
PrefetchX: Cross-Core Cache-Agnostic Prefetcher-
Based Side-Channel Attacks

Yun Chen, Ali Hajiabadi, Lingfeng Pei, and Trevor E. Carlson
National University of Singapore

30th International Symposium on High-Performance Computer Architecture (HPCA 2024)



Data Path in Intel x86 CPUs
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• We want to reduce DRAM access latency
• LLC lookups take a longer time due to the increased size of LLC 

in server (> 50 cycles in server processors)
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Data Prefetching in Modern CPUs
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• Prefetchers in Academia and Industry
• Pointer-Chasing 
• Next-Line
• Streaming
• IP-Stride
• AI-Based
• ….

• Features are explored
• Leakages are well-studied
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Intel Extended Prediction Table (XPT) Prefetcher
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XPT Prefetcher
Introduced by 3rd Generation Xeon Processors

q Located on Last-Level Cache (LLC) 
q Predict LLC miss of current memory access
q Bypass LLC Lookup and pre-access DRAM
q Latency reduced from 𝑳𝑳𝑳𝑪_𝑳𝒐𝒐𝒌𝒖𝒑 + 𝑳𝑫𝑹𝑨𝑴	 to 
𝑳𝑫𝑹𝑨𝑴 

q Still LLC Miss, but speed up up-to 300 cycles 



Intel Extended Prediction Table (XPT) Prefetcher
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XPT Prefetcher
Introduced by 3rd Generation Xeon Processors

Shared across cores
Timing difference



Side-Channel Attacks on Modern Processors
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Frontend
Attacks

Transient Attacks

Backend
Attacks

Scheduler, ROB, LSU, 
Prefetchers, etc. 

Un-Core
Attacks

Coherence, Bus, LLC, 
etc. 

Easy to launch
Low Noise

Single core (normally)
Need other attacks (e.g., caches)

 Non-speculative
Independent

Single core 
Higher Noise

 Cross Core

Highest Noise
Hard to setup



XPT: Characterization and Operation 
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XPT Prefetcher
Introduced by 3rd Generation Xeon Processors

How to index?
How to trigger?
How to tag?
How to leak?

Benchmark 
Suite



XPT: Characterization and Operation 
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#define CACHE_LINE 64

void loop_function (uint64_t n){
    char *mem = mmap();
    int random[n] = no_repeat_rand(0, n);
    for (int i = 0; i < n; i++) { 
        temp = mem + random[i] * CACHE_LINE;  
    } 

    time(mem + 63 * CACHE_LINE); 
}
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• Generate N cache misses 
on a page

• Times last cache line

Feature Value

Trigger

Index

Tag

Entry

Associativity

Eviction

Feature Value

Trigger 32 cache misses
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XPT: Characterization and Operation 
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void loop_function (uint64_t n){
    char *mem = mmap();
    int random[n] = no_repeat_rand(0, n);
    for (int i = 0; i < n; i++) { 
        temp = mem + random[i] * CACHE_LINE;  
    } 
}
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PA ASID CoreID LRU Miss Counter EN

f..f4 1 0 0 0 0

256 
entry
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void loop_function (uint64_t n){
    char *mem = mmap();
    int random[n] = no_repeat_rand(0, n);
    for (int i = 0; i < n; i++) { 
        temp = mem + random[i] * CACHE_LINE;  
    } 
}
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PA ASID CoreID LRU Miss Counter EN

f..f4 1 0 0 32 1

f..f6 1 0 1 32 1256 
entry f..f8 1 1

• Local LRU: If core moving 
happens, first evict entry 
tagged by the same ASID with 
different CoreIDs



XPT: Characterization and Operation 
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void loop_function (uint64_t n){
    char *mem = mmap();
    int random[n] = no_repeat_rand(0, n);
    for (int i = 0; i < n; i++) { 
        temp = mem + random[i] * CACHE_LINE;  
    } 
}
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PA ASID CoreID LRU Miss Counter EN

f..f4 1 0 0 32 1

f..f6 1 0 1 32 1256 
entry a..f0 2 1

• Global LRU: If XPT is full, evict 
entry based on the LRU counter

f..a6 1 0 255 32 1



PREFETCHX: Practical Attacks and Setup

• We build an attack primitive to launch three attacks
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Specification System

Cloud Provider AWS EC2

Instance m6i.metal

Processor Xeon Platinum 8375C 

Architecture Ice Lake (Sunny Cove) 

Compiler GCC 9.4.0, -O1 

Operating System Ubuntu 20.04 

ASLR/KASLR Enabled

SGX Not supported

MbedTLS RSA Attack
3

Keystroke Attack
1

Network Traffic Attack
2
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XPT Prefetcher

Phy. Page Addr Content

0 Empty

… Empty

… Empty

… Empty

255 Empty

Phy. Page Addr Content

0 Primed

… Primed

… Primed

… Primed

255 Primed

Phy. Page Addr Content

0 Evicted

… Primed

… Primed

… Primed

255 Primed

Setup Phase: Initializing the Side-ChannelAttacker
1

1
2
3

for (i = 0; i < 256; i++)
    // 32 cache misses each page
    train(Mem[PAGE * i]); 

Leak Phase: Page Access FootprintVictim
2

Extraction Phase: Probing the Side-ChannelAttacker
3

7
8
9
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11

for (guess = 0; guess < 256; guess++)
    start = rdtsc();
    temp = Mem[guess + rnd_offset];
    diff = rdtsc() – start;
    evaluate(diff);

4
5
6

....
temp  = Page[index];
....

PREFETCHX: Practical Attacks and Setup

Isolation: Attacker runs on a separate 
process with victim
Un-residency: Attacker and victim 
run on different cores
Target: Page access pattern
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PREFETCHX: Keystroke Attack

The victim uses keyboard to write characters to a buffer or file
DRAM accesses and XPT entry insertion/eviction

The attacker try to understand the exact timing of keystroke
Periodically priming the XPT prefetcher
A long access latency on the oldest page means entry eviction
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Clear timing difference brought by XPT
Cache primitives are no longer required
Low-noise due to XPT’s simply structure
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PREFETCHX: Network Traffic Attack

The victim client receives network packet and write to a buffer
DRAM accesses and XPT entry insertion/eviction

The attacker try to understand the exact timing of keystroke
Periodically priming the XPT prefetcher
A long access latency on the oldest page means entry eviction
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PREFETCHX: Attack MbedTLS RSA

while (E->p[nblimbs] != 0) {
    size_t exp_bits = 0;
    size_t ei;
    ...
    ei = E->p[nblimbs] & 1;
    /* Square */
    MBEDTLS_MPI_CHK(mpi_select(...));
    mpi_montmul(...)
    continue
    /* Multiply */
    exp_bits |= (ei <<  
           (window_bitsize - nbits));
    ...
    MBEDTLS_MPI_CHK(mpi_select(...,   
                    exp_bits));
    mpi_montmul(...);
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Observation 1: exp_bits 
is initialized data and 
thus is stored in a 
separate non-copy-on-
write page. 
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PREFETCHX: Attack MbedTLS RSA

while (E->p[nblimbs] != 0) {
    size_t exp_bits = 0;
    size_t ei;
    ...
    ei = E->p[nblimbs] & 1;
    /* Square */
    MBEDTLS_MPI_CHK(mpi_select(...));
    mpi_montmul(...)
    continue
    /* Multiply */
    exp_bits |= (ei <<  
           (window_bitsize - nbits));
    ...
    MBEDTLS_MPI_CHK(mpi_select(...,   
                    exp_bits));
    mpi_montmul(...);
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Observation 1: exp_bits 
is initialized data and 
thus is stored in a 
separate non-copy-on-
write page. 

Observation 2: exp_bits 
is accessed only in the 
multiply path
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PREFETCHX: Attack MbedTLS RSA

while (E->p[nblimbs] != 0) {
    size_t exp_bits = 0;
    size_t ei;
    ...
    ei = E->p[nblimbs] & 1;
    /* Square */
    MBEDTLS_MPI_CHK(mpi_select(...));
    mpi_montmul(...)
    continue
    /* Multiply */
    exp_bits |= (ei <<  
           (window_bitsize - nbits));
    ...
    MBEDTLS_MPI_CHK(mpi_select(...,   
                    exp_bits));
    mpi_montmul(...);
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Execution of exp_bits will 
lead to a page access and 
insert an entry to XPT
We collect 1,000 traces for 
breaking each bit of the key
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• We studied a new type of prefetcher named XPT prefetcher on Intel recent server 
processors
• Shared across all cores
• Indexed by page frame
• Mitigating LLC lookup latency

• We propose PrefetchX, a new side-channel attack exploiting the XPT prefetcher
• It is cache-agnostic
• It makes the cross-core attack still practical on cloud

• We demonstrate threats brought by PrefetchX by setting up different practical 
attacks 
• Keystroke / Network Traffic / RSA

Conclusions
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