
ELASTICLAVE: An Efficient Memory Model for Enclaves

Zhijingcheng Yu
National University of Singapore

Shweta Shinde ∗

ETH Zurich
Trevor E. Carlson

National University of Singapore

Prateek Saxena
National University of Singapore

Abstract
Trusted-execution environments (TEE), like Intel SGX, iso-
late user-space applications into secure enclaves without trust-
ing the OS. Thus, TEEs reduce the trusted computing base,
but add one to two orders of magnitude slow-down. The per-
formance cost stems from a strict memory model, which we
call the spatial isolation model, where enclaves cannot share
memory regions with each other. In this work, we present
ELASTICLAVE—a new TEE memory model that allows en-
claves to selectively and temporarily share memory with
other enclaves and the OS. ELASTICLAVE eliminates the
need for expensive data copy operations, while offering the
same level of application-desired security as possible with
the spatial model. We prototype ELASTICLAVE design on an
RTL-designed cycle-level RISC-V core and observe 1 to 2 or-
ders of magnitude performance improvements over the spatial
model implemented with the same processor configuration.
ELASTICLAVE has a small TCB. We find that its performance
characteristics and hardware area footprint scale well with the
number of shared memory regions it is configured to support.

1 Introduction

Isolation, commonly using OS processes, is a cornerstone ab-
straction for security. It allows us to isolate and limit software
compromises to one fault domain within an application and
is the basis for implementing the design principle of privi-
lege separation. In the last few years, user-level enclaves have
become available in commodity CPUs that support TEEs. A
prime example of enclaved TEEs is Intel SGX [15]. Conceptu-
ally, enclaves are in sharp contrast to processes in that they do
not trust the privileged OS, promising a drastic reduction in
the TCB of a fault domain. This is why the design of enclaved
TEEs is of fundamental importance to security.

One of the big challenges with using today’s enclaves is
performance. For example, many prior efforts have reported

∗Part of the research was done while at University of California, Berkeley.

1–2 orders of magnitude slowdowns when supporting com-
mon applications on SGX [3, 6, 42, 43, 50]. This raises the
question whether one can design enclaved TEEs which have
substantially better performance.

As a step towards this goal, we point towards one of the
key abstractions provided by enclaved TEEs—their memory
model. The memory model used in several existing TEEs
[2, 16, 18, 24, 32, 33], including SGX, which originates from
a long line of prior works [11, 13], follows what we call the
spatial isolation model. In this model, the virtual memory of
the enclave is statically divided into two types: public and
private memory regions. These types are fixed throughout the
region’s lifetime. The spatial isolation model is a simple but a
rigid model, as its underlying principle breaks compatibility
with the most basic of data processing patterns where data
needs to privately computed on before being made public or
shared externally. In the spatial model, traditional applications
will need to create multiple data copies when sharing across
enclave boundaries, and additionally encrypt data, if they de-
sire security from an untrusted OS. Consequently, to support
abstractions like shared memory, pipes, fast synchronization,
IPC, file I/O, and others on spatially-isolated memory, data
has to be copied between public to private memory regions
frequently. This results in very high overheads, a phenomenon
reported in many frameworks trying to re-enable compatibil-
ity on TEEs that use the spatial model [3, 6, 26, 42, 43, 50].

In this work, we revisit the spatial isolation memory model
adopted by modern TEEs. We propose a new memory model
called ELASTICLAVE which allows enclaves to share mem-
ory across enclaves and with the OS, with more flexible per-
missions than in spatial isolation. While allowing flexibility,
ELASTICLAVE does not make any simplistic security assump-
tions or degrade its security guarantees over the spatial isola-
tion model. We view enclaves as a fundamental abstraction
for partitioning applications in this work, and therefore, we
assume that enclaves do not trust each other and can become
compromised during their lifetime. The ELASTICLAVE design
directly eliminates the need for expensive data copy opera-
tions, which are necessary in the spatial isolation model to

ar
X

iv
:2

01
0.

08
44

0v
1

 [
cs

.C
R

]
 1

6
O

ct
 2

02
0

ensure security. The end result is that ELASTICLAVE offers
10×–100× better performance than spatially-isolated TEEs
with the same level of application-desired security.

The main challenge designing ELASTICLAVE is providing
sufficient flexibility in defining security over shared memory
regions, while minimizing complexity. Relaxing the spatial
isolation model such that it allows enclaves to privately share
memory between them, without trusting a trusted OS as an
intermediary, requires careful consideration. In particular, we
want to allow enclaves to share a memory region and be able
to alter their permissions on the region over time, thereby
eliminating the need to create private copies. The permission
specification mechanism should be flexible enough to allow
non-faulty (uncompromised) enclaves to enforce any desir-
able sequence of permission changes on the region which
the application demands. At the same time, we do not want
the compromised OS or any other enclaves that may have
become compromised during runtime to be able to escalate
their privileges arbitrarily, beyond what was initially agreed
upon. For instance, simply providing the equivalent of the
traditional shared memory and IPC interfaces (e.g., POSIX)
can leave several avenues of attacks unaddressed. The un-
trusted OS or compromised enclaves may modify/read shared
memory out of turn, create TOCTOU attacks, intentionally
create race conditions, re-delegate permissions, and so on.
Thus, the ELASTICLAVE interface is designed with abstrac-
tions that relax the spatial model minimally. Further, a simple
interface design makes it easy to analyze the final security,
and simultaneously, keeps the implementation impact small.

We implement our design on an open-source, RTL-level
RISC-V 800 MHz processor [4]. We evaluate performance
and chip area impact of ELASTICLAVE using a cycle-level
simulator [25] on several synthetic as well as real-world
benchmarks. We observe that ELASTICLAVE enables per-
formance improvements of 1–2 orders of magnitude over the
spatial isolation model implemented in the same processor
configuration. We also show that ELASTICLAVE has a modest
cost on implementation complexity. First, we show that the ad-
ditional TCB is than 7,000 LoC. Second, our benchmarking
highlights that the performance overhead is affected primarily
by the number of enclave-to-enclave context switches, i.e, it is
independent of the size of shared data in a region. Further, the
increased hardware register pressure due to ELASTICLAVE
does not increase the critical path of the synthesized core
for all tested configurations. Third, the hardware area foot-
print scales well with the maximum number of shared regions
ELASTICLAVE is configured to support. Specifically, our es-
timated hardware area increase is below 1% of our baseline
RISC-V processor, for every 8 additional shared memory re-
gions ELASTICLAVE TEE is configured to support.
Contributions. The paper proposes a new memory model for
enclaved TEEs called ELASTICLAVE. We show that its design
can result in significantly better performance than the spatial
isolation model. We offer a prototype implementation on a

RISC-V processor, with a modest hardware area impact.

2 Problem

TEE provides the abstraction of enclaves to isolate compo-
nents of an application, which run with user-level privileges.
The TEE implementation (privileged hardware) is trusted
and assumed to be bug-free.1 We want to design an efficient
memory model for TEEs that support enclaves. In our setup,
a security-sensitive application is partitioned into multiple
potentially compromised (or faulty) components. Each com-
ponent runs in a separate enclave created by the TEE, which
serves as a basic isolation primitive. Enclaves are assumed
to be mutually-distrusting, since they can be compromised
by the adversary during their execution, e.g., due to software
exploits. This assumption is of fundamental importance, as it
captures the essence of why the application is partitioned to
begin with. The memory model adopted by Intel SGX serves
as a tangible baseline to explain how a rigid security models
can induce prohibitive performance costs.

2.1 Baseline: The Spatial Isolation Model

Most enclaves available on commodity processors, use a mem-
ory model which we call the spatial isolation model [9,11,27,
33, 41, 46], including Intel SGX, which follows many prior
proposals [11, 13]. In this model, each enclave comprises two
different types of non-overlapping virtual memory regions:

1. Private memory: exclusive to the enclave itself and inac-
cessible to all other enclaves running on the system.

2. Public memory: fully accessible to the enclave and the
untrusted OS, who may then share it with other enclaves.

The spatial model embodies the principle of dividing trust
in an “all or none” manner [43]. For each enclave, every other
enclave is fully trusted to access the public memory, whereas
the private memory is accessible only to the enclave itself.
This principle is in sharp contrast to any form of memory
sharing, which is extensively used when an enclave wants to
exchange data with the outside world, including with other
enclaves. Memory sharing is key to efficiency in I/O opera-
tions, inter-process communication, multi-threading, memory
mapping, signal-handling, and other standard abstractions. Al-
though shared memory is not directly possible to implement in
the spatial isolation model, it can be simulated with message-
passing abstractions instead. To discuss the limitations of the
spatial isolation concretely, we present a baseline for imple-
menting shared memory functionality in the spatial model
next. We refer to this baseline as the spatial ShMem baseline.

1TEEs are typically implemented in hardware and firmware. Our TEE im-
plementation uses RISC-V hardware feature along with a privileged software
monitor, executing in the firmware-equivalent software privileged layer.

2

encrypt

decrypt

Producer Enclave

Consumer Enclave

Trusted
Co-ordinator
Enclave

produce()

consume()

(a) Producer-consumer

encrypt

decrypt

Source Enclave

Destination Enclave

Proxy Enclave

update

encrypt

decrypt

(b) Proxy

Req
encrypt

Client Enclave Server Enclave

Req

Resp Resp
decrypt

decrypt

encrypt

(c) Client-server

Figure 1: Spatial ShMem baseline cost. Gray color indicates public memory; double-line border indicates the trusted coordinator.

Note that this baseline is frequently utilized in many prior
frameworks that offer compatibility with Intel SGX [3,43,50].

The Spatial ShMem Baseline. This baseline simulates a
shared memory abstraction between two spatially isolated
enclaves. Observe that the two enclaves can keep a private
copy of the shared data. However, as the enclaves do not
trust each other they cannot access each other’s local copy.
Therefore, the shared data must either reside in public mem-
ory, which may be mapped in the address space of both the
enclaves, or they must use message-passing (e.g., via RPC)
which itself must use the public memory. Any data or ex-
changed messages using public memory are exposed to the
untrusted OS. Therefore, the spatial ShMem baseline requires
a cryptographically secure channel to be implemented on top
of the public memory. Specifically, the two enclaves encrypt
data and messages before writing them to public memory and
decrypt them after reading them. We call this a secure pub-
lic memory. We can assume that the cryptographic keys are
pre-exchanged or pre-established securely by the enclaves.

A secure public memory is not sufficient to implement a
shared memory abstraction in the spatial ShMem baseline.
Concurrently executing enclaves may access data simultane-
ously and such accesses may require serialization in order to
maintain typical application consistency guarantees. Notice
that reads and writes to the secure public channel involves
encryption and decryption sub-steps, the atomicity of which
is not guaranteed by the TEE. No standard synchronization
primitives such as semaphores, counters, and futexes—which
often rely on OS-provided atomicity—remain trustworthy in
the enclave threat model we consider. Therefore, one simple
way to serialize access is to use a trusted mediator or coordi-
nator enclave. In the spatial ShMem baseline, we designate
a third enclave as a trusted coordinator. For achieving mem-
ory consistency, accesses to shared memory are simulated
with message-passing, i.e., read/writes to shared memory are
simulated with remote procedure calls to the trusted coordi-
nator, which implements the “shared” memory by keeping
its content in its private memory. For example, to implement
a shared counter, the trusted coordinator enclave keeps the
counter in its private memory, and the counter-party enclave
can send messages to the trusted coordinator for state updates.

We have assumed in our baseline that the coordinator is

not faulty or compromised. Attacks on the trusted coordinator
can subvert the semantic correctness of the shared memory
abstraction. One can consider augmenting this baseline to tol-
erate faulty coordinators (e.g., using BFT-based mechanisms).
But these mechanisms would only increase the performance
costs and latencies, reducing the overall throughput.

2.2 Illustrative Performance Costs
The spatial ShMem baseline is significantly more expensive
to implement than the original shared memory abstraction in
a non-enclave (native) setting. We refer readers to Section 5
for the raw performance costs of the spatial ShMem baseline
over the native. The overheads can be 1-2 orders of magnitude
higher. This is primarily because of the encryption-decryption
steps and additional memory copies that are inherent in the
implementation of secure channel and trusted coordinator.
Several recent works have reported these costs over hundreds
of programs on the Intel SGX platform [3, 42, 43, 50]. For
instance Occlum reported overheads up to 14× as compared
to native Linux execution [42]. We present 3 representative
textbook patterns of data sharing that ubiquitously arise in
real-world applications and illustrate how spatial isolation
incurs such significant cost.
Pattern 1: Producer-Consumer. In this pattern, the producer
enclave writes a stream of data objects to shared memory for
a consumer enclave to read and process. Several applications
use this for signaling completion of sub-steps of a larger task,
such as in MapReduce [17, 40]. For supporting this pattern
with the spatial ShMem baseline, the producer has to copy
its output data to public memory first and then the consumer
enclave copies it to private memory. In summary, at least
2 additional copies of the original shared data are created.
Further, the data is encrypted and decrypted once leading to 2
compute operations per byte and 1 private copy in the trusted
coordinator. Figure 1a depicts the steps.
Pattern 2: Proxy. Many applications serve as a intermediate
proxy between a producer and consumer. For example, con-
sider packet monitoring/filtering application like Bro, snort,
or bpf which modifies the data shared between two end-point
applications. Proxy designs can be implemented using two
instances of the producer-consumer pattern, where the proxy

3

Pattern Spatial ELASTICLAVE

Enc Dec Cpy Instructions

1 Producer-Consumer L L 3 ·L 2
2 Proxy 2 ·L 2 ·L 6 ·L 4
3 Client-Server L L 3 ·L 2

Table 1: Data sharing overheads of spatial isolation vs. ELAS-
TICLAVE. L: data size (memory words) in the shared region.

acts as the consumer for the first instance and producer for
the second. However, in practice, proxies often optimize by
performing in-place changes to the shared data rather than
maintaining separate queues with the end points [19,20]. Such
in-place memory processing is not compatible with the spa-
tial memory model. Applications which originally use this
pattern must incur additional memory copies. The data stream
must be placed in public memory, so that it can be passed to
the proxy enclave that acts as a trusted coordinator. But at
the same time, the proxy cannot operate on public memory
in-place, or else it would risk modifications by other enclaves.
Therefore, there are at least 2 memory copies of the 2 origi-
nal shared data contents, totaling 4 copies when supporting
this pattern with the spatial ShMem baseline, as shown in
Figure 1b. Further, the data is encrypted and decrypted twice
leading to 4 compute operations per byte.
Pattern 3: Client-Server. Two enclaves, referred to a client
and a server, read and write shared data to each other in this
pattern. Each enclave reads the data written by the other, per-
forms private computation on it, and writes back the computed
result back to the shared memory. As explained, the shared
memory abstraction cannot directly be implemented with data
residing in a shared region of public memory since the OS and
other enclaves on the system are not trusted. For supporting
such sharing patterns, there will be at least 4 data copies—
one in server private memory, one client private memory, and
two for passing data between them via a public memory. Fur-
ther, the data is encrypted and decrypted twice leading to 4
compute operations per byte (Figure 1c).
Summary. The spatial ShMem baseline requires multiple
data copies (see Figure 1) to avoid attacks from the OS. Ta-
ble 1 summarizes the encrypt/decrypt and copy operations
incurred in our presented data patterns, assuming a region of
L memory words is shared and each word is accessed once.

2.3 Problem Formulation

The spatial isolation forces a rigid memory model. The type
of permissions of a memory region cannot change over time.
The authority which controls the permissions is fixed, i.e., the
OS for public memory and an enclave for private memory,
regardless of the trust model desired by the application. We
ask the following research question: Does there exist a mini-
mal relaxation of the spatial model, which retains its security

guarantees, while eliminating its performance bottlenecks?

Security Model. We assume that the OS is arbitrarily mali-
cious and untrusted. The target application is partitioned into
enclaves, which share one or more regions of memory. Each
enclave has a pre-agreed set of permissions, which the appli-
cation desires for its legitimate functionality. This set does not
change, and in a sense, is the maximum permissions an en-
clave needs for that region at any point of time in the region’s
lifetime. Any subset of enclaves can become compromised
during the execution. We refer to compromised enclaves as
faulty which can behave arbitrarily. While providing better
performance, there are 2 security properties we desire from
our TEE. First, the TEE interface does not allow faulty (and
non-faulty) enclaves to escalate their privileges beyond the
pre-agreed set. The second property, loosely speaking, en-
sures that faulty enclaves cannot obtain access permissions to
the shared region, i.e., outside of the sequence that non-faulty
enclaves desire to enforce. We detail these 2 properties in
Section 3.5. We additionally desire two soft goals.

Goal 1: Flexibility vs. Security. We aim to design a TEE
memory model that offers security comparable or better than
our proposed baseline. A naive design, which allows unfet-
tered flexibility to control a region’s permissions, can expose
enclaves to a larger attack surface than the baseline. Enclaves
may maliciously compete to become an arbiter of permissions
for a region. It may be difficult to enforce a single consistent
global view of the permissions that each enclave has to a
shared region, if permissions can change dynamically. This
in turn may create TOCTOU bugs, since enclaves may end
up making trust decisions based on a stale view of another
enclave’s current permissions. Therefore, our goal is to strike
a balance between flexibility and security.

Goal 2: Minimizing Implementation Complexity. En-
abling a new memory model may incur significant implemen-
tation complexity. A complex memory model could introduce
expensive security metadata in hardware, increase the number
of signals, and introduce a large number of instructions. These
can directly lead to performance bottlenecks in the hardware
implementation, or have an unacceptable cost in chip area
or power consumption. Our goal is thus to keep the memory
model simple and minimize implementation complexity.

Scope. The TEE implementation is assumed to be bug-free.
We aim to provide integrity, confidentiality, and access control
for shared memory data. We do not aim to provide availability
hence denial-of-service (DoS) attacks on shared memory are
not in-scope, since the OS may legitimately kill an enclave or
revoke access to memory. Further, our focus is on defining a
memory interface—micro-architectural implementation flaws
and side-channels are out of our scope. Lastly, if the TEE
wishes to safeguard the physical RAM or bus interfaces, it
may require additional defenses (e.g., memory encryption),
which are orthogonal and not considered here.

4

1
Queue

share(u,	EC,	r--l)

r	w	-		l

change(u,	r---)

change(u,	rw-l)

change(u,	r---)

Producer EP
(Owner)

Consumer EC
(Non-owner)

Readable-writable Read-only No-access allowed

Temporal Contract
Shared Memory Region

t1

t2

t3

t4 r	-	-		-

r	-	-		-

r	w	-		l

1 2
Queue

1
Queue

1 2
Queue

enqueue(2) -	-	-		-

change(u,	r--l)

change(u,	----)

change(u,	r--l)

t1

t2

t3

t4r	-	-		l

r	-	-		l

-	-	-		-

dequeue()

dequeue()

enqueue(1)

(a) Producer-consumer (two-way isolated)

share(u,	ES,	rw-l)

transfer(u,	EP) process()

Source ES
(Owner)

Proxy EP
(Non-owner)

Readable-writable No-access allowed

Temporal Contract
Shared Memory Region

t1

t2

t3

t1

t2

t3

write()

read()

share(u,	EP,	rw-l)

transfer(u,	ED)
Destination ED
(Non-owner)

r	w	-		l

-	-	-		-

r	w	-		l

-	-	-		-

r	w	-		l

-	-	-		-

Data

Processed
Data

Processed
Data

(b) Proxy

Client EC
(Owner)

Server ES
(Non-owner)

Readable-writable No-access allowed

Temporal Contract
Shared Memory Region

t1

t2

t3

Request 1
Response 1

r	w	-		l

r	w	-		l

-	-	-		-

Request 1

Request 2

t1

t2

t3

-	-	-		-

-	-	-		-

r	w	-		l

change(u,	----)

proc_resp() serve()

request()

change(u,	----) change(u,	rw-l)

share(u,	EC,	rw-l)
request()

change(u,	rw-l)

(c) Client-server

Figure 2: Data sharing patterns with ELASTICLAVE.

3 The ELASTICLAVE Memory Interface

ELASTICLAVE is a relaxation of the spatial isolation model
i.e., It allows enclaves to share memory regions more flexibly.

3.1 Overview

ELASTICLAVE highlights the importance of 3 key first-class
abstractions that allow interacting enclaves to: (a) have in-
dividual asymmetric permission views of shared memory re-
gions, i.e., every enclave can have their local view of their
memory permissions; (b) dynamically change these permis-
sions as long as they do not exceed a pre-established maxi-
mum; and (c) obtain exclusive access rights over shared mem-
ory regions, and transfer it atomically in a controlled manner
to other enclaves.

As a quick point of note, we show that the above three ab-
stractions are sufficient to drastically reduce the performance
costs highlighted in Section 2.2. In particular, Table 1 shows
that in ELASTICLAVE, the number of instructions is a small
constant and the number of data copies reduces to 1 in all
cases. Whereas the spatial ShMem baseline requires oper-
ations linear in the size L of the shared data accessed. We
will explain why such reduction is achieved in Section 3.4.
But, in a brief glance at Figure 2 shows how the 3 patterns
can be implemented with a single shared memory copy, if the
abstractions (a)-(c) are available. Notice how enclaves require
different permission limits in their views, which need to be
exclusive sometimes, and how permissions change over time.
For security, it is necessary that accesses made by enclaves
are serialized in particular (shown) order.

Our recommendation for the 3 specific ELASTICLAVE ab-
stractions is intentional. Our guiding principle is simplic-
ity and security—one could easily relax the spatial memory
model further, but this comes at the peril of subtle security
issues and increased implementation complexity. We discuss
these considerations in Section 3.5 after our design details.

3.2 ELASTICLAVE Abstractions

ELASTICLAVE relaxes spatial isolation by allowing enclaves
to define and change permissions of regions shared externally.
Our design works at the granularity of ELASTICLAVE mem-
ory regions. These regions are an abstraction defined by our
model; each region maps to a contiguous range of virtual
memory addresses in the enclave. From the view of each en-
claves, an ELASTICLAVE memory region has 4 permission
bits: standard read, write, execute, and a protection lock bit.

For each memory region, we have two types of enclaves.
The first are owners, who have the sole privilege to create,
destroy, and initiate sharing of regions. The second kind of
enclaves are accessors. Owners can share and grant the per-
mission to accessors only for the regions they own. An enclave
can be both an owner and an accessor of a region.

ELASTICLAVE gives 3 first-class abstractions: asymmetry,
dynamicity, and exclusivity in an enclave’s permission views.
Asymmetric Permission Views. In several data patterns
shown in Section 2.2, one can see that different enclaves
require different permissions of the shared memory. For ex-
ample, one enclave has read accesses whereas others have
write-only access. The spatial model is a “one size fits all”
approach that does not allow enclaves to setup asymmetric
permissions for a public memory region securely—the OS
can always undo any such enforcement that enclaves might
specify via normal permission bits in hardware. In ELASTI-
CLAVE, different enclaves are allowed to specify their own set
of permissions (or views) over the same shared region, which
are enforced by the TEE. This directly translates to avoid-
ing the costs of creating data copies into separate regions,
where each region has a different permission. For example,
in Pattern 1 the producer has read-write permissions and the
consumer has read-only permissions for the shared queue.
Dynamic Permissions. In ELASTICLAVE, enclaves can
change their permissions over time, without seeking con-
sent from or notifying other enclaves. In the spatial isola-
tion model, if enclaves need different permissions over time
on the same shared data, separate data copies are needed.
ELASTICLAVE eliminates the need for such copies. For ex-
ample, in Pattern 2, when the source enclave generates data it

5

Instruction Permitted Caller Semantics

uid = create(size) owner of uid create a region
err = map(vaddr, uid) accessor of uid map VA range to a region
err = unmap(vaddr, uid) accessor of uid remove region mapping
err = share(uid, eid, P) owner of uid share region with an enclave
err = change(uid, P) accessor of uid adjust the actual access permis-

sion to a memory region
err = destroy(uid) owner of uid destroy a memory region
err = transfer(uid, eid) current lock holder transfer lock to another accessor

Table 2: Summary of security instructions in ELASTICLAVE.

⊥

r-x-rw--

r---

r--l

rw-l r-xl

rwxl

rwx-

Figure 3: Lattice for the permission hi-
erarchy, or ≤ relation for permissions.

has read-write permissions, while the proxy enclave has no
permissions. After that, the source drops all its permissions,
and proxy enclave gains read-write permissions to process
the data. This way, both source and proxy enclaves do not
interfere with each others operations on the shared region.

While enabling dynamic permissions, ELASTICLAVE does
not allow enclaves to arbitrarily escalate their permissions
over time. In ELASTICLAVE, only the owner can share a
memory region with other accessors during the lifetime of the
memory region. When the owner shares a memory region, it
sets the static maximum permissions it wishes to allow for the
specified accessor at any time. This static maximum cannot
be changed once set by the owner for a specified enclave.
Accessors can escalate or reduce their privileges dynamically.
But if the accessor tries to exceed the static maximum at
any given point in time, ELASTICLAVE delivers a general
protection fault to the accessor enclave.

Exclusive Locks. ELASTICLAVE incorporates a special bit
for each memory region called the lock bit. This bit serves as a
synchronization mechanism between enclaves, which may not
trust each other. ELASTICLAVE ensures that at any instance of
time only one accessor has this bit set, thereby enforcing that
it has an exclusive access to a region. When this bit is on, only
that accessor is able to access it—all other accessors have their
permissions temporarily disabled. When the lock is acquired
and released by one enclave, all accessors and the owner of
that region are informed through a hardware exception/signal.
Lock holders can release it generically without specifying
the next holder or can atomically transfer the lock to other
accessors through transfer instruction. Atomic transfers
become useful for flexible but controlled transfer of exclusive
access over regions. For example, in Pattern 2, the source
holds the lock bit for exclusive access to the region for writing
its request. Thus, no one can tamper with the packet while the
source writes to it. Then, the source transfers the lock directly
to the proxy. Proxy exclusively accesses the region to update
the packet and then transfers the lock to the destination. Only
then the destination can read the updated packet.

3.3 Design Details

ELASTICLAVE is a memory interface specification consisting
of 7 instructions, summarized in Table 2, which operate on
ELASTICLAVE memory regions. Each ELASTICLAVE region
is addressable with a universal identifier that uniquely identi-
fies it in the global namespace. Universal identifiers can be
mapped to different virtual addresses in different enclaves,
and at the same time, are mapped to physical addresses by a
ELASTICLAVE implementation. The ELASTICLAVE interface
semantics are formalized as pre- and post-conditions in Ap-
pendix A, which any secure implementation of this interface
should satisfy. Next, we explain the ELASTICLAVE design by
walking through the typical lifecycle of a region.

Owner View. Each memory region r has a unique owner en-
clave throughout its lifetime. An enclave p can create a new
memory region r with create instruction, which takes the
memory region size and returns a universal id (uid). The en-
clave p is the owner of the new memory region r. The owner
permissions are initialized to an owner-specified safe maxi-
mum. These permissions are bound to a memory region. The
owner, just like any accessor, can bind the memory region to
its virtual address space by using map and unmap instructions.
The map instruction takes a uid for the region and the virtual
address range to map to it. A memory region can be mapped
at multiple virtual address in an enclave, but the static per-
missions bound to the region at the time of creation apply to
all instances mapped in the virtual address space. The owner
can then share the memory with any other enclave using the
share instruction, which specifies the uid of the memory
region, the enclave id of the other accessor, and the static
maximum permissions allowed for that accessor.

Every accessor, including the owner, can dynamically
change the permissions of a memory as long as the permis-
sions are strictly more restrictive (fewer privileges) than the
static maximum for the enclave. For the owner, the static
maximum is the full set of permissions, and for other acces-
sors, it is determined by the share instruction granting the
access. The changes to such permissions are local to each
accessor, i.e., permission changes are not globally effected for
all accessors; rather they apply to each enclave independently.

6

The lattice shown in Figure 3 defines the permission hierar-
chy. Finally, the owner can destroy the memory region at any
point in time by invoking the destroy instruction. ELASTI-
CLAVE sends all accessors a signal when the owner destroys
a memory region. Destroying a region ends the lifetime in all
enclaves. The OS can invoke the destroy instruction on an
enclave to reclaim the memory region or to protect itself from
denial-of-service via the enclave.
Accessor’s View. The accessor binds a memory region in its
virtual address space using the map instruction; the same way
as owners do. The initial permissions of the memory region
are set to static maximum allowed by the owner (specified by
the owner in the share instruction). The accessor can restrict
its permissions dynamically further at any time as long as the
resulting permissions are below this static maximum using the
change instruction. Such changes, as mentioned previously,
remain locally visible to the accessor enclave.
Permission Checks. The ELASTICLAVE TEE implementa-
tion enforces the permissions defined by enclaves in their
local views. A permission bit is set to 1 if the corresponding
memory access (read, write, or execute) is allowed, and set
to 0 otherwise. For memory accesses, the security checks can
be summarized by two categories: (1) availability check of
the requested resources (e.g., memory regions and enclaves),
which ensures that instructions will not be performed on non-
existing resources; and (2) permission checks of the caller,
which ensures that the caller has enough privilege to perform
the requested instruction. Table 2 defines the permitted caller
for each instruction. For example, share and destroy in-
structions can only be performed by the owner of the region.

The change instruction is the mechanism for dynamically
updating permissions of a ELASTICLAVE region. ELASTI-
CLAVE requires that the newly requested permissions (perm)
by an enclave fall within the limits of its static maximum
permissions (max). Specifically, ELASTICLAVE checks that
perm ≤ max, where the ≤ relation is defined by the lattice
shown in Figure 3. The lock bit can only be held (set to 1)
in the local view of a single enclave at any instance of time.
When it is set for one enclave, that enclave’s local permission
bits are enforced, and all other enclaves have no access to the
region. When lock is set to 0 in the local views of all enclaves,
permissions of each enclave are as specified in its local view.
Lock Acquire & Release. Accessors can attempt to “acquire”
or “release” the lock by using the change instruction. It re-
turns the accessor’s modified permissions, including the lock
bit that indicates whether the acquire / release was successful.
ELASTICLAVE ensures that at any instance of time, only a
single enclave is holding the lock. If any other enclave ac-
cesses the region or tries to issue a change instruction on that
region’s permissions, these requests will be denied.

A lock holder can use the change instruction to release
locks; however, there are situations where the holder wishes to

explicitly specify who it intends to be next holder of the lock.
ELASTICLAVE allows lock holder to invoke a transfer in-
struction which specifies the enclave id of the next desired ac-
cessor. The next holder must have the memory region mapped
in its address space for the transfer to be successful.
ELASTICLAVE Exceptions & Signals. ELASTICLAVE is-
sues exceptions whenever memory operations violating any
permission checks are made by an enclave. ELASTICLAVE
notifies enclaves about events that affect the shared memory
region via asynchronous signals. Signals are issued under two
scenarios. First, when the owner destroys a memory region
r, permissions granted to other enclaves will be invalidated
since the memory region is not in existence. In order to pre-
vent them from continuing without knowing that the memory
region can no longer be accessed, the security enforcement
layer will send signals to notify all accessors who had an
active mapping (i.e., mapped but not yet unmapped) for the
destroyed memory region. The second scenario for signals
is to notify changes on lock bits. Each time an accessor suc-
cessfully acquires or releases the lock (i.e., using change

or transfer instructions), a signal is issued to the owner.
The owner can mask such signals if it wishes to, or it can ac-
tively monitor the lock transfers if it desires. When a transfer
succeeds, the new accessor is notified via a signal.

Lastly, we point out that ELASTICLAVE explicitly does not
introduce additional interface elements, for example, to allow
enclaves to signal to each other about their intent to acquire
locks, or to prevent starvation. Section 3.5 discusses these
considerations to avoid interface complexity.

3.4 Performance Benefits
ELASTICLAVE relaxes the spatial isolation model by introduc-
ing flexibility in specifying permissions over shared regions.
We now revisit the example patterns discussed in Section 2.2
to show these patterns can be implemented with significantly
lower costs (summarized in Table 1) with ELASTICLAVE.
Revisiting Pattern 1: Producer-Consumer. Application
writers can partition the producer and consumer into two
enclaves that share data efficiently with ELASTICLAVE. We
can consider two scenarios of faulty enclaves. The first allows
one-way protection, where the producer safeguards itself from
a faulty consumer. The second offers mutual protection where
faults in either enclave do not spill over to the other.

In the one-way isolation scenario, the producer can cre-
ate a memory region and share it with the consumer with
the maximum permission set to r− −−. The producer and
the consumer can then keep their permissions to rw−− and
r− −− respectively, which allow the producer to read and
write data and the consumer to only read data in the memory
region (Figure 4). The producer can directly write its data
to the shared memory region, and the consumer can directly
read from it without needing to moving the data back and
forth between the shared memory region and their private

7

Producer
Enclave

Consumer
Enclave

Temporal Contract
Shared Memory Regions

R1

R2
ctr

rw-- rw--

rw-- r--- dequeue()enqueue()

inc_ctr() dec_ctr()

write

write write

read

Queue

Figure 4: One-way isolated producer-consumer pattern with
ELASTICLAVE. The producer writes to a memory region (R1)
shared with consumer; consumer is only allowed to read.

memory. The producer can ensure that the consumer, even
if compromised, cannot maliciously race to modify the data
while it is being updated in a critical section by the producer.
The whole process does not involve any extra data copies or a
cryptographically secure public memory, and only introduces
fixed costs of setting up and destroying the memory regions.

Two-way isolation is desired when both producer and con-
sumer wish to modify shared data in-place, while assuming
that the other is faulty. As a simple example, counters in
shared queue data structures often require atomic updates.
In general, the producer and consumer may want to securely
multiplex their access to any amount of shared data (e.g., via
shared files or pipes) for performing in-place updates. ELAS-
TICLAVE makes this possible without creating any additional
memory copies or establishing secure channels. The shared
memory region can be created by (say) the producer and
shared with the consumer with a static maximum permission
of rw−l as shown in Figure 2a. When either of them wish to
acquire exclusive access temporarily, they can use the change
instruction, setting it from 0 to 1. Therefore, the only overhead
incurred is that of the execution of the change instruction
itself, which is in sharp contrast to the 2 copies of the entire
shared data required in spatial isolation model.
Revisiting Pattern 2: Proxy. The proxy example can be seen
as a straight-forward sequential stitching of two producer-
consumer instances. The shared data would first be written by
the producer, then the proxy atomically reads or updates it, and
then the consumer would read it. All three entities can hold
the lock bit in this order to avoid any faulty enclave to access
the shared memory where unintended. ELASTICLAVE transfer
instruction eliminates windows of attack when passing the
locks from one enclave to another. Specifically, it allows the
source to atomically transfer the lock to proxy, who then
atomically transfers it to the consumer. In this way, the proxy
workflow can be implemented without any extra copy of the
shared data as shown in Figure 2b.
Revisiting Pattern 3: Client-Server. The client-server work-
flow can similarly be executed by keeping a single copy of the
shared data, as shown in Figure 2c, which reduces the number
of data copies from 6 in the case of spatial isolation to 1.
Compatibility with Spatial Isolation. It is easy to see that

ELASTICLAVE is strictly more expressive than spatial iso-
lation model, and hence keeps complete compatibility with
designs that work in the spatial isolation model. Setting up
the equivalent of the public memory is simple—the owner
can create the region and share it with rwx− for all. Private
memory simply is not shared after creation by the owner.
Privilege De-escalation Built-in. In ELASTICLAVE, en-
claves can self-reduce their privileges below the allowed max-
imum, without raising any signals to other enclaves. This
design choice enables compatibility with several other low-
level defenses which enclaves may wish to deploy for their
own internal safety—for example, making shared object be
non-executable, or write-protecting shared security metadata.

3.5 Security & Simplicity

We begin by observing that it is straight-forward to implement
the ELASTICLAVE interface with an (inefficient) trusted en-
forcement layer using spatially isolated memory2. It follows
that any memory permission configurations which may be
deemed as “attacks” on the ELASTICLAVE would also be ad-
missible in a faithful emulation on the spatial isolation model.
In this sense, ELASTICLAVE does not degrade security over
the spatial isolation model. The primary highlight of ELASTI-
CLAVE is the performance gains it enables without degrading
security.

We point out two desirable high-level security properties
that immediately follow from the ELASTICLAVE interface
(Table 2). Application writers can rely on these properties
without employing any extra security mechanisms.
Property 1: Bounded Escalation. If an owner does not ex-
plicitly authorize an enclave p access to a region r with a said
permission, p will not be able to obtain that access.

This property follows from three design points: (a) Only
the owner can change the set of enclaves that can access a
region. Non-owner enclaves cannot grant access permissions
to other enclaves since there is no permission re-delegation
instruction in the interface. (b) Each valid enclave that can
access a region has its permissions bounded by an owner-
specified static maximum. (c) For each access or instruction,
the accessor enclave and the permission is checked to be
legitimate by each instruction in the interface (see Table 2).
Property 2: Enforceable Serialization of Non-faulty En-
claves. If the application has a pre-determined sequence in
which accesses of non-faulty enclaves should be serialized,
then ELASTICLAVE can guarantee that accesses obey that
sequence or will be aborted. Specifically, let us consider any
desired sequence of memory accesses on an ELASTICLAVE

2The enforcement layer would be implemented by a trusted enclave,
which would keeps the shared memory content and the permission matrix in
its private memory. Each invocation of a ELASTICLAVE instruction would
translate to a RPC call to the enforcement enclave, which could simply
emulate the stated checks in Table 2 and Appendix A as checks on its matrix.

8

region a1,a2, . . . ,an and assume that all enclaves perform-
ing these accesses are uncompromised. Then, using ELASTI-
CLAVE, the application writer can guarantee that its sequence
of accesses will follow the desired sequence, even in the pres-
ence of other faulty enclaves, or can be aborted safely.

The property can be enforced by composing two ELAS-
TICLAVE abstractions: (a) For each access ai by an enclave
e(ai) in the pre-determined sequence, the accessor can first
acquire the lock to be sure that no other accesses interfere.
(b) When the accessor changes, say at access a j, the current en-
clave e(a j) can safely hand-over the lock to the next accessor
e(a j+1) by using the transfer instruction. Faulty enclaves
cannot acquire the lock and access the region at any inter-
mediate point in this access chain. For example, in Pattern 2
(proxy), once the proxy enclave modifies the data in-place,
simply releasing the lock is not safe. A faulty source enclave
can acquire the lock before the destination does and tamper
with the data. However, the proxy can eliminate such an attack
from a racing adversary using the transfer instruction.
Simplicity. Several additional design decisions make ELAS-
TICLAVE simple to reason about. We discuss two of these:
forcing applications to use local-only views in making trust
decisions and minimizing interface complexity.

Each enclave is asked to make security decisions based
only on its own local view of its current and static maximum
permissions. This is an intentional design choice in ELAS-
TICLAVE to maintain simplicity. One could expose the state
of the complete access control (permission) matrix of all en-
claves to each other, for enabling more flexible or dynamic
trust decisions between enclaves. However, this would also
add complexity to application writers. All enclaves would
need to be aware of any changes to the global access permis-
sions, and be careful to avoid any potential TOCTOU attacks
when making any trust decisions based on it. To simplify mak-
ing trust decisions, the only interface in ELASTICLAVE where
an enclave assumes a global restriction on the shared memory
is the lock bit. When using this interface, the lock holder can
assume that it is the only holder of the lock globally.

ELASTICLAVE admits a simpler TEE implementation. The
interface avoids keeping any metadata that changes based on
shared memory state (or content). The TEE hardware can
keep all security-relevant metadata in access control tables,
for instance. Since enclaves do not have visibility into the
global view of permissions of all other enclaves, the TEE does
not need to set up additional mechanisms to notify enclaves
on changes to this table (e.g., via signals). Further, ELASTI-
CLAVE does not provide complete transaction memory se-
mantics, i.e., it does not provide atomic commits or memory
rollbacks, which come with their own complexity [31].

Similarly, consider starvation: A malicious or buggy en-
clave may not release the lock. A more complex interface
than ELASTICLAVE would either require the TEE to arbitrate
directly or allow the owner to do so, say to have memory be
released within a time bound. However, such a solution would

come with considerable interface complexity. It would open
up subtle attack avenues on the lock holder. For instance, the
enclave could lose control of the shared memory when its con-
tents are not yet safe to be exposed. Instead, ELASTICLAVE
simply allows owners to be notified when enclaves issue re-
quests to acquire locks via the change instruction. Enclaves
can implement any reasonable policy for starvation—for ex-
ample, to tear down the memory securely if a lock holder is
unresponsive or repeatedly acquiring locks to the region.

4 Implementation on RISC-V

We build a prototype implementation of ELASTICLAVE on
an open-source RocketChip quad-core SoC [4, 38]. We uti-
lize 2 building blocks from the RISC-V architecture, namely
its physical memory protection (PMP) feature and the pro-
grammable machine-mode (m−mode). Note that ELASTI-
CLAVE does not make any changes to the hardware. We use
Keystone—an open-source framework for instantiating new
security TEEs such as ELASTICLAVE [26]. Keystone pro-
vides a Linux driver and a convenient SDK to create, start,
resume, and terminate enclaves by using the aforementioned
features. It supports gcc compiler and has C/C++ library
to build enclave applications. Keystone originally uses the
spatial isolation model, which we do not.
RISC-V PMP and m−mode. The physical memory protec-
tion (PMP) feature of RISC-V allows software in machine-
mode (the highest privilege level in RISC-V) to restrict phys-
ical memory accesses of software at lower privilege lev-
els (supervisor- and user-modes). Machine-mode software
achieves this by configuring PMP entries, which are a set
of registers in each CPU core. Each PMP register holds an
entry specifying one contiguous physical address range and
its corresponding access permissions. Interested readers can
refer to the RISC-V standard PMP specifications [38].

The ELASTICLAVE TEE implementation runs as m−mode

software. All the meta-data about the memory regions, own-
ers, static maximums, and the current view of the permission
matrix are stored in here. The m−mode is the only privilege-
level that can modify PMP entries. Thus, the OS (s−mode)
and the enclave (u−mode) cannot read or update any PMP
entries or meta-data. When the enclave invokes any ELASTI-
CLAVE instruction, the execution traps and the hardware redi-
rects it to the m−mode. This control-flow cannot be changed
by s−mode or u−mode software. After entering m−mode,
ELASTICLAVE first checks whether the caller of the instruc-
tion is permitted to make the call. If it is a valid entity who is
permitted to invoke this instruction, ELASTICLAVE performs
the meta-data, and if necessary, PMP updates.

ELASTICLAVE keeps two mappings in its implementa-
tion: (a) virtual address ranges of each enclave and the corre-
sponding ELASTICLAVE region universal identifier (uid); and
(b) the effective physical address range to which each uid is

9

mapped. Thus, when an enclave tries to access a virtual ad-
dress, ELASTICLAVE performs a two-level translation: from
virtual address to a uid and subsequently to the physical ad-
dress. The map and unmap instruction only require updating
the first mapping, as they update virtual to uid mappings only.
The change, share, and transfer only update the second
mapping because they only change permission bits without
affecting virtual memory to uid bindings. The create and
destroy instructions update both mappings. For enforcing
access checks, the ELASTICLAVE TEE additionally maintains
a permissions matrix of the current and the static maximum
permissions of each enclave. Permissions are associated with
uids, not with virtual addresses. For enforcement, the TEE
translates uid permissions in the permission matrix to phys-
ical memory access limits via PMP entries. Whenever the
permission matrix is updated by an enclave, the permission
updates must be reflected into the access limits in PMP en-
tries. Further, one PMP entry is reserved by ELASTICLAVE
to protects is internal mappings and security data structures.

The RISC-V specification limits the number of PMP regis-
ters to 16. Since each region is protected by one PMP entry,
this fixes the maximum number of regions allowable across
all enclaves simultaneously. This limit is not due to ELAS-
TICLAVE design, and one can increase the number of PMP
entries and ELASTICLAVE only increases the needed PMP
entries by 1.

When context-switching from one enclave to another, apart
from the standard register-save restore, Keystone modifies
PMP entries to disallow access to enclave private memory—
this is because it uses a spatial isolation design. We modify
this behavior to allow continued access to shared regions even
when the owner is not executing for ELASTICLAVE.

5 Evaluation

We aim at evaluate the following research questions:

• How does the performance of ELASTICLAVE compare
with spatial ShMem baseline on RISC-V?

• What is the impact of ELASTICLAVE on privileged soft-
ware trusted code base (TCB) and hardware complexity?

We implement the spatial ShMem baseline and ELASTI-
CLAVE on the same hardware core, in order to singularly
measure the difference between the spatial and our ELASTI-
CLAVE design. Production-grade TEEs, such as Intel SGX,
often have additional mechanisms (e.g., hardware-level mem-
ory encryption, limited size of private physical memory, etc.)
which are orthogonal to the performance gains due to our
proposed memory model. Our implementation and evaluation
exclude these overheads.
Benchmarks. We experiment with 2 types of benchmarks, us-
ing both our ELASTICLAVE implementation and the described
spatial ShMem baseline (Section 2.1) on the same RISC-V

core: (a) simple synthetic programs we constructed that im-
plement the 3 data patterns with varying number of regions
and size of data. We also construct synthetic thread synchro-
nization workloads with controllable contention for locks. (b)
standard pre-existing real-world benchmarks, which include
I/O intensive workloads (IOZone [21]), parallel computation
(SPLASH-2 [7, 45]), and CPU-intensive benchmarks (ma-
chine learning inference with Torch [48, 49]). We manually
modify these benchmarks to add ELASTICLAVE instructions,
since we do not presently have a compiler for ELASTICLAVE.

Experimental Setup. We use a cycle-accurate, FPGA-
accelerated (FireSim [25]) simulation of RocketChip [4].
Each system consists of 4 RV64GC cores, a 16KB instruction
and data caches, 16 PMP entries per core (unless stated other-
wise), and a shared 4MB L2 cache. Area numbers were com-
puted using a commercial 22nm process with Synopsys De-
sign Compiler version L-2016.03-SP5-2 targeting 800 MHz.
Other than varying the number of PMP entries, we do not
make any changes to RocketChip.

5.1 Performance of ELASTICLAVE

To evaluate the performance of ELASTICLAVE vs. spatial iso-
lation, we first used synthetic benchmarks that cover common
types of data sharing behaviors in applications, including the
data sharing patterns introduced in Section 2.1.

Synthetic Benchmark: Data-Sharing Patterns. We con-
struct synthetic benchmarks for the 3 patterns in Section 2.1
and measure data sharing overhead (excluding any actual data
processing). We set up 2 (for producer-consumer and client-
server) or 3 (for the proxy pattern) enclaves and compare:
(a) full ELASTICLAVE support as described in Section 3.3
(ELASTICLAVE-full); (b) ELASTICLAVE without the lock per-
mission bit design (ELASTICLAVE-nolock); and (c) spatial
isolation which transfers data through secure public mem-
ory. Figure 5 shows the performance for 3 patterns. Figure 6
shows the breakdown for the proxy pattern.

Observations: The results exhibit a huge performance
improvement of ELASTICLAVE-full over spatial, which in-
creases with an increase in the record size. When the record
size is 512 bytes, ELASTICLAVE-full provides over 60×
speedup compared with spatial; when the record size in-
creases to 64KB the speedup also increases and reaches 600×.
In ELASTICLAVE-full, although invoking security instructions
is a large contributor to the overhead, by doing this the appli-
cation eliminates copying and communication through secure
public memory. As a result, the total overhead of ELASTI-
CLAVE-full does not increase with the size of the transferred
data, unlike spatial. Note that ELASTICLAVE-full corresponds
to a two-way isolation paradigm highlighted in Section 2.2.

ELASTICLAVE-nolock, the design of ELASTICLAVE with
the lock permission bit removed, is shown to be more costly
than ELASTICLAVE-full with overhead that increases with

10

0.5 1 2 4 8 16 32 64
Record Size (kB)

104

106

To
ta

l C
yc

le
s

elasticlave-full
elasticlave-nolock

spatial

(a) Producer-consumer

0.5 1 2 4 8 16 32 64
Record Size (kB)

104

106

To
ta

l C
yc

le
s

elasticlave-full
elasticlave-nolock

spatial

(b) Proxy

0.5 1 2 4 8 16 32 64
Record Size (kB)

104

106

To
ta

l C
yc

le
s

elasticlave-full
elasticlave-nolock

spatial

(c) Client-server

Figure 5: Performance of the 3 data-sharing patterns.

0.5 1 2 4 8 16 32 64
Record Size (kB)

0

50

100

Cy
cle

 P
er

ce
nt

ag
e

(%
)

Other
Data copies

Encrypt/decrypt
SM instructions

(a) ELASTICLAVE-full

0.5 1 2 4 8 16 32 64
Record Size (kB)

0

50

100
Cy

cle
 P

er
ce

nt
ag

e
(%

)
Other
Data copies

Encrypt/decrypt
SM instructions

(b) ELASTICLAVE-nolock

0.5 1 2 4 8 16 32 64
Record Size (kB)

0

50

100

Cy
cle

 P
er

ce
nt

ag
e

(%
)

Other
Data copies

Encrypt/decrypt
SM instructions

(c) spatial

Figure 6: Performance breakdown for the proxy pattern.

the data size. Figure 6 indicates that this is because ELASTI-
CLAVE-nolock does not completely eliminate data copying.

Synthetic Benchmark: Thread Synchronization. We im-
plement a common workload for spinlocks between threads,
each of which runs in a separate enclave, but both do not
trust the OS. For ELASTICLAVE, we further distinguish
simple spinlocks (ELASTICLAVE-spinlock) and futexes
(ELASTICLAVE-futex). For spinlocks, we keep the lock state
in a shared region with no access to the OS. For futexes, the
untrusted OS has read-only access to the lock states, which
allows enclaves to sleep while waiting for locks and be woken
up by the OS when locks are released. This form of sharing
corresponds the one-way isolation described in Section 2.2,
where the OS has read-only permissions. For spatial, we im-
plement a dedicated trusted coordinator enclave to manage
the lock states, with enclaves communicating with it through
secure public memory for lock acquisition and release.

Observations: We report that ELASTICLAVE-futex and
ELASTICLAVE-spinlock achieve much higher performance
compared with spatial (Figures 7), especially when the con-
tention is low (the lock is acquired and released often). For
higher contention where the time spent waiting for the lock
overshadows the overhead of acquiring and releasing the lock,
the 3 settings have comparable performance. In addition,
ELASTICLAVE-futex achieves up to 1.5× CPU-time perfor-
mance improvement over ELASTICLAVE-spinlock despite
having no advantage in terms of real-time performance (wall-
clock latency). Figure 8 shows the performance of ELASTI-
CLAVE-futex vs ELASTICLAVE-spinlock.

12800 51200 204800 819200 3276800
Work

50000

100000

150000

200000

250000

Cy
cle

s

native
elasticlave-futex
elasticlave-spinlock
spatial

Figure 7: Synthetic Thread Synchronization Performance.
Cycles (normalized by the contention).

Real-World Benchmark 1: File I/O. We run the IOZone
benchmark [21]; it makes frequent file I/O calls from enclave
into the untrusted host process. Here, for spatial, the com-
munication does not need to be protected with secure public
memory. Figures 9a and 9b shows write and read bandwidth.

Observations: Even without secure public memory com-
munication in spatial, ELASTICLAVE achieves a higher band-
width than spatial, when the record size grows above a thresh-
old (16KB). The bandwidth increase reaches as high as 0.4 for
the writer workload and around 0.5 for the reader workload
when the record size is sufficiently large.
Real-World Benchmark 2: Parallel Computation. We ran
7 SPLASH-2 workloads in a two-enclave setting. We adapted
the workloads to multi-enclave implementations by collecting
together the data shared across threads in a memory region
which would be shared across the enclaves. For spatial, load-

11

0.85

0.90

0.95

1.00

Re
al

-T
im

e
Sp

ee
du

p

12800 51200 204800 819200 3276800
Work

1.0

1.5

2.0

2.5

CP
U-

Ti
m

e
Sp

ee
du

p

N = 1
N = 2

N = 3
N = 4

Figure 8: ELASTICLAVE-futex vs ELASTICLAVE-spinlock.

/store instructions that operate on the memory region are
trapped and emulated with RPCs by the enclave runtime. Fig-
ure 10 shows numbers of cycles to execute parallel workloads
in two enclaves (excluding initialization). We were not able to
run libsodium inside the enclave runtime, so we did not use
encryption-decryption when copying data to-and-from secure
public memory for spatial in this experiment. So the actual
overhead in a secure implementation would be higher than
reported in here. Thus, even if the processor had support for
cryptographic accelerators (e.g., AES-NI) that may speedup
spatial, ELASTICLAVE speedups just due to zero-copies are
still significant and out-perform spatial.

Observations: On all the workloads measured, ELASTI-
CLAVE is 2-3 orders of magnitude faster than spatial.
Real-World Benchmark 3: ML Inference. We run 4 ma-
chine learning models for image classification [48] to measure
ELASTICLAVE performance on applications with minimal
data sharing needs (Figure 11). Each of the inference mod-
els runs with a single enclave thread and one shared region
between the enclave and the OS to loads input images.

Observations: The 3 settings have similar performance.
Thus, ELASTICLAVE does not slow-down CPU-intensive ap-
plications that do not share data extensively.

Compared to spatial, ELASTICLAVE improves I/O-
intensive workload performance up to 600× (data size
> 64KB) and demonstrates 50% higher bandwidth. For
shared-memory benchmarks, it gains up to a 1000×
speedup.

Comparison to Native. ELASTICLAVE is up to 90% as per-
formant as native (traditional Linux processes no enclave
isolation) for a range of our benchmarks (Figures 10 and 11).
ELASTICLAVE performs comparable to native for frequent
data sharing over large-size (Figures 9a and 9b).

Function ELASTICLAVE Enclave
Privileged TCB Runtime

uid management 1070 0
Permission matrix enforcement 574 0
ELASTICLAVE instruction interface 219 82
Argument marshaling 0 88
Wrappers for ELASTICLAVE interface 0 1407
Miscellaneous 960 1869

Total 3085 3729

Table 3: Breakdown in LoC of ELASTICLAVE TCB & Enclave
runtime libraries (not in ELASTICLAVE TCB).

5.2 Impact on Implementation Complexity

We report on the ELASTICLAVE TCB, hardware chip area,
context switch cost, and critical path latency.
TCB. ELASTICLAVE does not incur any change to the hard-
ware. Its only requires additional PMP entries, one entry
per shared region. ELASTICLAVE TCB is 6814 LoC (Ta-
ble 3). 3085 LoC to implement the ELASTICLAVE interface
in m−mode, 3729 LoC to use the interface in an enclave.
Context Switches. Context switching between enclaves and
the OS incurs PMP changes. Thus, the overhead may change
with numbers of PMP-protected memory regions. To empiri-
cally measure this, we record the percentage of cycles spent
on context switches in either direction for a workload that
never explicitly switches out to the OS (therefore all context
switches from the enclave to the OS are due to interrupts). The
percentage overhead increases linearly with the number of
memory regions but is negligibly small: 0.1% for 1 memory
region and 0.15% for 4 memory regions.
Hardware Critical Path Delay. To determine the critical
path of the hardware design and examine if the PMP entries
are on this path, we push the design to a target frequency of 1
GHz3. We measure the global critical path latency, which is
of the whole core, and the critical path through the PMP reg-
isters. With this, we compute the slack, which is the desired
delay minus the actual delay—a larger slack corresponds to a
smaller actual delay in comparison to the desired delay. We
find that the slack through PMP is significantly better than
global critical path. With 16 PMP entries, the slack through
PMP is −44.1 picoseconds compared to −190.1 picoseconds
for the global critical path. In other words, the PMP would
allow for a higher clock speed, but the rest of the design pre-
vents it. Thus, the number of PMP entries is not the bottleneck
of the timing of the hardware design. We also tested that PMPs
are not on the critical path for 8 and 32 PMP settings as well
(details elided due to space). As a direct result, the number of
PMP entries does not create a performance bottleneck for any
instruction (e.g., load/store, PMP read/write), in our tests.
Area. The only impact of ELASTICLAVE on RISC-V hard-

3We set the frequency higher than 800 MHz (which is what we have
for our successful synthesis) to push the optimization limit of the hardware
design so we can find out the bottleneck of the hardware design.

12

4 16 64 256 1024
Record Size (KB)

0.00

0.25

0.50

0.75

1.00

1.25

Ba
nd

wi
dt

h
(K

B/
s)

1e6

native-8M
elasticlave-8M
spatial-8M

native-512M
elasticlave-512M
spatial-512M

(a) IOZone Writer

4 16 64 256 1024
Record Size (KB)

0.00

0.25

0.50

0.75

1.00

1.25

Ba
nd

wi
dt

h
(K

B/
s)

1e6

native-8M
elasticlave-8M
spatial-8M

native-512M
elasticlave-512M
spatial-512M

(b) IOZone Reader

Figure 9: IOZone Bandwidth for 8M and 512M byte files.

fft barnes fmm
ocean_cp

ocean_ncp

water_nsquared
water_spatial

Workload

108

109

1010

1011

Cy
cle

s

native
elasticlave
spatial

Figure 10: SPLASH-2 wall-clock time, measured in cy-
cles.

lenet squeezenet resnet110 densenet
Model

107

108

109

1010

1011

Cy
cle

s

native
elasticlave
spatial

Figure 11: Cycles spent running each ML model.

0 8 16 24 32
of PMP entries

0

100000

200000

300000

Ar
ea

 (u
m

2)

ptw
core

frontend
dcache

other
bus

Figure 12: RocketChip Area vs. numbers of PMP entries.

ware is on the increased PMP pressure (i.e., we require more
PMP entries per region), which increases chip area require-
ments. We synthesize RocketChip with different numbers of
PMP registers and collect the area statistics. The range we ex-
plore goes beyond the limit of 16 in the standard RISC-V ISA
specification. Figure 12 exhibits the increase in the total area
with increasing numbers of PMP entries. The increase is not
significant. Starting with 0 PMP entries, every 8 additional
PMP entries only incurr 1% increase in the total area.

ELASTICLAVE does not significantly increases soft-
ware TCB size (~6800 LOC), critical path delay, or hard-
ware area pressure (~1% per 8 PMP entries), which
shows that the design scales well with number of regions.

6 Related Work

Isolation abstractions are of long-standing importance to secu-
rity. There has been extensive work on partitioning security-
critical applications using software isolation abstractions us-
ing namespace isolation (e.g., containers), software-based
techniques (e.g., SFI [51], native-client [54]), language-based
isolation (java-capabilities [34], web-sandboxing [1]), OS-
based sandboxing [22], and using hypervisors (e.g., virtual
machines [5, 53]). Our work is on hardware support for iso-
lation, namely using enclave TEEs. ELASTICLAVE draws
attention to a single point in the design space of memory
models that TEEs support, specifically, its memory model and
its impact on memory sharing. The pre-dominant model used
today is that of spatial isolation, which is used in Intel SGX,
as well as others (e.g., TrustZone [2], AMD SEV [23, 24]).
ELASTICLAVE explains the conceptual drawbacks of this
model and offers a relaxation that enables better performance.
Intel SGX v2 follows the spatial isolation design, with the
exception that permissions and sizes of private regions can be
changed dynamically [32, 52]. As a result, the "all-or-none"
trust division between enclaves remains the same as in v1.

TEEs, including SGX, has received extensive security
scrutiny. Recent works have shown the challenges of leak-
age via side-channels. New TEEs have focused on provid-
ing better micro-architectural resistance to side-channels [9].
Designs providing stronger confidentiality due to oblivious
execution techniques have been proposed [29]. Keystone is
a framework for experimenting with new enclave designs,
which uses the spatial isolation model [26].

Several TEE designs have been proposed prior to Intel SGX
which show the promise and feasibility of enclave TEEs [8,
11,14,27,44,46]. After the availability of SGX in commercial
CPUs [41], several works have shed light on the security and
compatibility improvements possible over the original SGX
design [9, 10, 16, 18, 26, 32, 37, 52]. They allow for better
security, additional classes of applications, better memory
allocation, and hierarchical security protection. Nevertheless,
they largely adhere to the spatial isolation model, and have
not explicitly challenged the assumptions.

TEE-based designs for memory sharing and TCB reduc-

13

tion are similar in spirit to mechanisms used in hypervisors
and microkernels—for example, as used in page-sharing via
EPT tables [12, 55], IOMMU implementations for memory-
mapped devices such as GPUs or NICs [30]. The key dif-
ference is in the trust model: Hypervisors [5] and microker-
nels [28] are entrusted to make security decisions on behalf
of VMs, whereas in enclaved TEEs, the privileged software is
untrusted and enclaves self-arbitrate security decisions. Fur-
ther, microkernels and monolithic kernels operate in system
mode (e.g., S-mode in RISC-V) which is in the TCB. They
are larger compared to (say) the ELASTICLAVE TCB.

Emerging proposals such as Intel TDX [47], Intel MK-
TME [35], Intel MPK [36], Donky [39] enable hardware-
enforced domain protection. However, they protect entire vir-
tual machines or groups of memory pages (in contrast to
enlcaves in Intel SGX). Notably, they extend fast hardware
support to protect physical memory of a trust domain (e.g.,
from a physical adversary) but adhere to spatial model. They
can benefit from ELASTICLAVE memory model.

7 Conclusion

We present ELASTICLAVE, a new TEE memory model that
allows enclaves to selectively and temporarily share memory
with other enclaves and the OS. We demonstrate that ELAS-
TICLAVE eliminates expensive data copy operation and main-
tains same level of application-desired security. Our ELASTI-
CLAVE prototype on RISC-V FPGA core offers 1 to 2 order of
magnitude performance improvements over existing models.

Acknowledgments

We thank Aashish Kolluri, Burin Amornpaisannon, Dawn
Song, Dayeol Lee, Jialin Li, Li-Shiuan Peh, Roland Yap,
Shiqi Shen, Yaswanth Tavva, Yun Chen, and Zhenkai Liang.
for their feedback on improving earlier drafts of the pa-
per. The authors acknowledge the support from the Crys-
tal Center and Singapore National Research Foundation
("SOCure“ grant NRF2018NCR-NCR002-0001 www.green-
ic.org/socure). This material is in part based upon work sup-
ported by the National Science Foundation under Grant No.
DARPA N66001-15-C-4066 and Center for Long-Term Cy-
bersecurity. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the authors
and do not necessarily reflect the views of the National Sci-
ence Foundation.

References

[1] Jason Ansel, Petr Marchenko, Úlfar Erlingsson, Elijah
Taylor, Brad Chen, Derek L Schuff, David Sehr, Cliff L
Biffle, and Bennet Yee. Language-independent sandbox-
ing of just-in-time compilation and self-modifying code.

In Proceedings of the 32nd ACM SIGPLAN conference
on Programming language design and implementation,
pages 355–366, 2011.

[2] Arm trustzone technology. https://
developer.arm.com/ip-products/security-
ip/trustzone.

[3] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas
Knauth, André Martin, Christian Priebe, Joshua Lind,
Divya Muthukumaran, Dan O’Keeffe, Mark Stillwell,
David Goltzsche, David M. Eyers, Rüdiger Kapitza, Pe-
ter R. Pietzuch, and Christof Fetzer. SCONE: secure
linux containers with intel SGX. In OSDI, pages 689–
703. USENIX Association, 2016.

[4] Krste Asanovic, Rimas Avizienis, Jonathan Bachrach,
Scott Beamer, David Biancolin, Christopher Celio,
Henry Cook, Daniel Dabbelt, John Hauser, Adam
Izraelevitz, et al. The rocket chip generator. EECS
Department, University of California, Berkeley, Tech.
Rep. UCB/EECS-2016-17, 2016.

[5] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand,
Tim Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, and
Andrew Warfield. Xen and the art of virtualization. In
SOSP, 2003.

[6] Andrew Baumann, Marcus Peinado, and Galen C. Hunt.
Shielding applications from an untrusted cloud with
haven. In OSDI, pages 267–283. USENIX Association,
2014.

[7] Christian Bienia. Benchmarking Modern Multiproces-
sors. PhD thesis, Princeton University, January 2011.

[8] Rick Boivie and Peter Williams. Secureblue++: Cpu
support for secure execution. IBM, IBM Research Divi-
sion, RC25287 (WAT1205-070), pages 1–9, 2012.

[9] Thomas Bourgeat, Ilia A. Lebedev, Andrew Wright,
Sizhuo Zhang, Arvind, and Srinivas Devadas. MI6: se-
cure enclaves in a speculative out-of-order processor. In
MICRO, pages 42–56. ACM, 2019.

[10] Ferdinand Brasser, David Gens, Patrick Jauernig,
Ahmad-Reza Sadeghi, and Emmanuel Stapf. Sanctuary:
Arming trustzone with user-space enclaves. In NDSS,
2019.

[11] D. Champagne and R. B. Lee. Scalable architectural
support for trusted software. In HPCA - 16 2010 The Six-
teenth International Symposium on High-Performance
Computer Architecture, pages 1–12, 2010.

[12] Haibo Chen, Fengzhe Zhang, Cheng Chen, Ziye Yang,
Rong Chen, Binyu Zang, and Wenbo Mao. Tamper-
Resistant Execution in an Untrusted Operating System
Using A Virtual Machine Monitor, 2007.

14

https://developer.arm.com/ip-products/security-ip/trustzone
https://developer.arm.com/ip-products/security-ip/trustzone
https://developer.arm.com/ip-products/security-ip/trustzone

[13] Xiaoxin Chen, Tal Garfinkel, E. Christopher Lewis,
Pratap Subrahmanyam, Carl A. Waldspurger, Dan
Boneh, Jeffrey Dwoskin, and Dan R.K. Ports. Over-
shadow: A virtualization-based approach to retrofitting
protection in commodity operating systems. In Proceed-
ings of the 13th International Conference on Architec-
tural Support for Programming Languages and Operat-
ing Systems, ASPLOS XIII, page 2–13, New York, NY,
USA, 2008. Association for Computing Machinery.

[14] Siddhartha Chhabra, Brian Rogers, Yan Solihin, and
Milos Prvulovic. SecureME: A Hardware-software Ap-
proach to Full System Security. In ICS, 2011.

[15] Victor Costan and Srinivas Devadas. Intel SGX ex-
plained. IACR Cryptol. ePrint Arch., 2016:86, 2016.

[16] Victor Costan, Ilia Lebedev, and Srinivas Devadas. Sanc-
tum: Minimal hardware extensions for strong soft-
ware isolation. In 25th USENIX Security Symposium
(USENIX Security 16), pages 857–874, Austin, TX, Au-
gust 2016. USENIX Association.

[17] Tien Tuan Anh Dinh, Prateek Saxena, Ee-Chien Chang,
Beng Chin Ooi, and Chunwang Zhang. M2R: enabling
stronger privacy in mapreduce computation. In USENIX
Security Symposium, pages 447–462. USENIX Associa-
tion, 2015.

[18] Andrew Ferraiuolo, Andrew Baumann, Chris Haw-
blitzel, and Bryan Parno. Komodo: Using verification to
disentangle secure-enclave hardware from software. In
Proceedings of the 26th Symposium on Operating Sys-
tems Principles, SOSP ’17, page 287–305, New York,
NY, USA, 2017. Association for Computing Machinery.

[19] D. Gong, M. Tran, S. Shinde, H. Jin, V. Sekar, P. Saxena,
and M. S. Kang. Practical verifiable in-network filtering
for ddos defense. In 2019 IEEE 39th International
Conference on Distributed Computing Systems (ICDCS),
2019.

[20] Juhyeng Han, Seongmin Kim, Jaehyeong Ha, and
Dongsu Han. Sgx-box: Enabling visibility on encrypted
traffic using a secure middlebox module. In Proceed-
ings of the First Asia-Pacific Workshop on Networking,
APNet’17, 2017.

[21] Iozone filesystem benchmark. http://iozone.org.

[22] S. Jana, D. E. Porter, and V. Shmatikov. Txbox: Building
secure, efficient sandboxes with system transactions. In
2011 IEEE Symposium on Security and Privacy, pages
329–344, 2011.

[23] David Kaplan. AMD SEV-ES.
http://support.amd.com/TechDocs/
ProtectingVMRegisterStatewithSEV-ES.pdf,
2017.

[24] David Kaplan, Jeremy Powell, and Tom Woller, 2016.

[25] Sagar Karandikar, Howard Mao, Donggyu Kim, David
Biancolin, Alon Amid, Dayeol Lee, Nathan Pemberton,
Emmanuel Amaro, Colin Schmidt, Aditya Chopra, Qi-
jing Huang, Kyle Kovacs, Borivoje Nikolic, Randy H.
Katz, Jonathan Bachrach, and Krste Asanovic. Firesim:
Fpga-accelerated cycle-exact scale-out system simula-
tion in the public cloud. In ISCA, pages 29–42. IEEE
Computer Society, 2018.

[26] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste
Asanović, and Dawn Song. Keystone: An open frame-
work for architecting trusted execution environments. In
Proceedings of the Fifteenth European Conference on
Computer Systems, New York, NY, USA, 2020. Associ-
ation for Computing Machinery.

[27] David Lie, Chandramohan A. Thekkath, Mark Mitchell,
Patrick Lincoln, Dan Boneh, John C. Mitchell, and Mark
Horowitz. Architectural support for copy and tamper
resistant software. In ASPLOS, pages 168–177. ACM
Press, 2000.

[28] Jochen Liedtke. On micro-kernel construction. ACM
SIGOPS Operating Systems Review, 29(5):237–250,
1995.

[29] Martin Maas, Eric Love, Emil Stefanov, Mohit Tiwari,
Elaine Shi, Krste Asanovic, John Kubiatowicz, and
Dawn Song. PHANTOM: practical oblivious compu-
tation in a secure processor. In ACM Conference on
Computer and Communications Security, pages 311–
324. ACM, 2013.

[30] Alex Markuze, Igor Smolyar, Adam Morrison, and Dan
Tsafrir. DAMN: overhead-free IOMMU protection for
networking. In ASPLOS, pages 301–315. ACM, 2018.

[31] Sinisa Matetic, Mansoor Ahmed, Kari Kostiainen, Aritra
Dhar, David Sommer, Arthur Gervais, Ari Juels, and Srd-
jan Capkun. ROTE: Rollback protection for trusted exe-
cution. In 26th USENIX Security Symposium (USENIX
Security 17), 2017.

[32] Frank McKeen, Ilya Alexandrovich, Ittai Anati, Dror
Caspi, Simon Johnson, Rebekah Leslie-Hurd, and Car-
los Rozas. Intel® software guard extensions (intel®
sgx) support for dynamic memory management inside
an enclave. In Proceedings of the Hardware and Archi-
tectural Support for Security and Privacy 2016, HASP
2016, New York, NY, USA, 2016. Association for Com-
puting Machinery.

[33] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Car-
los V. Rozas, Hisham Shafi, Vedvyas Shanbhogue, and

15

http://iozone.org
http://support.amd.com/TechDocs/ProtectingVMRegisterStatewithSEV-ES.pdf
http://support.amd.com/TechDocs/ProtectingVMRegisterStatewithSEV-ES.pdf

Uday R. Savagaonkar. Innovative instructions and soft-
ware model for isolated execution. In HASP@ISCA,
page 10. ACM, 2013.

[34] Adrian Mettler, David A Wagner, and Tyler Close. Joe-e:
A security-oriented subset of java. In NDSS, volume 10,
pages 357–374, 2010.

[35] Intel releases new technology specification for mem-
ory encryption. https://software.intel.com/
content/www/us/en/develop/blogs/intel-
releases-new-technology-specification-for-
memory-encryption.html?wapkw=tme.

[36] Intel® 64 and ia-32 architectures software developer
manual, 2018.

[37] J. Park, N. Kang, T. Kim, Y. Kwon, and J. Huh. Nested
enclave: Supporting fine-grained hierarchical isolation
with sgx. In 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA), pages
776–789, 2020.

[38] The risc-v instruction set manual: Volume ii: Privileged
architecture. https://riscv.org/specifications/
privileged-isa.

[39] David Schrammel, Samuel Weiser, Stefan Steinegger,
Martin Schwarzl, Michael Schwarz, Stefan Mangard,
and Daniel Gruss. Donky: Domain keys – efficient in-
process isolation for risc-v and x86. In 29th USENIX
Security Symposium (USENIX Security 20), pages 1677–
1694. USENIX Association, August 2020.

[40] Felix Schuster, Manuel Costa, Cedric Fournet, Christos
Gkantsidis, Marcus Peinado, Gloria Mainar-Ruiz, and
Mark Russinovich. VC3: Trustworthy Data Analytics
in the Cloud. In IEEE S&P, 2015.

[41] Software guard extensions programming reference rev.
2. http://software.intel.com/sites/default/
files/329298-002.pdf, October 2014.

[42] Youren Shen, Hongliang Tian, Yu Chen, Kang Chen,
Runji Wang, Yi Xu, Yubin Xia, and Shoumeng Yan. Oc-
clum: Secure and efficient multitasking inside a single
enclave of intel sgx. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for
Programming Languages and Operating Systems, AS-
PLOS ’20, page 955–970, New York, NY, USA, 2020.
Association for Computing Machinery.

[43] Shweta Shinde, Jinhua Cui, Satyaki Sen, Pinghai Yuan,
and Prateek Saxena. Binary Compatibility For SGX
Enclaves, 2020.

[44] Shweta Shinde, Shruti Tople, Deepak Kathayat, and Pra-
teek Saxena. Podarch: Protecting legacy applications

with a purely hardware tcb. National University of Sin-
gapore, Tech. Rep, 2015.

[45] The parsec benchmark suite. https:
//parsec.cs.princeton.edu/license.htm, 2020.

[46] G. Edward Suh, Dwaine E. Clarke, Blaise Gassend,
Marten van Dijk, and Srinivas Devadas. AEGIS: ar-
chitecture for tamper-evident and tamper-resistant pro-
cessing. In ICS, pages 160–171. ACM, 2003.

[47] Intel® trust domain extensions. https:
//software.intel.com/content/www/us/en/
develop/articles/intel-trust-domain-
extensions.html.

[48] Shruti Tople, Karan Grover, Shweta Shinde, Ranjita
Bhagwan, and Ramachandran Ramjee. Privado: Practi-
cal and secure DNN inference. CoRR, abs/1810.00602,
2018.

[49] Torch | scientific computing for luajit. http://
torch.ch, 2020.

[50] Chia-che Tsai, Donald E. Porter, and Mona Vij.
Graphene-sgx: A practical library OS for unmodified
applications on SGX. In USENIX Annual Technical
Conference, 2017.

[51] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and
Susan L. Graham. Efficient Software-based Fault Iso-
lation. In Proceedings of the 14th ACM Symposium on
Operating Systems Principles, 1993.

[52] Bin Cedric Xing, Mark Shanahan, and Rebekah Leslie-
Hurd. Intel® software guard extensions (intel® SGX)
software support for dynamic memory allocation inside
an enclave. In Proceedings of the Hardware and Archi-
tectural Support for Security and Privacy 2016, HASP
2016, New York, NY, USA, 2016. Association for Com-
puting Machinery.

[53] Jisoo Yang and Kang G. Shin. Using Hypervisor to
Provide Data Secrecy for User Applications on a Per-
page Basis. In VEE, 2008.

[54] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Or-
mandy, S. Okasaka, N. Narula, and N. Fullagar. Native
client: A sandbox for portable, untrusted x86 native code.
In 2009 30th IEEE Symposium on Security and Privacy,
2009.

[55] Fengzhe Zhang, Jin Chen, Haibo Chen, and Binyu Zang.
CloudVisor: Retrofitting Protection of Virtual Machines
in Multi-Tenant Cloud with Nested Virtualization. In
SOSP, 2011.

16

https://software.intel.com/content/www/us/en/develop/blogs/intel-releases-new-technology-specification-for-memory-encryption.html?wapkw=tme
https://software.intel.com/content/www/us/en/develop/blogs/intel-releases-new-technology-specification-for-memory-encryption.html?wapkw=tme
https://software.intel.com/content/www/us/en/develop/blogs/intel-releases-new-technology-specification-for-memory-encryption.html?wapkw=tme
https://software.intel.com/content/www/us/en/develop/blogs/intel-releases-new-technology-specification-for-memory-encryption.html?wapkw=tme
https://riscv.org/specifications/privileged-isa
https://riscv.org/specifications/privileged-isa
http://software.intel.com/sites/default/files/329298-002.pdf
http://software.intel.com/sites/default/files/329298-002.pdf
https://parsec.cs.princeton.edu/license.htm
https://parsec.cs.princeton.edu/license.htm
https://software.intel.com/content/www/us/en/develop/articles/intel-trust-domain-extensions.html
https://software.intel.com/content/www/us/en/develop/articles/intel-trust-domain-extensions.html
https://software.intel.com/content/www/us/en/develop/articles/intel-trust-domain-extensions.html
https://software.intel.com/content/www/us/en/develop/articles/intel-trust-domain-extensions.html
http://torch.ch
http://torch.ch

Interface Pre-condition Transition Relation

create (p : EnclaveID,
l : Size)→

(r : UID,e : Error)

p ∈ P ∧∃n : UID[n /∈ dom(R)] S′ = S[R /R +{n 7→ 〈p, l〉},
A/A +{〈n, p〉 7→ 〈rwxl,rwxl〉},

M /M +{〈n, i〉 7→ 0 | i = 0,1 · · · , l−1}]

∧ r = n

∧
e = SUCCESS

map (p : EnclaveID,
v : Vaddr,r : UID)→

(e : Error)

〈r, p〉 ∈ dom(A)∧∀u : Vaddr,g : UID
[〈p,u,g〉 /∈ V ∨¬Intersect〈u,g,v,r〉]

S′ = S[V /V +{〈p,v,r〉}] ∧ e = SUCCESS

unmap (p : EnclaveID,
v : Vaddr,r : UID)→

(e : Error)

〈p,v,r〉 ∈ V S′ = S[V /V −{〈p,v,r〉}] ∧ e = SUCCESS

share (p : EnclaveID,
r : UID,o : EnclaveID,

a : Permission)→
(e : Error)

o ∈ P ∧o 6= p∧ p = ROwner(r)∧
〈r,o〉 /∈ dom(A)

S′ = S[A/A +{〈r,o〉 7→ 〈a,----〉}] ∧ e = SUCCESS

change (p : EnclaveID,
r : UID,

a : Permission)→
(e : Error)

〈r, p〉 ∈ dom(A)∧a≤ AMaxPerm(r, p)∧
(l ∈ a =⇒ ∀o ∈ P ,o 6= a,〈r,o〉 ∈ dom(A)

[l /∈ APerm(r,o)])

S′ = S[A/A [〈r, p〉 7→ 〈AMaxPerm(r, p),a〉]] ∧ e = SUCCESS

destroy (p : EnclaveID,
r : UID)→
(e : Error)

p = ROwner(r) S′ = S[R /R −{r 7→ 〈p, l〉 | l : Size},
A/A−{〈r,o〉 7→ 〈a,b〉 | o : EnclaveID,

a : Permission,b : Permission},
M /M −{〈r, i〉 7→ d | i : Offset,d : Byte},

V /V −{〈p,v,r〉 | v : Vaddr}]

∧ e = SUCCESS

transfer (p : EnclaveID,
r : UID,

o : EnclaveID)→
(e : Error)

〈r, p〉,〈r,o〉 ∈ dom(A)∧l ∈ APerm(r, p)∧
l ∈ AMaxPerm(r,o)

S′ = S[A/A [〈r, p〉 7→
〈AMaxPerm(r, p),APerm(r, p)−{l}〉,

〈r,o〉 7→
〈AMaxPerm(r,o),APerm(r,o)+{l}〉]]

∧ e = SUCCESS

read (p : EnclaveID,
v : Vaddr)→

(d : Byte,
e : Error)

∃u : Vaddr,r : UID[〈p,u,r〉 ∈ V∧
Covers(u,r,v)∧r ∈ APerm(r, p)∧

(l ∈ APerm(r, p)∨∀o ∈ P ,〈r,o〉 ∈ dom(A)

[l /∈ APerm(r,o)])]

d = M (r,v−u)

∧
e = SUCCESS

Table 4: ELASTICLAVE Interface. ELASTICLAVE state is defined as: S := 〈P ,R ,A ,M ,V 〉, where P := {p | p : EnclaveID};
R := UID ↪→ EnclaveID× Size; A := UID× EnclaveID ↪→ Permission2; M := UID× Offset ↪→ Byte; and V ⊆
EnclaveID× UID× Vaddr. dom(·) denotes the domain of a function. A ↪→ B defines a partial function from set A to set
B (with a domain that is a subset of A). ROwner(r) and RSize(r) denote the owner the size (in bytes) of region r. APerm(r, p)
and AMaxPerm(r, p) to denote the dynamic permission and static maximum permission of region r with respect to enclave p.
R (r) := 〈ROwner(r),RSize(r)〉,A(r, p) := 〈AMaxPerm(r, p),APerm(r, p)〉. Permission is defined as the power set of {r,w,x,l}.
a ∈ Permission is represented as drdwdxdl, where each dx is either x, meaning that the permission bit x is present (x ∈ a), or
−, meaning x /∈ a. In the transition relations, A[B/B′] means replacing B with B′ in A and keeping everything else the same;
A[a 7→ b] means changing the value of A(a) to b while keeping everything else the same. Intersect(u,g,v,r) is defined as
u+RSize(g)> v∧v+RSize(r)> u. Covers(u,r,v) is defined as u≤ v < u+RSize(r). Apart from explicit instructions parameters
listed in Table 2, we defined an extra argument p : EnclaveID, to represent the enclave which invokes the instruction. We define
a memory region read. We omit write and execute; their behavior is similar to read.

A ELASTICLAVE Interface

We present the formal definitions for each of the instruction
in ELASTICLAVE. Table 4 gives the detailed pre-condition

checks and the transition relations for each instruction.

17

	1 Introduction
	2 Problem
	2.1 Baseline: The Spatial Isolation Model
	2.2 Illustrative Performance Costs
	2.3 Problem Formulation

	3 The Elasticlave Memory Interface
	3.1 Overview
	3.2 Elasticlave Abstractions
	3.3 Design Details
	3.4 Performance Benefits
	3.5 Security & Simplicity

	4 Implementation on RISC-V
	5 Evaluation
	5.1 Performance of Elasticlave
	5.2 Impact on Implementation Complexity

	6 Related Work
	7 Conclusion
	A Elasticlave Interface

