
are shown in Figure 12.

2) AutoDock-GPU: AutoDock is a widely used software
that performs molecular docking simulations commonly used
for benchmarking and performance evaluation of heteroge-
neous systems. Figure 13 shows the sampling results obtained
for AutoDock using XPU-Point on Intel-based and NVIDIA-
based systems. We use four different platforms to validate the
sample selected for the AutoDock [79], [81] application using
various inputs. The SYCL implementation of AutoDock [80] is
used for evaluating Intel GPU systems. The samples collected
on the Intel DG2 platform are cross-validated on the Intel PVC
platform. Due to binary incompatibility, cross-validation could



TABLE II: The classification of GROMACS based on the
offloading device for the execution of each calculation. We
also use -nsteps 200 with -notunepme for all types.
The last column shows the number of slices for each type.

Type nb pme pmefft bonded update #slices

A GPU CPU CPU CPU CPU 305
B GPU CPU CPU GPU CPU 506
C GPU GPU CPU CPU CPU 707
D GPU GPU CPU GPU CPU 908
E GPU GPU GPU CPU CPU 3730
F GPU GPU GPU GPU CPU 3931
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Fig. 14: The sampling errors (a) and speedup (b) for GRO-
MACS in different settings on Intel Iris and NVIDIA A100
using XPU-Point.

not be performed on NVIDIA platforms.
3) GROMACS: GROMACS [82], [96] is a widely used

open-source tool [97] for the simulation of molecular dy-
namics, which uses both CPU and GPU for computation. We
manually configure the type of computation to be offloaded
to the CPU and GPU, as shown in Table II, and identify the
representative regions. The sampling errors and speedups are
reported in Figure 14 for Intel-based systems and NVIDIA-
based systems. We infer that the GROMACS workload Type F,
with the most number of slices, benefits the most from the
XPU-Point methodology achieving the maximum speedup. For
Type A, the regions are expected to be larger due to the
predominantly CPU-intensive nature of the workload.

C. Evaluation of PyTorch Inference Workloads

We evaluated PyTorch [98] inference workloads running
text processing tasks using the BERT (Bidirectional Encoder
Representations from Transformers) [99] model and image
classification tasks using the ResNet50 (Residual Network
with 50 layers) [100] model, across various configurations:
data precision (BF16, FP16, FP32, and INT8 quantization)
and execution mode (imperative Python vs. pre-compiled
TorchScript). These workloads were optimized with the Intel
Extension for PyTorch [83] to be evaluated on the machines
with Intel PVC GPUs. We present the sampling results
of PyTorch workloads using XPU-Point in Figure 15. Al-
though profiling more libraries increases XPU-Profiler over-
head (as observed with BERT_BF16_Ts, BERT_FP16_Ts,
and BERT_FP32_Ts), the cost is amortized over multiple
simulations. In general, the profiling and analysis of all shared
libraries is necessary. To speed up the analysis, we chose to
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Fig. 15: The sampling errors (a) and expected simulation
speedups (b) of PyTorch Inference runs plotted with shared
x-axis. In (b), the line graph (plotted with the secondary y-axis)
shows the number of representative regions selected using
XPU-Point. im=Imperative, ts=TorchScript.
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Fig. 16: The slowdowns (normalized with the native runtime
of the application) for PyTorch Inference runs on Intel Ponte
Vecchio GPU. The Pin-Bare mode measures the slowdown due
to running the benchmarks under Pin with no instrumentation.
The slowdown caused by the GTPin Tool is evaluated using a
basic instrumentation tool, Nothing. XPU-Timer uses XPU-Pin
to collect the timing information of the benchmarks. The GPU-
Profiler profiles using GTPin to collect BBVs. XPU-Profiler
uses XPU-Pin to collect BBVs of the CPU-GPU execution.
im=Imperative, ts=TorchScript.

analyze the libraries that significantly impact workload run-
time. The PyTorch workloads use a large number of libraries
(>150), processes (≈60), and threads (>100), causing a large
overhead in analyzing them. In this work, we focused on the
main libraries and processes during instrumentation. Figure 16
shows the runtime overhead of evaluation tools used with these
workloads.



VII. RELATED WORK

A. Sample Selection Methodologies

1) CPU Workloads: Prior research on the sample selec-
tion of single-threaded workloads explores profile-driven and
statistical approaches. Profile-driven techniques, like Sim-
Point [16], target representative code sections for detailed
simulation, aiming to capture the overall workload behavior.
Conversely, statistical sampling methods, like SMARTS [17],
randomly select instructions or program phases for simulation.
LiveSim [50] enhances existing sampled simulation method-
ologies by incorporating in-memory checkpoints, thereby en-
abling interactive simulation capabilities. Traditional single-
threaded sampled simulation techniques are not well-suited for
multi-threaded applications [101]. While SimFlex [18] offered
a solution to sample data center workloads, it is not suitable to
evaluate synchronizing multi-threaded workloads. Time-based
sampling techniques [19], [40] emerged as the first attempt
to address this challenge. Subsequent advancements included
profile-driven methodologies like BarrierPoint [20] for barrier-
synchronized applications and TaskPoint [51] for task-based
applications. LoopPoint [41] introduced loop-based sample
selection and simulation techniques to accurately estimate
the performance of generic multi-threaded applications, an
approach that influenced later proposals [69], [102].

2) GPU Workloads: GTPin [31] is an ahead-of-time in-
strumentation tool for workloads that run on Intel GPUs.
Leveraging GTPin, Kambadur et al. [22] proposed a solution
to sample workloads running on Intel GPUs. They utilize
kernel names, arguments, and basic block entries to select
representative regions of the GPU programs at a kernel-
level granularity. Yu et al. [52], [53] propose a SimPoint-
like strategy to detect representative loops that can be used
to extrapolate kernel performance. TBPoint [21] uses BBVs
and other kernel-specific features to identify representative ker-
nels, whereas Principal Kernel Analysis (PKA) [23] monitors
the IPC difference between sampling units to determine the
regions to fast-forward. Sieve [24] extends on prior works
to show that using the kernel name and instruction count
allows for better sample selection. Photon [42] utilizes GPU
Basic Block Vectors (BBVs) for inter-kernel and intra-kernel
workload sampling, resulting in significant improvement in
sampling accuracy. STEM+ROOT [103] is a kernel-level sam-
pling methodology that leverages the distribution of kernel
execution times as the signature for representing the intervals.

B. Simulation Infrastructures

The most widely used CPU simulators are gem5 [33],
Sniper [104], and ZSim [105]. GPU simulators are extremely
slow as compared to the real execution [34], as they run
on the CPU, which typically has fewer cores than the GPU
under simulation. Trace-driven GPU simulators, such as Mac-
Sim [76], execute functionally generated traces with a timing
model to generate the performance results. Execution-driven
GPU simulators, such as Multi2Sim [75], gem5-gpu [43], MG-
PUSim [106], gem5 APU [107], [108] and GPGPUSim [109],

directly execute the binary for performance simulation. Simu-
lators like Accel-Sim [34] and NVArchSim [110] support both
execution- and trace-driven simulation modes. Among these
simulators, Multi2Sim, gem5-gpu, MacSim, and gem5 APU
support heterogeneous CPU-GPU workloads.

C. Synthetic Benchmark Generation

Synthetic benchmark generation is a workload reduc-
tion technique that involves creating lightweight workload
clones that mimic the performance characteristics of real-
world applications. SynchroTrace [111] is a trace-based
multi-threaded simulation methodology that accurately re-
plays synchronization- and dependency-aware traces for chip
multiprocessor systems. GPGPU-Minibench [53] captures the
execution behavior of existing GPGPU workloads in a profile,
which includes a divergence flow statistics graph to charac-
terize the dynamic control flow behavior of a GPGPU kernel.
G-MAP [112] statistically models the GPU memory access
stream locality by considering the regularity in code-localized
memory access patterns and the parallelism in the execution
model to create miniaturized memory proxies. Mystique [113]
is yet another technique that generates benchmarks from
production AI models by leveraging PyTorch execution traces.
Ditto [114] focuses on synthesizing workloads for data centers
mimicking traditional CPU performance behaviors.

D. Heterogeneous Programming Models

Several programming models cater to heterogeneous
computing, including OpenMPI [115], StarPU [116],
OpenCL [117], OpenMP [118], OmpSs [119], CUDA [93],
[120], and AMD HIP [121]. Prior works [122]–[125] compare
the performance of CUDA and OpenCL programming models
and show that the translation of one model to another works
well for various applications. SYCL [126] is a modern
heterogeneous programming model built on C++. There are
several implementations of source-to-source translation tools
from CUDA to SYCL [80], [127].

VIII. CONCLUSION

This paper proposes XPU-Point, a methodology for the sam-
ple selection of heterogeneous CPU-GPU workloads. XPU-
Point leverages XPU-Pin, our instrumentation framework to
combine CPU and GPU analysis. We demonstrate the accuracy
and efficiency of the XPU-Point through the evaluation of
real-world heterogeneous workloads, highlighting its ability
to significantly reduce the simulation time. This work forms
the basis for selecting representative regions applicable across
a host of simulators, from cycle-accurate to high-level archi-
tectural models.
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APPENDIX A
ARTIFACT APPENDIX

A. Abstract

In this artifact, we provide the required tools and informa-
tion needed to replicate the primary experiments demonstrated
in this paper. The artifact provides the necessary tools and
scripts to analyze heterogeneous applications through three
main components:

1) XPU-Profiler: Profiles heterogeneous applications and
collects basic block vectors for similarity analysis;

2) XPU-Timer: Evaluates the performance of selected re-
gions on native hardware; and

3) Performance Extrapolation: Extrapolates performance
results and generates visualization plots.

This appendix describes these parts and how to run them
to replicate our experiments. We have also included an exam-
ple benchmark, GROMACS, to demonstrate the end-to-end
methodology.

B. Artifact check-list (meta-information)
• Program: C++ programs, Python/Shell scripts.
• Compilation: CUDA, oneAPI, Make, GCC.
• Binary: Pin 3.30, GTPin 4.5.0, NVBit 1.5.5.
• Run-time environment: NVIDIA and Intel GPU Drivers.
• Hardware: NVIDIA GPU systems and Intel GPU systems.
• Metrics: Cycles, TSC, Runtime.
• Output: XPU-Point sampling results of the benchmarks.
• Experiments: Use the scripts to run the experiments.
• How much disk space required (approximately)?: 500 GB.
• How much time is needed to prepare workflow (approxi-

mately)?: 1 day.
• How much time is needed to complete experiments (approx-

imately)?: 1 week.
• Publicly available?: Yes
• Code licenses (if publicly available)?: Yes.
• Archived (provide DOI)?: 10.5281/zenodo.16801115

C. Description

1) How to access: GitHub [45] and Zenodo [128]
2) Hardware dependencies:

1) Linux x86 system with NVIDIA GPU.
a) CUDA version: ≥ 8.0 && ≤ 11.x
b) CUDA driver version: ≤ 495.xx

2) Linux x86 system with Intel GPU.
3) At least 500 GB of free disk space.
3) Software dependencies: Docker, NVIDIA drivers, Intel

drivers, CUDA, oneAPI.
4) Data sets and Models: None

D. Installation

We recommend the users to use the latest version of the
XPU-Point tools released on GitHub [45].

1) Clone the XPU-Point repository and navigate to the base
directory.
$ git clone https://github.com/
nus-comparch/xpupoint && cd xpupoint

2) Setup the appropriate environment using docker. Note that
this step requires an already installed GPU drivers.

a) Build the docker image.
$ make docker.build

b) Run the docker image.
$ make docker.run

c) Compile XPU-Point tools and benchmarks.
$ make

d) All the necessary tools should be downloaded and built
with this step.

3) The benchmark directory now contains the compiled
benchmark(s) for evaluation on the respective platform
using XPU-Point.

E. Experiment workflow
The installation scripts sets up all the directories and

benchmarks for evaluation. The steps to run the end-to-end
methodology are given below.

1) Navigate to the gromacs benchmark in the
benchmarks directory.
$ cd benchmarks/gromacs

2) There are several test cases provided for gromacs. Use
the run-xpupoint script to run all the tests or use the
test directory name as argument to run individual tests.
$ ./run-xpupoint all
Or
$ ./run-xpupoint <test_dir>

3) The selected test cases run XPU-Profiler to identify the
representative regions.

4) Further XPU-Timer determines the performance of the
full application and each of the representative regions
using native runs.

5) All of these are handled by run-xpupoint script.
Once the tests are finished, the sampling results can be
visualized as a table or a graph.
$ ./make-graphs

F. Evaluation and expected results
To replicate the results shown in this paper, it is necessary

to run each of the benchmarks evaluated in this paper. We
have set up GROMACS benchmark to run using our scripts
to reproduce the results in Figure 14. Note that the profiling
run for larger applications can take a few hours. To use this
artifact, it is recommended to first verify that the Intel and/or
NVIDIA GPU platforms are functioning correctly. Commands
like nvidia-smi and sycl-ls are typically used to verify
the functionality of NVIDIA and Intel GPUs respectively.

G. Notes

1) The results of the workload analyses are closely tied to
the specific execution environment.

2) The results from XPU-Timer may be dependent on other
jobs running on the same machine.

H. Methodology
Submission, reviewing and badging methodology:
• https://www.acm.org/publications/policies/

artifact-review-and-badging-current
• https://cTuning.org/ae

https://github.com/nus-comparch/xpupoint
https://github.com/nus-comparch/xpupoint
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://cTuning.org/ae
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