
PrefetchX: Cross-Core Cache-Agnostic Prefetcher-
Based Side-Channel Attacks

Yun Chen, Ali Hajiabadi, Lingfeng Pei, and Trevor E. Carlson
National University of Singapore

30th International Symposium on High-Performance Computer Architecture (HPCA 2024)

Data Path in Intel x86 CPUs

2

CPU Last-Level
Cache

DRAM Disk

<100 ns 150+ ns ~10 ms

Figure source: https://www.cleanpng.com/free/

• We want to reduce DRAM access latency
• LLC lookups take a longer time due to the increased size of LLC

in server (> 50 cycles in server processors)

Data Prefetching in Intel x86 CPUs

3Figure source: https://www.cleanpng.com/free/

CPU Last-Level
Cache

DRAM

• We want to reduce DRAM access latency
• LLC lookups take a longer time due to the increased size of LLC

in server (> 50 cycles in server processors)

Predict
future

memory
patterns

and
prefetch

other data
blocks

Data Prefetching in Modern CPUs

4Figure source: https://www.cleanpng.com/free/

• Prefetchers in Academia and Industry
• Pointer-Chasing
• Next-Line
• Streaming
• IP-Stride
• AI-Based
• ….

• Features are explored
• Leakages are well-studied

Data Prefetching in Intel x86 CPUs

5Figure source: https://www.cleanpng.com/free/

• Prefetchers in Academia and Industry
• Pointer-Chasing
• Next-Line
• Streaming
• IP-Stride
• AI-Based
• ….

• Features are explored
• Leakages are well-studied

Intel Extended Prediction Table (XPT) Prefetcher

6Figure source: https://www.cleanpng.com/free/

XPT Prefetcher
Introduced by 3rd Generation Xeon Processors

q Located on Last-Level Cache (LLC)
q Predict LLC miss of current memory access
q Bypass LLC Lookup and pre-access DRAM
q Latency reduced from 𝑳𝑳𝑳𝑪_𝑳𝒐𝒐𝒌𝒖𝒑 + 𝑳𝑫𝑹𝑨𝑴	 to
𝑳𝑫𝑹𝑨𝑴

q Still LLC Miss, but speed up up-to 300 cycles

Intel Extended Prediction Table (XPT) Prefetcher

7Figure source: https://www.cleanpng.com/free/

XPT Prefetcher
Introduced by 3rd Generation Xeon Processors

Shared across cores
Timing difference

Side-Channel Attacks on Modern Processors

8

Frontend
Attacks

Transient Attacks

Backend
Attacks

Scheduler, ROB, LSU,
Prefetchers, etc.

Un-Core
Attacks

Coherence, Bus, LLC,
etc.

Easy to launch
Low Noise

Single core (normally)
Need other attacks (e.g., caches)

 Non-speculative
Independent

Single core
Higher Noise

 Cross Core

Highest Noise
Hard to setup

XPT: Characterization and Operation

9

XPT Prefetcher
Introduced by 3rd Generation Xeon Processors

How to index?
How to trigger?
How to tag?
How to leak?

Benchmark
Suite

XPT: Characterization and Operation

10

#define CACHE_LINE 64

void loop_function (uint64_t n){
 char *mem = mmap();
 int random[n] = no_repeat_rand(0, n);
 for (int i = 0; i < n; i++) {
 temp = mem + random[i] * CACHE_LINE;
 }

 time(mem + 63 * CACHE_LINE);
}

1
2
3
4
5
6
7
8
9

10
11

• Generate N cache misses
on a page

• Times last cache line

Feature Value

Trigger

Index

Tag

Entry

Associativity

Eviction

Feature Value

Trigger 32 cache misses

Index

Tag

Entry

Associativity

Eviction

Feature Value

Trigger 32 cache misses

Index Full physical page
address

Tag

Entry

Associativity

Eviction

Feature Value

Trigger 32 cache misses

Index Full physical page
address

Tag ASID and CoreID

Entry 256 Entries

Associativity Fully-Associative

Eviction Local+Global LRU

Feature Value

Trigger 32 cache misses

Index Full physical page
address

Tag ASID and CoreID

Entry 256 Entries

Associativity Fully-Associative

Eviction Local+Global LRU

XPT: Characterization and Operation

11

void loop_function (uint64_t n){
 char *mem = mmap();
 int random[n] = no_repeat_rand(0, n);
 for (int i = 0; i < n; i++) {
 temp = mem + random[i] * CACHE_LINE;
 }
}

1
2
3
4
5
6
7

PA ASID CoreID LRU Miss Counter EN

f..f4 1 0 0 0 0

256
entry

XPT: Characterization and Operation

12

void loop_function (uint64_t n){
 char *mem = mmap();
 int random[n] = no_repeat_rand(0, n);
 for (int i = 0; i < n; i++) {
 temp = mem + random[i] * CACHE_LINE;
 }
}

1
2
3
4
5
6
7

PA ASID CoreID LRU Miss Counter EN

f..f4 1 0 0 32 1

f..f6 1 0 1 32 1256
entry f..f8 1 1

• Local LRU: If core moving
happens, first evict entry
tagged by the same ASID with
different CoreIDs

XPT: Characterization and Operation

13

void loop_function (uint64_t n){
 char *mem = mmap();
 int random[n] = no_repeat_rand(0, n);
 for (int i = 0; i < n; i++) {
 temp = mem + random[i] * CACHE_LINE;
 }
}

1
2
3
4
5
6
7

PA ASID CoreID LRU Miss Counter EN

f..f4 1 0 0 32 1

f..f6 1 0 1 32 1256
entry a..f0 2 1

• Global LRU: If XPT is full, evict
entry based on the LRU counter

f..a6 1 0 255 32 1

PREFETCHX: Practical Attacks and Setup

• We build an attack primitive to launch three attacks

14

Specification System

Cloud Provider AWS EC2

Instance m6i.metal

Processor Xeon Platinum 8375C

Architecture Ice Lake (Sunny Cove)

Compiler GCC 9.4.0, -O1

Operating System Ubuntu 20.04

ASLR/KASLR Enabled

SGX Not supported

MbedTLS RSA Attack
3

Keystroke Attack
1

Network Traffic Attack
2

15

XPT Prefetcher

Phy. Page Addr Content

0 Empty

… Empty

… Empty

… Empty

255 Empty

Phy. Page Addr Content

0 Primed

… Primed

… Primed

… Primed

255 Primed

Phy. Page Addr Content

0 Evicted

… Primed

… Primed

… Primed

255 Primed

Setup Phase: Initializing the Side-ChannelAttacker
1

1
2
3

for (i = 0; i < 256; i++)
 // 32 cache misses each page
 train(Mem[PAGE * i]);

Leak Phase: Page Access FootprintVictim
2

Extraction Phase: Probing the Side-ChannelAttacker
3

7
8
9
10
11

for (guess = 0; guess < 256; guess++)
 start = rdtsc();
 temp = Mem[guess + rnd_offset];
 diff = rdtsc() – start;
 evaluate(diff);

4
5
6

....
temp = Page[index];
....

PREFETCHX: Practical Attacks and Setup

Isolation: Attacker runs on a separate
process with victim
Un-residency: Attacker and victim
run on different cores
Target: Page access pattern

16

PREFETCHX: Keystroke Attack

The victim uses keyboard to write characters to a buffer or file
DRAM accesses and XPT entry insertion/eviction

The attacker try to understand the exact timing of keystroke
Periodically priming the XPT prefetcher
A long access latency on the oldest page means entry eviction

0
100
200
300
400
500
600

0 20 40 60 80 100 120 140 160 180

Ac
ce

ss
 La

te
nc

y
(c

yc
le

s)

Execution timing of the victim (ms)

LLC miss

LLC miss
(XPT enabled)

LLC hit

keyboard triggered

Clear timing difference brought by XPT
Cache primitives are no longer required
Low-noise due to XPT’s simply structure

17

PREFETCHX: Network Traffic Attack

The victim client receives network packet and write to a buffer
DRAM accesses and XPT entry insertion/eviction

The attacker try to understand the exact timing of keystroke
Periodically priming the XPT prefetcher
A long access latency on the oldest page means entry eviction

0
100
200
300
400
500
600

0 20 40 60 80 100 120 140 160 180

Ac
ce

ss
 La

te
nc

y
(c

yc
le

s)

Execution time of the victim (ms)

LLC miss

LLC miss
(XPT enabled)

LLC hit

packet transmission

18

PREFETCHX: Attack MbedTLS RSA

while (E->p[nblimbs] != 0) {
 size_t exp_bits = 0;
 size_t ei;
 ...
 ei = E->p[nblimbs] & 1;
 /* Square */
 MBEDTLS_MPI_CHK(mpi_select(...));
 mpi_montmul(...)
 continue
 /* Multiply */
 exp_bits |= (ei <<
 (window_bitsize - nbits));
 ...
 MBEDTLS_MPI_CHK(mpi_select(...,
 exp_bits));
 mpi_montmul(...);

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Observation 1: exp_bits
is initialized data and
thus is stored in a
separate non-copy-on-
write page.

19

PREFETCHX: Attack MbedTLS RSA

while (E->p[nblimbs] != 0) {
 size_t exp_bits = 0;
 size_t ei;
 ...
 ei = E->p[nblimbs] & 1;
 /* Square */
 MBEDTLS_MPI_CHK(mpi_select(...));
 mpi_montmul(...)
 continue
 /* Multiply */
 exp_bits |= (ei <<
 (window_bitsize - nbits));
 ...
 MBEDTLS_MPI_CHK(mpi_select(...,
 exp_bits));
 mpi_montmul(...);

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Observation 1: exp_bits
is initialized data and
thus is stored in a
separate non-copy-on-
write page.

Observation 2: exp_bits
is accessed only in the
multiply path

20

PREFETCHX: Attack MbedTLS RSA

while (E->p[nblimbs] != 0) {
 size_t exp_bits = 0;
 size_t ei;
 ...
 ei = E->p[nblimbs] & 1;
 /* Square */
 MBEDTLS_MPI_CHK(mpi_select(...));
 mpi_montmul(...)
 continue
 /* Multiply */
 exp_bits |= (ei <<
 (window_bitsize - nbits));
 ...
 MBEDTLS_MPI_CHK(mpi_select(...,
 exp_bits));
 mpi_montmul(...);

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Execution of exp_bits will
lead to a page access and
insert an entry to XPT
We collect 1,000 traces for
breaking each bit of the key

0
100
200
300
400
500

0 10 20 30 40 50 60 70 80 90 100 110

Ac
ce

ss
 La

te
nc

y
(c

yc
le

s)

Sample ID

0

LLC miss

LLC miss
(XPT enabled)

LLC hit0 01 1 1 10

21

• We studied a new type of prefetcher named XPT prefetcher on Intel recent server
processors
• Shared across all cores
• Indexed by page frame
• Mitigating LLC lookup latency

• We propose PrefetchX, a new side-channel attack exploiting the XPT prefetcher
• It is cache-agnostic
• It makes the cross-core attack still practical on cloud

• We demonstrate threats brought by PrefetchX by setting up different practical
attacks
• Keystroke / Network Traffic / RSA

Conclusions

PrefetchX: Cross-Core Cache-Agnostic Prefetcher-
Based Side-Channel Attacks

Yun Chen, Ali Hajiabadi, Lingfeng Pei, and Trevor E. Carlson
National University of Singapore

30th International Symposium on High-Performance Computer Architecture (HPCA 2024)

Thanks for attention! Questions?

