

AN EVALUATION OF HIGH-LEVEL MECHANISTIC CORE MODELS

TREVOR E. CARLSON, WIM HEIRMAN,
STIJN EYERMAN, IBRAHIM HUR, LIEVEN EECKHOUT

HTTP://www.snipersim.org
Monday, January 19th 2015
HIPEAC Conference 2015, Amsterdam

DESIGN FUTURE HARDWARE AND SOFTWARE

Design the processor of tomorrow

Optimize next-gen software

- How can we design and evaluate large numbers of design options?
 - Can we do it in a fast way?

NEEDED DETAIL DEPENDS ON FOCUS

ONE-IPC MODELING

- A simple high-abstraction model, often used in memory hierarchy studies
- Alternative for memory access traces
 - Allows for timing feedback to software (ex. work stealing)

Drawbacks

- ILP and MLP is not modeled
- Memory request rates are not accurate
- Number of outstanding misses are not correct
 - Underestimation of required queue sizes
- Does not properly hide latency like an out-of-order core
 - Overestimate runtime improvements

CORE MODEL CASE STUDY

 Do the drawbacks previously listed actually impact accuracy?

- Evaluate this core with 2 cache configurations
 - Which configuration has better performance?

Component	L2 Private Config	L2 Shared Config
Size	256 KiB / core	1 MiB / 4 cores
Associativity	8-way	16-way
Access latency	8 cycles	30 cycles

CORE MODEL CASE STUDY

CORE MODEL CASE STUDY

ANALYTICAL MODELING

 Interval model is an approximation of the ideal, balanced out-of-order processor

Does not currently support multi-core processors

> D. Genbrugge et al., HPCA'10 S. Eyerman et al., ACM TOCS, May 2009 T. Karkhanis and J. E. Smith, ISCA'04, ISCA'07 $_{
> m g}$

Bridge Analytical Modeling, Simulation

- Interval Simulation
 - In-order stream of instructions (from Pin, QEMU)

Bridge Analytical Modeling, Simulation

Interval Simulation

- In-order stream of instructions (from Pin, QEMU)
- Intervals (and their corresponding delays) are
 formed from miss events (e.g. branch pred., etc.)

BRIDGE ANALYTICAL MODELING, SIMULATION

Interval Simulation

- In-order stream of instructions (from Pin, QEMU)
- Intervals (and their corresponding delays) are formed from miss events (e.g. branch pred., etc.)
- Steady-state performance is determined with queueing theory (Little's Law)

INTERVAL SIMULATION

- Little's Law and interval simulation assume that a processor is balanced with respect to the dispatch width
 - Front end (ex. fetch units) are designed to provide instructions at the dispatch with of the processor
 - The execution units can handle any type of instruction at any time
 - Commit width is sufficiently large to prevent stalling
- Predict the progress of the upcoming instructions by using the most recent instructions

Modern Processors are not Ideal

- Intel Nehalem issue ports
 - One branch port
 - One load and one store port
 - Limited ports for FP operations

- 3 general-purpose (integer operation) ports
 - Shared with floating point ports
- Nehalem (and other modern cores) are unable to issue the dispatch-width (W=4) of instructions of the same type each cycle
 - Some applications (fp, memory-intensive, etc.) and micro-benchmarks do

MAIN INTERVAL ENHANCEMENTS

Interval simulation issue contention

- Takes into account the maximum execution rate possible for each port
- For example:
 - One issue port per load
 - An application with 100% of instruction as loads
 - Results in a maximum IPC of 1.0
 - Traditional interval simulation would not take this into account and only use dependencies to derive performance
- Instruction-Window Centric (IW-Centric)
 - Replaces Little's Law calculations with detailed cyclelevel wake-up and issue logic
 - Slower code as the expense of higher fidelity

EXPERIMENTAL SETUP

- Sniper Multi-Core Simulator, version 6.0
- SPLASH-2 Benchmark Suite
- Modeled the Intel Xeon X5550 (Nehalem)

- Microarchitectural Configuration
 - 1 and 2 sockets, 4 cores per socket
 - 2.66 GHz, 4-way dispatch, 128-entry ROB
 - Dothan branch predictor
 - L1-I
 32 KB, 4 way, 4 cycle access time
 - L1-D
 32 KB, 8 way, 4 cycle access time
 - L2
 256 KB, 8 way, 8 cycle access time
 - L3
 8MB per 4 cores, 16 way, 30 cycle access time
 - DRAM 65 ns access time, 8GB/s per socket
 - Inter-processor Bus QPI, 12.8 GB/s per direction

Performance Conclusions

- Interval simulation model has been improved to more accurately reflect limitations of modern processors
- The instruction-window centric model allows us to better understand interval simulation error
 - Interval simulation works with averages over the length of the ROB
 - More precise handling of the dependencies in the ROB provides added accuracy while maintaining performance

RELATIVE SCALING RESULTS

SIMULATION SPEED COMPARISON

ADDITIONAL RESULTS IN THE PAPER

- Enhancements to interval simulation
 - Improved modeling of overlapping memory accesses
 - Improve modeling of the front-end miss refill rate
- Additional relative scaling results
- Detailed issue contention example
- Simulation speed and scaling comparison

SUMMARY

- Enhance interval simulation to support issue contention to improve accuracy with very little slowdown
 - 24% avg. absolute error vs. hardware
- Developed a new core model to bridge the performance/ accuracy gap with cycle-level simulation
 - 11% avg absolute error vs. hardware
 - Allows for future core designs (in-order, SMT) without the need for analytical models
- Show results that imply that caution must be taken when using simple (One-IPC-style) core models for absolute or even relative studies
- Recently released in Sniper 6.0
 - Interval simulation enhancements
 - IW-Centric core model

AN EVALUATION OF HIGH-LEVEL MECHANISTIC CORE MODELS

TREVOR E. CARLSON, WIM HEIRMAN,
STIJN EYERMAN, IBRAHIM HUR, LIEVEN EECKHOUT

HTTP://www.snipersim.org
Monday, January 19th 2015
HIPEAC Conference 2015, Amsterdam