

Design, Automation and Test in Europe Conference (DATE 2024)

Prime+Reset: Introducing A Novel Cross-World Covert-Channel Through Comprehensive Security Analysis on ARM TrustZone

Yun Chen*
National University of Singapore

Arash Pashrashid*
National University of Singapore
Huawei Research Center

Yongzheng Wu Huawei Research Center Trevor E. Carlson

National University of Singapore

^{*} Equal Contribution

Trusted Execution Environments

Applications:

Biometric Authentication

Electronic Payments

Digital Rights Management

TrustZone TEE Architecture and Its Limitations

Limitations and Problems:

- TEEs are still vulnerable to various microarchitectural side channel attacks
- Lack of comprehensive microarchitectural security analysis of TrustZone

Prior Works:

 Limited scope: Only considering cache and PMUs as a source of leakage

Motivation:

- A comprehensive side/covert-channel vulnerability analysis on TrustZone
- Detecting a new leakage source

Leakage Analysis Criteria

Question: Are components of an OoO processor isolated between the Secure World and the Normal World?

Requirements for a successful side/covert channel:

RQ1

Shared resources among different execution domains that can create resource contention and execution footprints (e.g., cache)

RQ2

Microarchitectural events that can create distinguishable and leaking events during execution (e.g., out-of-order execution)

Analysis result:

Component	Issue Ports	TLB	L1 Prefetcher	L1 Cache	L2 Prefetcher
Leakage?	No	No	No	No	Yes
Reason	Pipeline flushing	Pipeline flushing	Entry invalidating	Entry invalidating	Resetting between worlds

Our Observation from L2 Prefetcher

PRIME+RESET: Covert-Channel using the L2 Prefetcher

Attack	Error Rate	Max Throughput
Prime+Count ¹	<2%	~ 1 Kib/s
μarch-Count ²	<2%	12 Kib/s
PRIME+RESET (ours)	<2%	776 Kib/s

