
A Graphics Tracing Framework for
Exploring CPU+GPU Memory Systems

Andreas Sembrant, Trevor E. Carlson, Erik Hagersten, and David Black-Schaffer
Uppsala University, Department of Information Technology

P.O. Box 337, SE-751 05, Uppsala, Sweden
{andreas.sembrant, trevor.carlson, erik.hagersten, david.black-schaffer}@it.uu.se

Abstract—Modern SoCs contain CPU and GPU cores to
execute both general purpose and highly-parallel graphics work-
loads. While the primary use of the GPU is for rendering
graphics, the effects of graphics workloads on the overall system
have received little attention. The primary reason for this is
the lack of efficient tools and simulators for modern graphics
applications.

In this work, we present GLTraceSim, a new graphics memory
tracing and replay framework for studying the memory behavior
of graphics workloads and how they interact in heterogeneous
CPU/GPU memory systems. GLTraceSim efficiently generates
GPU memory access traces and their corresponding, synchro-
nized, CPU render thread memory traces. The resulting traces
can then be replayed in both high-level models and detailed full-
system simulators.

We evaluate GLTraceSim on a range of graphics workloads
from browsers to games. Our results show that GLTraceSim
can efficiently generate graphics memory traces, and use these
traces to study graphics performance in heterogeneous CPU/GPU
memory systems. We show that understanding the impact of
graphics workloads is essential, as they can cause slowdowns
in co-running CPU applications of 26 - 59%, depending on the
memory technology.

I. INTRODUCTION

The majority of today’s processors are heterogeneous SoCs
consisting of both CPU cores and GPU cores. To understand
these systems, we need tools that enable architects to ex-
plore both the general-purpose applications that run on the
CPU as well as graphics applications that use the GPU for
rendering. For studying CPU workloads there are numerous
tools available (e.g., Gem5 [7], Sniper [10]). Likewise, there
are many tools for studying GPU compute (GPGPU) work-
loads (e.g., GPGPUSim [7], gem5-gpu [29]). However, tools
for GPU graphics are either out-of-date [14] or not publicly
available (e.g., ARM [?], [13]). This places the architecture
community at a significant disadvantage, as we have little
capability to analyze and evaluate the primary workloads run
on the majority of these devices.

To address this problem, we present GLTraceSim: a fast and
easy-to-maintain graphics tracing and replay framework for
studying the impact of graphics workloads on memory systems
performance. GLTraceSim generates graphics memory access
traces with variable parallelism, and includes the synchronized
memory accesses from the CPU render thread. The traces can
then be replayed through fast high-level models or detailed
simulators. We extend the Gem5 full-systems simulator with

GLTraceSim, which allows us to simulate the effects of GPUs
of varying sizes (degrees of parallelism). GLTraceSim is built
upon well-maintained publicly available tools to ensure its
longterm viability.

With GLTraceSim’s capability to capture and inject graphics
traces, we study the memory behavior of a range of graphics
workloads and the interaction between the memory system and
GPU performance. We investigate how contention for shared
resources (e.g., DRAM and shared caches) in heterogeneous
CPU/GPU systems affects performance by co-running graph-
ics applications with CPU-only applications.

Our results show that GLTraceSim enables us to practically
study graphics memory behavior across hundreds to thousands
of frames. We see that graphics applications have working
set sizes from 10s to 100s of MBs. These large working sets
flush caches and stress the memory system resulting in CPU
application slowdowns from 26 - 59% (on average), depending
on memory interface technology (GDDR vs. LPDDR).

The key contributions of this work are:
• A new framework for generating graphics memory traces,

that is fast and built upon well-maintained software
components, and captures synchronization between the
CPU render thread and GPU traffic.

• An investigation of memory system behavior across a
wide range of graphics applications and cache sizes.

• The integration of graphics traces into the Gem5 memory
system to study the effects of graphics workloads on
heterogeneous systems.

II. GRAPHICS TRACING FRAMEWORK

The goal of GLTraceSim is to provide a fast and maintain-
able simulation infrastructure for studying the interaction of
graphics workloads with the memory system of heterogeneous
CPU/GPU processors. To do so, GLTraceSim leverages and
combines several well-maintained publicly available tools into
a complete framework.

The GLTraceSim flow consists of four steps (Figure 1):
1) Capture the application’s OpenGL graphics calls.
2) Replay the OpenGL calls through a software renderer to

generate the graphics and CPU memory accesses, and
detect CPU/GPU synchronization points.

3) Replay the generated trace through high-level models or
detailed simulation in Gem5.

1) Capture OpenGL Trace 2) Generate Memory Trace 3) Replay Memory Trace 4) Analyze

Apitrace

Run benchmark
on native hardware

Xvfb

Apitrace

Mesa/LLVMPipe
(Use Software Renderer)

Pin Instrumentation

Gem5 Timing Replay
 (Detailed but Slow)

 - GPU Cache sizes
 - GPU Cores

Timing Metrics:

High Level Metrics:

 - GPU LSQ size
 - GPU Coalescing degree
 - GPU Cache sizes
 - CPU + GPU traffic

1. Capture Loads/Stores
2. Detect Textures/Buffers
3. Detect Parallel Regions
4. Detect Syncronization
5. Filter GPU L1 Cache Hits

High Level Models
 (Simple but Fast)

 - Frames per Second
 - Bandwidth utilization
 - Co-scheduling
 - Memory contention

 - Resource Allocation
 - Miss Ratios
 - Bandwidth demand
 - OpenGL calls

(Capture OpenGL calls)

(Replay OpenGL call trace)

(Run on GPU-less servers)

Figure 1. Simulation Flow.

4) After simulation we can then analyze the results for the
memory system (high-level models) and performance
(detailed simulation).

Step 1: Capture the OpenGL Call Trace

GLTraceSim uses the APITrace [2] tool to capture a trace
of all OpenGL calls from an unmodified user application. The
resulting trace file includes calls and their arguments, and
varies in size with the complexity of the application (e.g., from
42MB for scrolling in Facebook using the Chrome browser to
1.7GB for rendering a game sequence in Xonotic [HD]). On
average, APITrace captures the trace with a 25% overhead.

This approach renders applications on the native graphics
hardware, which allows us to capture the trace with correct
timing information. As the applications are rendered at high
speeds on the native hardware, the application’s internal logic
for deciding which frames to generate based on the achieved
frame rate will generate a trace that is roughly what one
would expect from a normal execution. However, by capturing
the trace at the particular frame rate of the hardware, we
set an upper limit on the speed at which we can inject the
resulting trace into our simulations. That is, we can simulate
more slowly (by dropping frames) but if we need to simulate
a higher frame rate, the trace will not correctly follow the
application’s behavior (i.e., inserting new frames). Our trace-
based approach also provides determinism to the following
simulation steps as the input (i.e., trace) does not change.

To be able to replay the OpenGL call trace later through
the software renderer to generate the graphics address trace,
we must run the application with the OpenGL version that
the software renderer supports. Currently, Mesa’s LLVMPipe
driver is fully compatible with OpenGL 3.3, but it also
supports many individual OpenGL 4-4.5 calls. To use the
right OpenGL version, we can either run the application
on hardware with that particular OpenGL version, or we
we can force the correct version with runtime flags (e.g.,
MESA_GL_VERSION_OVERRIDE). In the evaluation, we
capture the traces using a Intel HD 4000 GPU (Intel i5-3210M
processor) that natively supports OpenGL 3.3.

Step 2: Generate the Graphics Memory Trace

GLTraceSim uses the OpenGL call trace file from
Step 1, and replays the calls using glretrace from APITrace
through Mesa’s LLVMPipe [26] to render them in software.
GLTraceSim instruments the LLVMPipe with an Intel Pin [9]
tool to capture the actual graphics memory trace. We use the
Xvfb [35] virtual framebuffer to enable execution on headless
servers.

1. Capturing Loads/Stores.: The Pin tool uses information
from LLVMPipe to determine which memory accesses to
keep (graphics related memory operations), and which ones
to discard (LLVMPipe specific memory operations).

2. Detecting Textures/Buffers.: To simulate memory ac-
cesses from a GPU, we are only interested in accesses
to framebuffers, textures, and vertex buffers (i.e., only ac-
cesses to the GPU’s memory). To identify these, we monitor
when resources are created (llvmpipe_resource_create) and
destroyed (llvmpipe_resource_destroy) in the software ren-
derer. Any memory accesses to addresses that are mapped
to an active graphics resource are classified as accesses to
GPU memory and are saved to the trace files. This removes
approximately 93% of all of the software renderer’s memory
accesses as these accesses are software overhead (e.g., spill
and fill between registers and the stack).

The resource allocation information is also stored for later
analysis. For example, we can use it to determine how much
GPU memory is allocated and what type of textures are
accessed (e.g., 1D, 2D, mipmap-level, compression, etc.).

3. Detecting Parallel Regions.: While GPUs execute thou-
sands of threads in parallel, our software renderer is only
capable of executing tens of render threads. To provide the
flexibility to choose the degree of parallelism (e.g., the number
of GPU cores) in later simulations, we capture information
about which portions of the rendering can execute in paral-
lel. We takes advantage of LLVMPipe’s tile-based renderer1,

1Tile-based rendering has been traditionally used in mobile graphics GPUs
as a way to reduce bandwidth requirements (e.g., ARM [12]). Modern
high-performance graphics GPUs have shifted to tile-based rendering (e.g.,
NVIDIA [20]) and similar caching schemes (e.g., AMD [33]).

2

T

CCCC

Task/Tile Schedular

Shared L2 Cache

Memory

T T

T

C C

CT

T

T

T

T

C

Step 2: Generate Memory Trace Step 3: Replay Memory Trace

Trace Files

GLTraceSim monitors which
tile LLVMPipe is working on.

Instruments mem-
ory accesses and
stores them to file.

CPU

GPUGPU Traffic
CPU

Traffic

S

S

S

S

T C SGPU Tile/Task CPU Task Synchronization/Barrier

T

S

Figure 2. Capturing tile memory accesses and CPU/GPU synchronization
points from the software renderer (Step 2) and replaying the resulting trace
into a high-level trace-based cache simulator (Step 3).

where each tile can be executed in parallel.
Figure 2 illustrates how we capture tile memory accesses.

We detect when a tile starts (lp_rast_tile_begin), and tag each
memory access with its tile. The replay engine (Step 3) can
then simulate an arbitrary number of GPU cores by scheduling
the different parallel tiles to the simulated cores.

This approach captures memory accesses from the back
end of the GPU pipeline (e.g., the fragment shader). To
detect memory accesses from the front end, we monitor when
the software renderer executes vertex shaders and geometry
shaders (llvmpipe_draw_vbo). This enable us to determine
where memory accesses originate and to separate the memory
accesses into CPU and GPU access streams by determining if
a memory access happens during an LLVMPipe instrumented
call (GPU access) or not (CPU access).

4. Detecting Synchronizations.: The memory access trace
is then split into several streams based on the origin (CPU or
GPU) and the parallel render tiles. In order to replay the differ-
ent streams, we need to determine how they synchronize with
each other. There are three main synchronization points: 1)
command flush (e.g., glFlush), 2) GPU task synchronization,
and 3) CPU/GPU resource transfers (e.g., textures/buffers).

Command Flush Synchronization. We insert a global
synchronization barrier in all streams when we detect flush
commands (llvmpipe_flush).

Tile Synchronization. We monitor when a scene starts
processing tiles and when the scene ends (lp_rast_begin and
lp_rast_end), and insert synchronization barriers in the GPU
access stream accordingly. This models the internal GPU
synchronization to ensure that all tasks have been scheduled
from the current scene.

Resource Transfer Synchronization. The GPU can not
read a resource (e.g., texture/buffer) before the resource has
been created by the CPU. To account for this, we monitor
resource usage and insert a resource barrier in the CPU and
the GPU streams when a resource that was last used by the
CPU is read/written to by the GPU, and vise versa.

Name Type Suite BW FPS
Trex Scene GFXBench Med ≈ 60
Manhattan Scene GFXBench Med < 60
Heaven (Unigine) Scene Phoronix High < 60
Valley (Unigine) Scene Phoronix High < 60
Tesseract Game Phoronix Med ≈ 60
OpenArena Game Phoronix Med < 60
Xonotic [LD] Game Phoronix Low > 60
Xonotic [HD] Game Phoronix Med ≈ 60
Chrome Browser Telemetry Low > 60

Table I
GRAPHICS BENCHMARKS.

5. Filtering GPU L1 Cache Hits.: GLTraceSim does not
model the low-level details of the GPU’s functional ALU units,
SIMD lanes, etc., as we are only interested in the GPU’s off-
core memory traffic. We therefore have to remove the short
reuses in the memory access stream which would be typically
filtered by the local L1 caches in a hardware GPU. To do so,
each renderer thread simulates a 32 kB 4-way filter cache, and
removes any memory accesses that hit in this cache from the
memory access trace. This filters out about 70% of all the
memory accesses to GPU memory/resources.

Despite L1 filtering, and the use of a binary format and gzip
compression, the resulting trace files can be quite large (e.g.,
82GB for GFXBench/Manhattan). Step 2 is able to generate
about 100k filtered memory accesses per second and store
them to the trace file. For Manhattan, it takes on average
2.6 minutes to process one frame, whereas it only takes 6.5
seconds to process one frame for the Chrome browser.

Step 3: Replaying Memory Traces
GLTraceSim replays the memory access traces to either

a fast high-level model or to the detailed Gem5 full-system
simulator. The high-level replay models a CPU core, a number
of GPU cores, and a shared LLC cache (see Step 3 in
Figure 2). It reads the trace file, and schedules tiles to the
GPU cores, which then issue memory requests to the shared
cache. By modeling at this abstraction level, we are able to
study the memory behavior of thousands of frames (0.13-16
seconds of simulation time per frame), which is not possible
with the more detailed simulation model in Gem5, due to
its low simulation speed (85-9574 seconds per frame). The
detailed replay model in Gem5, however, allows us to simulate
full-system timing effects, which are essential for analyzing
the performance impact of the GPU memory traffic on other
cores.

Step 4: Analyze
The final step is to analyze the results. From the high-

level model, we can obtain cache miss ratios and bandwidth
demands over long periods of time (hundreds of frames).
For the detailed Gem5 model, we can measure performance
effects, including the number of frames rendered per second,
DRAM-page hit rates, and the effects of co-running graphics
workloads with CPU-only applications (Section IV).

III. GRAPHICS CHARACTERIZATION

A. Methodology
To evaluate accuracy, we use high-level modeling to com-

pare the memory system behavior reported by GLTraceSim

3

0

20

40

60

80

100

120

Chr
om

e

Man
ha

tta
n

Tre
x

Ope
nA

re
na

Te
ss

er
ac

t

Hea
ve

n
Vall

ey

Xon
oti

c [LD
]

Xon
oti

c [H
D]

Pe
rfo

rm
an

ce
[F

/s
]

AMD

A10

Intel

4000

Intel

530

AMD

RX480

Nvidia

GTX1060

Figure 3. Graphics Performance Overview: Achievable frame rates vary
dramatically by application complexity and GPU performance.

over thousands of frames to data captured from three integrated
GPUs: Intel’s HD4000 and HD530, and AMD’s A10/R7.
We use integrated GPUs as they provide direct memory
bandwidth measurements from the shared CPU/GPU memory
controller’s performance counters. We also use two discrete
GPUs (AMD RX480 and NVIDIA GTX1060) to characterize
the graphics applications’ performance. We use the average of
ten benchmark runs in each case to reduce sampling noise.

GLTraceSim’s OpenGL call trace capture (Step 1) was run
on an Intel HD4000 system, while generating the memory
traces (Step 2) and replaying them (Step 3) were executed on
an Intel Xeon compute cluster. All traces are captured at a
resolution of 1920×1200.

B. Graphics Benchmarks

Our graphics workloads come from three graphics bench-
marks suites: GFXBench [17], Phoronix Test Suite [28], and
Chrome/Telemetry [31]. Table I gives an overview of the
different benchmarks, their bandwidth, and the achieved frame
rates on our OpenGL call trace capture machine. Manhattan,
Trex, Heaven and Valley render complex scenes, while Tesser-
act, OpenArena, and Xonotic are portions of games. We use
two versions of Xonotic, one with low definition (LD) graphics
settings and one with high definition (HD) settings. Finally, we
render several web pages with the Chrome browser, as it uses
OpenGL textures to display and scroll its content, and use
Telemetry to control the application’s behavior.

Figure 3 shows the wide range of performance (in frames
per second) achieved by the different benchmarks across
the GPUs. The benchmarks are further classified by their
bandwidth (BW) and Frame per Second (FPS) in Table I. For
example, the Chrome web browsing benchmark Amazon has
a very low bandwidth requirement, and all graphics cards can
deliver more than 60 frames per second for it. Heaven, on the
other hand, has a high bandwidth demand and delivers very
low performance on even the most powerful GPU.

C. Accuracy: Memory Bandwidth

To compare the results from GLTraceSim, we examine
DRAM bandwidth usage over time in MBs per Frame in
Figure 4. We use the frame number as a proxy for time in
order to compare the different GPUs with the simulator, since
this enables us to align the statistics from the GPUs for precise

comparisons. The light colors in the background show the
measured bandwidth from sampling the memory controller’s
performance counters. The performance counters measure all
DRAM activity in the system, including traffic from the CPU.
For the Chrome web browser benchmarks (a), which use as
little as 20MB/frame, the impact of the background memory
system activity is particularly noticeable. To highlight the
bandwidth trend, we plot a smoothed version of the measured
performance counter data in darker lines.

We compare the three baseline integrated GPUs with three
GLTraceSim configurations: 2C-256kB: a low-end GPU that
has only two GPU cores (i.e., it can execute two tiles in
parallel), and a shared last-level 256 kB cache, 16C-512kB:
a medium-sized GPU with 16 GPU cores and a 512 kB last-
level cache, and finally, 32C-4MB: a large GPU with 64 GPU
cores and a 4MB last-level cache.

Low Bandwidth Applications: Chrome (a). The Chrome
web browser uses OpenGL to display web pages by splitting
the web page into several tiles, and drawing each tile to a
GPU texture. The GPU renders the page by piecing together
the individual textures into a full web page. To scroll the web
page, the GPU only has to move the textures up. Chrome uses
tiles that are 256x256 pixels large, which is 16 times larger
than our simulated GPU’s tile size.

Figure 4a) shows Chrome loading and scrolling a wide
variety of different web pages. As expected, the bandwidth
demand is fairly low since the GPU only performs simple 2D
graphics operations. The AMD-A10 uses less bandwidth than
the two GPUs from Intel, but all show similar time-varying
behavior. For example, we see a noticeable bandwidth increase
when browsing Facebook compared to Ebay.

GLTraceSim only simulates accesses to graphics memory,
whereas the baseline systems include accesses from the whole
system (CPU, GPU, and IO devices). We therefore expect
GLTraceSim to report lower bandwidth compared to the hard-
ware baselines. The figure shows that GLTraceSim exhibit
similar bandwidth trends over time as the baselines, partic-
ularly with regards to activity spikes. Of the three baselines,
GLTraceSim tracks AMD’s A10 bandwidth the closest.

All three GLTraceSim configurations have roughly the same
bandwidth requirements because the graphics memory foot-
print is larger than the last-level GPU cache size, and the
textures are not reused within frames (i.e., the last-level GPU
cache is flushed every frame, and there is no temporal reuse).

Medium Bandwidth Applications: Manhattan (b). Man-
hattan renders a complex action scene with many special
effects. As with modern games, Manhattan does not render
everything in one pass, but instead breaks up the rendering into
many separate steps [1]. This process is shown in Figure 5,
where the application first renders partial shading information
into different buffers (1), which are then merged (2), and
shadows and special effects such at lens flares are added (3).
Bloom and Depth of Field and other post-processing are then
added (4). Finally, 2D graphics overlays, such as maps and
text, are generated (5), and merge into the final buffer (6) that
is displayed on the screen.

4

0

20

40

60

80

100

120

140

Amaz
on

Ans
wer

s/Y
ah

oo

Boo
kin

g
CNN

Eba
y

Fa
ce

bo
ok

Goo
gle

New
s/Y

ah
oo

Red
dit

Spo
rts

/Ya
ho

o

Te
ch

cru
nc

h

Tw
itte

r

W
iki

pid
ia

Yo
utu

be

0

200

400

600

800

1000

0
20
0

40
0

60
0

80
0

10
00

0
100
200
300
400
500
600
700

0
20
0

40
0

60
0

80
0

10
00

0

50

100

150

200

250

0
50
0
10
00

15
00

20
00

25
00

30
00

35
00

0

500

1000

1500

2000

2500

90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

0

50

100

150

200

250

300

0
20
0
40
0

60
0
80
0
10
00
12
00
14
00

0
100
200
300
400
500
600
700
800

40
0

50
0

60
0

70
0

80
0

90
0

0
100
200
300
400
500
600
700

0
10
0
20
0
30
0
40
0
50
0
60
0
70
0
80
0
90
0

0

500

1000

1500

2000

2500

90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

B
an

dw
id

th
[M

B
/F

]

a) Chrome Browser

B
an

dw
id

th
[M

B
/F

]

b) Manhattan c) OpenArena d) Xonotic [LD] e) Heaven

B
an

dw
id

th
[M

B
/F

]

Time [Frame]

f) Trex

Time [Frame]

g) Tesseract

Time [Frame]

h) Xonotic [HD]

Time [Frame]

i) Valley

AMD-A10 Intel-4000 Intel-530

GLTraceSim [2C-256kB] GLTraceSim [16C-512kB] GLTraceSim [32C-4MB]

Figure 4. Bandwidth consumption per frame for hardware measured using performance counters and the GLTraceSim framework. Above, Google Chrome
rendering 14 popular web pages. Below, 8 games and walk-throughs demonstrate significant variation in bandwidth consumption over-time and across
benchmarks. Results from GLTraceSim closely track the bandwidth consumption trends seen in hardware.

Diffuse Reflection Normal Specular Depth Shadow

Bloom DoF4) Down sample,
and add Bloom

and Depth of Field

1) Render partial shader information to different target buffers

2) Merge buffers,
and add lightning

3) Add special effects,
(lensflare, particles, etc.)

6) Merge into final output

2D
overlay

5) Render maps, text

2

1

3

4

5

6

Figure 5. The complex rendering pipeline of modern graphics applica-
tions [15], [1]. Each box represents a texture rendered as part of the creation
of the final frame.

The more complex Manhattan benchmark requires much
higher bandwidth than Chrome. On average, the AMD-A10,
Intel-4000, and Intel-530 need 311, 620, 473MB per Frame,
respectively. To render the scene at 60FPS, the memory
system needs to be able to transfer 18, 36, 28GB/s of data.

However, this behavior varies over 10s to 100s of frames.
For example, as the camera moves through the scene new
objects become visible and others are occluded. This is visible

as a large drop in bandwidth demand for the Intel-4000’s and
Intel-530’s bandwidth demand at frame 463, and then a big
jump at frame 618. This bandwidth change is captured by
GLTraceSim, particularly in the 2C-256 kB and 16-512 kB
configurations, which both show the drop and increase. The
32C-4MB configuration has a larger cache than 2C-256 kB
and 16-512 kB, which filters out much of those bandwidth
spikes. AMD-A10 has similar performance to 32C-4MB, and
shows a much smaller performance variation. It is important
to note that to see this one needs to simulate over 100 frames
between those two points, which requires a very efficient
simulation infrastructure given each frame’s complexity.

High Bandwidth Applications: Heaven (e). Heaven is
the highest bandwidth benchmark. The first 100 frames are
initialization, wherein it loads the required textures etc., but the
bandwidth demand increases dramatically when it finally starts
to render the real scenes at frame 102. On average, Heaven
requires 1.3, 1.5, and 1.2GB per Frame for AMD-A10, Intel-
4000, and Intel-530, respectively.

The 2C-256 kB and 16-512 kB configurations require 2.3
and 3.2GB per Frame, respectively, and exceed the y-axis.
The 32C-4MB configuration has more cache capacity, and
has the lowest bandwidth demand at about 1GB per Frame.

5

0
2000
4000
6000
8000

10000
12000
14000
16000
18000

0
50

100
150
200
250
300
350
400
450
500

Chr
om

e

Man
ha

tta
n

Tre
x

Ope
nA

re
na

Te
ss

er
ac

t

Hea
ve

n
Vall

ey

Xon
oti

c [LD
]

Xon
oti

c [H
D]

#
O

pe
nG

L
C

al
ls

M
em

or
y

[M
B

]

Footprint Tot. Allocation

Figure 6. OpenGL Calls (top) and Memory Usage (bottom) per Frame.

This shows that GLTraceSim can effectively model a wide
range of memory behavior, and shows how the increase in
cache capacity can effectively reduce GPU graphics bandwidth
requirements (See Section III-E for a more detailed analysis
on the cache behavior of Heaven).

Game Settings: Xonotic (d, h). We ran Xonotic (a first
person shooter) with both low definition (LD) graphics quality
settings (Figure d) and high definition (HD) settings (Figure h).
LD has many more frames (3500 vs. 900). This is because
GLTraceSim is able capture OpenGL call traces at a much
higher rate at the lower quality as the native hardware can
render the frames more quickly.

In Xonotic, the player runs through a building. We therefore
see large changes in bandwidth demand as the player moves
between rooms and encounters different opponents. If we
compare the two plots we see that HD requires about 3× more
bandwidth than LD. On average, (137 vs. 49), (329 vs. 136),
and (266 vs. 103)MB per frame for AMD-A10, Intel-4000,
and Intel-530, respectively. Again, this benchmark shows
significant variation in behavior across hundreds of frames,
which underlines the importance of a simulation methodology
that can efficiently reproduce such long executions.

Summary. The comparison of graphics bandwidth between
GLTraceSim and hardware GPUs in shows that: 1) graphics
applications have a wide variety of memory behaviors over
time spans of 10s to 100s of frames, 2) modern GPUs have
noticeably different bandwidth requirements, 3) GLTraceSim
can model different types of GPUs by varying number of GPU
cores and shared cache capacity, and finally 4) GLTraceSim is
able to realistically model the bandwidth demand and runtime
performance changes in applications’ memory behavior.

D. OpenGL Graphics Programming

Our benchmarks use the OpenGL API to communicate with
the GPU. In this section, we study how they use OpenGL,
including the number of library calls, and memory usage. The
graphs in the rest of this section do not include data from
initiations phases (e.g., frame 0 to 100 in Heaven).

Graphics Calls. Figure 6 (top) shows average number of
OpenGL calls per frame, and the error bars show the standard

0

20

40

60

80

100

0

20

40

60

80

100

Chr
om

e Brow
se

r

Man
ha

tta
n

Tre
x

Ope
nA

re
na

Te
ss

er
ac

t

Hea
ve

n
Vall

ey

Xon
oti

c [LD
]

Xon
oti

c [H
D]

Texture Size

C
ou

nt
[%

]
M

em
or

y
U

sa
ge

[%
]

Buffer ≤1 kB ≤128 kB ≤1 MB >1 MB

Figure 7. Memory Breakdown.

deviation. Chrome calls OpenGL the least with an average of
738 library calls per frame. Heaven calls OpenGL the most
with over 14 thousand times per frame. This large number of
API calls from the CPU underlines the importance of including
CPU performance and synchronization between the GPU’s and
CPU’s memory access streams.

Memory Usage. Figure 6 (bottom) shows the data foot-
print (the amount of data touched) per frame, and the total
amount of allocated GPU memory. Most applications allocate
all textures that will be used in the near future in advance
to avoid later stalls. The result is that only a fraction of
the allocated textures are actually used in most frames. For
example, in Tesseract, only 17% of the allocated data is
actually used.

Memory Breakdown. Figure 7 shows memory usage by
Buffers and Textures, with textures displayed based on their
size: Small (≤1 kB), Medium (≤128 kB), Large (≤1MB), and
Huge (>1MB).

The top figure shows the number of resources used during
a frame for each category as percent of the total number of
used resources. For example, 65% of Chrome’s resources per
frame are textures with a memory footprint less than 1 kB.
In Manhattan, 88% of the resources are buffers. The bottom
figure shows the total footprint of each category. While there
are few Huge textures, they have the largest footprint. The
exception is Chrome, which has several Large textures (the
256x256 pixels web page tiles). The remaining footprint comes
from the framebuffer, that is categorized as a Huge texture.

E. Cache Requirements

We have seen that graphics bandwidth varies significantly
over time and that benchmarks have different distributions of
resource sizes. To understand the impact of this on bandwidth,
we now evaluate how varying the cache size affects the GPU’s

6

0

5

10

15

20

25

30

0

100

200
300

400

500

600
700

800

0

50

100

150

200

250

300

0

50

100

150

200

250

300

0

100

200
300

400

500

600
700

800

0

1000

2000

3000

4000

5000

6000

0

500

1000
1500

2000

2500

3000
3500

4000

12
8k

B
25

6k
B
51

2k
B
1M

B
2M

B
4M

B
8M

B
16

MB
32

MB
64

MB

12
8M

B

25
6M

B

51
2M

B
1G

B
0

10
20
30
40
50
60
70
80
90

12
8k

B
25

6k
B
51

2k
B
1M

B
2M

B
4M

B
8M

B
16

MB
32

MB
64

MB

12
8M

B

25
6M

B

51
2M

B
1G

B
0

50

100

150

200

250

300

12
8k

B
25

6k
B
51

2k
B
1M

B
2M

B
4M

B
8M

B
16

MB
32

MB
64

MB

12
8M

B

25
6M

B

51
2M

B
1G

B

B
an

dw
id

th
[M

B
/F

]
a) Chrome Browser

P C F

b) Manhattan c) Trex
B

an
dw

id
th

[M
B

/F
]

d) OpenArena e) Tesseract f) Heaven

B
an

dw
id

th
[M

B
/F

]

L2 Cache Size

g) Valley

L2 Cache Size

h) Xonotic [LD]

L2 Cache Size

i) Xonotic [HD]

1C 2C 4C 8C 16C 32C 64C

Figure 8. DRAM bandwidth demand for a variety of cache sizes and GPU core counts. The three regions, Pollution (red, area P), Capacity (white, area C)
and Footprint (green, area F), show the three distinct phases present in graphics rendering. Larger core counts can significantly benefit from an increasingly
larger cache (transition from P to C and F areas).

bandwidth need. Figure 8 shows the bandwidth (MB/F) as a
function of cache size for GPUs with 1, 2, 4, 8, 16, 32, and 64
cores (i.e., the 64-core version can process 64 tiles in parallel).
The graphs are divided into three areas to highlight different
cache behavior: intra-GPU core Pollution (P, left area), cache
Capacity (C, middle area), and application Footprint (F, right
area). Note that in all cases the individual GPU cores are
modeled to include private L1 caches.

Pollution (Area P). The P area shows that as the number
of cores increases, more pressure is put on the cache, which
increases the miss ratio and thereby the required memory
bandwidth. For Manhattan (b), we see that a 64-core GPU
needs a 16MB cache to maintain the same bandwidth demand
as a 1-core GPU with a 256 kB cache. That is, the cache
requirement scales linearly with the number of cores. However,
this is not always the case. For Trex (c), the 64-core GPU
only needs a 4MB cache instead of a 16MB cache to avoid
the extra bandwidth over the 256 kB cache (i.e., 16:1 ratio).
Trex has a smaller footprint than Manhattan (Figure 6), which
reduces the pressure and can result in constructive interference
when the same texture is used in multiple tiles at the same
time.

Capacity (Area C). The C area shows the effect of how
well the cache captures temporal reuse. For example, when
the same texture is used multiple times during a frame to
render different objects. OpenArena (d) and Xonitic [LD] (h)

have curves that drop rapidly. This results in a a bi-modal
behavior where the data suddenly fits in the cache. Heaven (f)
and Valley (g), however, have steadily decreasing curves. This
indicates that adding more cache will not necessarily fit the
whole working set size, but it will improve performance.

Footprint (Area F). The F area shows where the whole
footprint fits in the cache (the footprint in Figure 6). For
example, OpenArena (d) needs 64MB, and Heaven (f) needs
256MB. In order to fit the whole footprint for all applications,
we need a cache capacity of 256MB, which is far greater
than traditional SRAM-based caches can provide, but within
the scope of DRAM caches. Note that this capacity reflects
running the applications at a resolution of 1920×1200. For
4k resolution, the bandwidth requirements are expected to
increase by 5× [22], requiring a much larger cache to sustain
this performance with a similar memory bandwidth.

IV. CPU/GPU MEMORY SYSTEM PERFORMANCE

The previous section explored the behavior of graphics
workloads in isolation. To study how graphics traffic affects
whole system performance, we now integrate GLTraceSim
with the Gem5 [7] full-system simulator by providing detailed
replay of the graphics memory trace through the Gem5 mem-
ory hierarchy, together with Gem5’s own simulated CPU core
traffic.

Figure 9 shows an overview of the Gem5-simulated system.

7

System L3 Cache

Memory

T TST C CSS
GPU File CPU File

O3 CPU
Cores

C

C

L1

C

L1

CPU L2 Cache

CPU

C

GPU

GPU L2 Cache

CCC

Task/Tile Schedular
T

T

T

T

T

T

G
e
m

5
G

LT
ra

c
e
S

im

C

T Detailed Trace
Replay Modules

R R

Figure 9. Detailed Replay with Gem5.

GLTraceSim components (GPU tile scheduler and trace replay,
and synchronized CPU render thread trace replay) are in green
and the Gem5 components (memory system and simulated
CPU cores) in red. The simulated system has a system-level
L3 cache that is shared between the GPU and the CPU. Both
the GPU and the CPU have their own private L2 caches. The
GPU consists of the GLTraceSim GPU replay module that
replays the GPU traffic into the Gem5 memory system R .
The CPU side has one GLTraceSim CPU replay module for
the CPU traffic generated by the graphics application, which is
synchronized to the GPU memory trace as discussed earlier, as
well as several standard Gem5 out-of-order cores that simulate
CPU workloads in detail. The Gem5 cores have their own L1
instruction and data caches. The replay modules do not have
L1 caches since the traces have already been filtered with a
L1 filter cache during trace generation (Step 2).

A. Gem5 Extensions: A Detailed Replay Module

The detailed replay module for Gem5 consists of four pri-
mary components: 1) a load/store queue that controls the speed
of the GPU trace replay into the Gem5 memory system, 2) a
coalescer that groups neighboring memory accesses together
to reduce the DRAM-page miss rate, 3) a rate controller that
drops frames or puts the GPU to sleep depending on the target
frame rate and what the system can achieve, and finally, 4) a
synchronization controller that synchronizes the GLTraceSim
GPU replay module with the GLTraceSim CPU replay module.

Load and Store Queue. The LSQ limits the replay model’s
number of outstanding memory requests. When the queue
becomes full, the replay module stalls until its requests are
processed. This back-pressure from the memory system allows
us to model the interaction between the GPU-injected memory
stream and those of the simulated CPU cores. The user can
adjust the performance level of the modeled GPU by changing
the LSQ depth and number of GPU replay cores.

Memory Coalescer. The GPU can generate memory ac-
cesses from many different accesses stream in parallel depend-
ing on its core count. This results in many DRAM page misses

b) FPS < 60

B
a
n
d
w

id
th

a) FPS > 60

1
60

2
60

1
60

2
60

F1 F2

Graphics Application CPU Application

F3 F1
F3

Time (s)Time (s)

Frame
Done

Sleep

Fast-forward
trace to F3.Frame

Done

1

2

3

4

B
a
n
d
w

id
th

Figure 10. The replay module synchronizes the GPU’s effective execution
rate (how quickly it can generate memory accesses) with the target frame
rate (60 FPS).

since each stream may accesses a different page. To improve
the DRAM performance, the coalescer groups requests to
2 kB regions (i.e., DRAM page size) together, such that they
are issued after each other if possible. This is typically handled
directly in hardware for GPUs.

Rate Controller. We model a GPU that targets the frame
rate of the captured trace (typically 60FPS). If the system
is unable to meet this rate (e.g., it cannot inject GPU traf-
fic at a high enough rate due to memory system bottle-
necks/contention or too few parallel tiles) then GLTraceSim
will skip GPU frames, as would a real GPU. If the modeled
GPU can render faster than this, then we “sleep" the GPU for
the time available time between frames. As discussed earlier,
this is an artifact of having only captured GPU data for a
certain maximum frame rate. This interaction is handled by
the Rate Controller, and is different from typical GPGPU
simulations, which run at their maximum compute or memory
capability at all times.

Figure 10a) shows the case when the GPU can render
more than 60FPS. The red line shows graphics application’s
bandwidth and the green line shows the CPU application’s
bandwidth. Here the GPU finish rendering the frame within
1/60 s 1 , and goes to sleep until the next frame starts 2 . This
results in fluctuating bandwidth demand which affects the CPU
applications performance. The replay module must therefore
pause the trace replay (i.e., sleep).

Figure 10b) shows the case when the GPU is not able to
render 60FPS. Here the GPU finishes rendering the frame
after more than 1/60 s 3 . The replay module must then drop
a frame to keep up. To do so, it drops F2 by skipping ahead
in the trace replay to F3 4 .

CPU↔ GPU Synchronization. The OpenGL API provides
an asynchronous queue for sending work from the CPU to the
GPU. In many situations, this provides sufficient slack such
that the GPU is the main performance bottleneck. However,
as mentioned in the previous sections, we need to synchronize
the CPU and the GPU replay modules with each other at
particular synchronization points, which can limit the potential
performance. This synchronization happens in two ways: 1)
through the trace files using synchronization messages that
guarantee that both modules are at the same point in time
before they are allowed to send new memory requests (e.g.,
when creating a texture, we pause the GPU until the textures
is moved from the CPU to the GPU), and 2) through the Rate
Controller when the GPU goes to sleep and when the GPU
has to drop frames. This synchronization enables us to model

8

CPU Gem5 Frequency / Cores 2.5 GHz, 4 cores
– Width: F / D / R / I / W / C 3 / 3 / 3 / 8 / 8 / 8
– Size: ROB / IQ / LQ / SQ / IR. / FPR. 128 / 64 / 16 / 16 / 128 / 128

CPU Replay Core Freq. (Little | Big) 1.5 GHz 2.5 GHz
– LSQ Size (Little | Big) 4 entries 16 entries

CPU L1 Instruction / Data Caches 32kB, 64B, 8-way, Stride PF (D:8)
CPU L2 Unified Cache 256kB, 64B, 8-way
GPU Frequency / Cores 2.5 GHz, 16 cores
GPU LSQ Size 1024 entries
GPU L2 Cache 512kB, 64B, 8-way, 1024 MSHRs
System L3 Cache 2MB, 64B, 16-way
System DRAM (LPDDR | GDDR) LPDDR3-1600 GDDR5-4000

Table II
PROCESSOR CONFIGURATION.

the effects of how the CPU performance of the render thread
affects and is affected by overall system performance.

B. Experimental Setup

We configured Gem5 (ARM ISA) to simulate a contempo-
rary energy-efficient processor. The CPU has 4 Gem5 OoO
cores, a GLTraceSim CPU replay core, a shared 256 kB
L2, and runs at 2.5GHz. We use two GLTraceSim CPU
replay core configurations (Little/Big) to evaluate how the
CPU affects graphics performance. The GPU has 16 cores
and a shared 512 kB L2. There is a system-level 2MB L3
cache (Figure 8 shows that this is enough cache capacity
to avoid cache pollution). We evaluate both LPDDR3 and
GDDR5 memory to study the effect of memory bandwidth.
The Gem5 caches are non-inclusive/non-exclusive (i.e., no
back invalidations), meaning that the GPU will not flush the
CPU’s private caches if it uses all of the L3 cache.

To evaluate the impact of the graphics workloads on CPU
performance, we co-run SPEC CPU2006 applications [18]
with their reference inputs together with the the graphics work-
loads Chrome/Facebook and Heaven with the GLTraceSim
GPU trace replay and synchronized GLTraceSim CPU trace
replay. The Chrome web browser can easily meet the 60FPS
target, resulting in the behavior similar to Figure 10a, whereas
Heaven illustrates what happens when the GPU cannot finish
rendering the frame within the 60FPS time frame (Fig-
ure 10b).

C. CPU Performance

Figure 11 shows the SPEC applications’ CPU perfor-
mance (normalized IPC) when they are paired with the two
GPU applications (Chrome/Facebook and Heaven). In this
section, we discuss the CPU performance changes we see with
respect to the GPU application intensity, memory bandwidth
and GPU/CPU synchronization.

GPU Application Intensity (Chrome vs. Heaven). The
two graphics applications demonstrate the differences between
high GPU intensity (Heaven, red) and low intensity (Chrome,
green) behavior. Low intensity graphics applications (Fig-
ure 10) cause the GPU to periodically sleep allowing exclusive
access to shared resources by the CPU applications. On the
other hand, high-intensity benchmarks are continuously con-
suming cache and memory resources, hurting CPU application
performance by up to 59% on average (and more than 5× for
soplex) for the LPDDR/Big configuration.

Surprisingly, hmmer see a 50% performance degradation for
the LPDDR configuration despite having a very low 1.0% L1D
miss ratio. This happens because each L1 miss is extremely
costly: the L1D misses also miss in both the L2 (58.8%)
and L3 (26.1%) caches due to cache pollution, and end up
competing for DRAM bandwidth with the GPU.

One exception to this behavior is povray, which is an L2-
resident application. Misses in the L1 cache (1.4%) success-
fully hit in the L2 cache (>99.9%) and therefore do not com-
pete with the GPU for memory bandwidth. As a result, povray
shows <10% performance degradation with GPU traffic.

Memory Bandwidth (LPDDR vs. GDDR). The LPDDR
and the GDDR results show that increasing the memory band-
width provides significant performance speedups for the SPEC
applications when they are co-executed with Heaven (30% to
almost 100% on average). The higher bandwidth is better able
to accommodate both the GPU and SPEC applications, reduc-
ing memory contention and improving performance. Chrome
stresses the memory system less than Heaven, and we therefore
only see less than a 25% performance improvement, even with
GDDR’s increased bandwidth.

Synchronization (Little vs. Big core). The top (a, Little)
and the bottom (b, Big) show the effect of the graphics CPU
replay core’s performance. For the SPEC CPU applications,
we see an average performance drop of 40% when paired with
the Little graphics CPU replay core, and almost 60% when
paired with the Big CPU replay core (on average).

The dealii benchmark is not affected by Heaven when we
use the Little CPU replay core, but the performance drops by
40% when we switch to the Big CPU replay core. The soplex
benchmark is affected even more, where the 3× performance
degradation drops to 5× with the Big core. Both of these
applications are heavily influenced by the resulting increase in
DDR memory traffic from the Big replay core, which increase
the time it takes to access DRAM for the CPU applications.

D. GPU Performance

Figure 12 shows the graphics performance in frames per
second (FPS) normalized to LPDDR3 with a Big graphics
CPU replay core while running in isolation.

GPU Application Intensity (Chrome vs. Heaven) While
GPU performance can be affected by co-running applications,
the single-threaded SPEC applications do not significantly
reduce the available memory bandwidth, nor do they slow the
render thread’s performance enough to reduce the frame rate.
This is clearly seen by the lack of any significant impact on
GPU performance in Figure 12.

Memory Bandwidth (LPDDR vs. GDDR). Heaven’s max-
imum frame rate increases by almost 25% across all appli-
cations for both Big and Little graphics replay cores with
GDDR5 memory. The Chrome browser application improves
even more (50%) on the Big graphics CPU core. As this
application is limited by the speed of its GLTraceSim CPU
replay core with the Little core, it is unable to exploit the
additional GDDR memory bandwidth, resulting in a small
performance improvement.

9

0
0.2
0.4
0.6
0.8
1

1.2
a) Little CPU Replay Core

b) Big CPU Replay Core

0
0.2
0.4
0.6
0.8
1

1.2

as
tar

bw
av

es
bz

ip2

ca
ctu

sa
dm

ca
lcu

lix
de

ali
i

ga
mes

s
gc

c

ge
msfd

td

go
bm

k

gr
om

ac
s

h2
64

re
f

hm
mer lbm

les
lie

3d

lib
qu

an
tum mcf

milc
na

md

om
ne

tpp pe
rl

po
vra

y
sje

ng

so
ple

x
ton

to
xa

lan

av
er

ag
e

a) Little CPU Replay Core

b) Big CPU Replay Core

Chrome Browser HeavenChrome Browser Heaven
Pe

rfo
rm

an
ce

[N
or

m
.I

P
C

]
LPDDR3 GDDR5 LPDDR3 GDDR5

Figure 11. CPU application performance in instructions per cycle (IPC) with graphics workloads, normalized to an LPDDR3 configuration with the application
running in isolation (no graphics workload).

Synchronization (Little vs. Big core). The graphics CPU
replay core’s performance affects the system in two ways:
it limits the GPU’s bandwidth (as the GPU cannot proceed
past CPU/GPU synchronization points until the graphics CPU
replay core catches up), and it puts pressure on the shared L2
cache due to its own memory access stream. We see a slight
performance reduction for Heaven when using the Little graph-
ics CPU replay core instead of the Big CPU replay core (red,
Figure 12 bottom vs. top). Heaven is GPU bandwidth-bound
and is mostly unaffected by a slower graphics CPU replay
core. The Chrome browser, however, sees almost a 50%
performance loss with the Little graphics core compared to
the Big core as it is much more CPU-dependent.

E. Summary

GLTraceSim’s simulated GPU graphics subsystem, with
both the GPU and CPU replay cores, interacts in a variety of
ways with Gem5’s regular execution-driven CPU application
simulations. The GPU, given its high bandwidth demands, re-
duces both the available DRAM bandwidth and cache capacity,
as seen by its impact on the SPEC CPU2006 applications.
This has a varying impact on the applications depending on
their cache/bandwidth characteristics and data footprint. GPU
graphics applications, in this study, are not greatly affected by
the CPU2006 applications, but instead show performance dif-
ferences with hardware changes, such as increased bandwidth
or a more powerful CPU replay core. Only with a global view
of both GPU, render thread, and traditional applications can we
evaluate the system-level impact of co-running applications.

V. RELATED WORK

GPGPU Simulators. There has been significant work
developing infrastructure for studying general purpose com-
pute on GPUs (e.g., GPGPUSim [5], gem5-gpu [29],
Multi2Sim [32], GPUTejas [25], Parallel GPU Simula-
tion [23], MIAOW [6], Nyami [8], and Barra [11]). GPG-
PUSim is a detailed simulation model, whereas MIAOW is
an open-source hardware implementation of a GPGPU. These

approaches have been instrumental in understanding how to
optimize GPUs for compute. However, they are not able to
run graphics workloads. The goal of GLTraceSim is to deliver
insights about the memory system interaction between GPUs
running graphics workloads and the rest of the system. Unlike
these simulators, GLTraceSim does not model the graphics
rendering in detail, but rather uses a functional simulation to
rapidly generate memory traces over hundreds of frames.

Dynamic GPGPU Instrumentation. GPU-Ocelot [16] and
SASSI [30] enable the instrumentation of CUDA applications
and GT-Pin [21] enables the instrumentation of OpenCL
applications in a similar vein to Intel’s Pin for CPUs. How-
ever, as with GPGPU simulators, these tools only allow the
instrumentation of compute applications, and not graphics.

GPGPU Modeling. Hong et al. [19] and Bagh-
sorkhi et al. [4] propose analytical models and Wu et al. [34]
propose a machine learning model for performance. However,
these models do not address graphics.

GPU Graphics Simulators. The closest related work is
the ATTILA [14] simulator and TEAPOT [3]. ATTILA is an
detailed micro-architectural simulator for studying the GPU
rendering pipeline. However it studies much older graphics
pipelines (OpenGL 1-2 and DirectX 9), which are no longer
representative. The goal of GLTraceSim is to study the mem-
ory system in heterogeneous CPU/GPU systems, and not low-
level GPU pipeline details. This enables us to simulate at a
higher abstraction level resulting in a faster simulation, which
allows us to study long-running applications with significant
memory footprints. TEAPOT focus on Android applications
(OpenGL ES), and is like many other GPU simulators not
publicly available.

GPU-less Graphics Simulators. Two techniques for sim-
ulating the CPU component of graphics applications are No-
Mali [13] and a Simics-based [24] simulation technique [27].
These methodologies allow the analysis and simulation of
the CPU portion of a workload by ignoring or offloading
the details of the GPU execution. However, as we have seen

10

0
0.25
0.50
0.75
1.00
1.25
1.50
1.75

a) Little CPU Replay Core

b) Big CPU Replay Core

0
0.25
0.50
0.75
1.00
1.25
1.50
1.75

as
tar

bw
av

es
bz

ip2

ca
ctu

sa
dm

ca
lcu

lix
de

ali
i

ga
mes

s
gc

c

ge
msfd

td

go
bm

k

gr
om

ac
s

h2
64

re
f

hm
mer lbm

les
lie

3d

lib
qu

an
tum mcf

milc
na

md

om
ne

tpp pe
rl

po
vra

y
sje

ng

so
ple

x
ton

to
xa

lan

av
er

ag
e

a) Little CPU Replay Core

b) Big CPU Replay Core

Chrome Browser HeavenChrome Browser Heaven
Pe

rfo
rm

an
ce

[N
or

m
.F

P
S

]

LPDDR3 GDDR5 LPDDR3 GDDR5

Figure 12. GPU performance in frames per second (FPS) normalized to the GPU application running in isolation with the Big graphics CPU replay core.

in this work, most of the DRAM traffic is generated by the
GPU itself. Taking into account the GPU memory traffic is
necessary for accurate system-level studies that involve both
the GPU graphics and CPU cores.

VI. CONCLUSIONS

This papers presented GLTraceSim, a new graphics tracing
and replay framework for exploring heterogeneous CPU/GPU
memory systems (the same techniques can readily be ap-
plied to discrete graphics as well by modeling PCI traffic).
GLTraceSim efficiently generates GPU memory access traces
for modern graphics applications, which can then be replayed
in high-level models or in detailed simulators. GLTraceSim
is built upon well-maintained publicly available tools, and we
plan to release it in the same vein.

These capabilities enabled us to study the memory be-
havior of graphics applications over hundreds to thousands
of frames, and explore how GPU core count and last level
cache capacity affect memory bandwidth requirements. We
further extended the Gem5 full-system simulator to integrate
GLTraceSim memory traces with simulated CPU modules
to explore how graphics applications affect co-running CPU
applications. We found that GPU-heavy applications can slow
down CPU applications by as much as 26 - 59% depending on
memory technology used (GDDR vs. LPDDR).

REFERENCES

[1] Adrian Courreges, “GTA V - Graphics Study,” in
www.adriancourreges.com/blog/2015/11/02/gta-v-graphics-study/,
2015.

[2] Apitrace, “www.github.com/apitrace/apitrace/.”
[3] J.-M. Arnau, J.-M. Parcerisa, and P. Xekalakis, “TEAPOT: A toolset for

evaluating performance, power and image quality on mobile graphics
systems,” in IISWC, 2013.

[4] S. S. Baghsorkhi, M. Delahaye, S. J. Patel, W. D. Gropp, and W.-
m. W. Hwu, “An Adaptive Performance Modeling Tool for GPU Ar-
chitectures,” in Proc. Symposium on Principles and Practice of Parallel
Programming (PPoPP), 2010.

[5] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt,
“Analyzing CUDA Workloads Using a Detailed GPU Simulator,” in
Proc. Int. Symposium on Performance Analysis of Systems & Software
(ISPASS), 2009.

[6] R. Balasubramanian, V. Gangadhar, Z. Guo, C.-H. Ho, C. Joseph,
J. Menon, M. P. Drumond, R. Paul, S. Prasad, P. Valathol, and K. Sankar-
alingam, “Enabling GPGPU Low-Level Hardware Explorations with
MIAOW: An Open-Source RTL Implementation of a GPGPU,” ACM
Trans. Archit. Code Optim., vol. 12, no. 2, Jun. 2015.

[7] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5
Simulator,” SIGARCH Comput. Archit. News, 2011.

[8] J. Bush, P. Dexter, and T. N. Miller, “Nyami: a Synthesizable GPU
Architectural Model for General-purpose and Graphics-specific Work-
loads,” in Proc. Int. Symposium on Performance Analysis of Systems &
Software (ISPASS), 2015.

[9] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi and K. Hazelwood, “Pin: Building Customized
Program Analysis Tools with Dynamic Instrumentation,” 2005.

[10] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Exploring
the Level of Abstraction for Scalable and Accurate Parallel Multi-
Core Simulations,” in Proc. High Performance Computing, Networking,
Storage and Analysis (SC), 2011.

[11] S. Collange, M. Daumas, D. Defour, and D. Parello, “Barra: A Parallel
Functional Simulator for GPGPU,” in Proc. Int. Symposium on the Mod-
eling, Analysis, and Simulation of Computer and Telecommunication
Systems (MASCOTS), 2010.

[12] J. Davies, “Bifrost, the new GPU architecture and its initial implemen-
tation, Mali-G71,” in Hot Chips: A Symposium on High Performance
Chips (HotChips), 2016.

[13] R. de Jong and A. Sandberg, “NoMali: Simulating a Realistic Graphics
Driver Stack Using a Stub GPU,” in Proc. Int. Symposium on Perfor-
mance Analysis of Systems & Software (ISPASS), 2016.

[14] V. M. del Barrio, C. Gonzalez, J. Roca, A. Fernandez, and E. E,
“ATTILA: a Cycle-level Execution-driven Simulator for Modern GPU
Architectures,” in Proc. Int. Symposium on Performance Analysis of
Systems & Software (ISPASS), March 2006.

[15] Dorian Black, “GFXBench 3.0: A Fresh Look At Mobile
Benchmarking,” in www.tomshardware.com/reviews/gfxbench-3-
graphics-performance,3743-2.html, 2014.

[16] N. Farooqui, A. Kerr, G. Diamos, S. Yalamanchili, and K. Schwan, “A
Framework for Dynamically Instrumenting GPU Compute Applications
Within GPU Ocelot,” 2011.

[17] GFXBench, “gfxbench.com.”
[18] J. L. Henning, “SPEC CPU2006 Benchmark Descriptions,” SIGARCH

Comput. Archit. News, 2006.
[19] S. Hong and H. Kim, “An Analytical Model for a GPU Architecture

with Memory-level and Thread-level Parallelism Awareness,” in Proc.
Int. Symposium on Computer Architecture (ISCA), 2009.

[20] J.-H. Huang, “GeForce is PC gaming,” in GDC 2017 Keynote, 2011.
[21] M. Kambadur, S. Hong, J. Cabral, H. Patil, C. K. Luk, S. Sajid, and

M. A. Kim, “Fast computational gpu design with gt-pin,” in Proc. Int.
Symposium on Workload Characterization (IISWC), 2015.

11

[22] J. Kim, “The future of graphic and mobile memory for new appli-
cations,” in Hot Chips: A Symposium on High Performance Chips
(HotChips), 2016.

[23] S. Lee and W. W. Ro, “Parallel GPU Architecture Simulation Framework
Exploiting Work Allocation Unit Parallelism,” in Proc. Int. Symposium
on Performance Analysis of Systems & Software (ISPASS), 2013.

[24] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hållberg,
J. Högberg, F. Larsson, A. Moestedt, and B. Werner, “Simics: A Full
System Simulation Platform,” Computer, vol. 35, no. 2, pp. 50–58, Feb.
2002.

[25] G. Malhotra, S. Goel, and S. R. Sarangi, “GpuTejas: A Parallel Simulator
for GPU Architectures,” in Proc. Int. Conference on High Performance
Computing (HiPC), 2014.

[26] Mesa, “www.mesa3d.org.”
[27] E. Nilsson, D. Aarno, E. Carstensen, and H. Grahn, “Accelerating

Graphics in the Simics Full-System Simulator,” in Proc. Int. Symposium
on the Modeling, Analysis, and Simulation of Computer and Telecom-
munication Systems (MASCOTS), 2015.

[28] Phoronix Test Suite, “phoronix-test-suite.com.”
[29] J. Power, J. Hestness, M. S. Orr, M. D. Hill, and D. A. Wood,

“gem5-gpu: A Heterogeneous CPU-GPU Simulator,” IEEE Computer
Architecture Letters, vol. 14, no. 1, Jan 2015.

[30] M. Stephenson, S. K. Sastry Hari, Y. Lee, E. Ebrahimi, D. R. Johnson,
D. Nellans, M. O’Connor, and S. W. Keckler, “Flexible Software
Profiling of GPU Architectures,” in Proc. Int. Symposium on Computer
Architecture (ISCA), 2015.

[31] Telemetry, https://www.chromium.org/developers/telemetry.
[32] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli, “Multi2Sim: A

Simulation Framework for CPU-GPU Computing,” in Proc. Int. Con-
ference on Parallel Architectures and Compilation Techniques (PACT),
2012.

[33] Vega: AMD’s New Graphics Architecture for Virtually Unlimited
Workloads, http://www.amd.com/en-us/press-releases/Pages/vega-amds-
new-2017jan05.aspx.

[34] G. Wu, J. L. Greathouse, A. Lyashevsky, N. Jayasena, and D. Chiou,
“GPGPU Performance and Power Estimation Using Machine Learning,”
in Proc. Int. Symposium on High-Performance Computer Architecture
(HPCA), 2015.

[35] Xvfb, “www.x.org/wiki/.”

12

