
NOREBA:
A Compiler-Informed

Non-speculative
Out-of-Order Commit

Processor

Ali Hajiabadi✣, Andreas Diavastos✦, Trevor E. Carlson✣

✣ National University of Singapore
✦ Universitat Politècnica de Catalunya

ASPLOS ‘21

NOREBA: Goal

• Current processors hold on to resources longer than necessary
• NOREBA implements an intelligent resource management

technique based on true branch dependencies

→Performance Improvement
→Low Power and Area Overheads

2

General-Purpose Out-of-Order Processors

• End of Moore’s law requires efficient computing

• However, general-purpose CPUs still have a significant impact on the
overall performance; Hard-to-parallelize work is left for the CPU1

• Re-thinking the traditional design to unlock efficiency:
• Co-design the different layers of the system

3

Compiler Architecture

Operating
System

1. Arora, Manish, et al. "Redefining the Role of the CPU in the Era of CPU-GPU Integration." IEEE Micro 32.6 (2012): 4-16.

ROB in Traditional General-Purpose Processors

4

Frontend Commit

Inst2Inst1 Inst3 Load

BranchInst5 Inst7 Inst8

Inst10Inst9 Inst11 Inst12

Program Order

0
Cycle Count

Reorder Buffer

Execution Time = 1 cycle | Long Latency Load = 10 cycles | Fetch/Commit Width = 1 | ROB Size = 8

Head of ROB

ROB in Traditional General-Purpose Processors

4

Frontend Commit

Inst2

Inst1

Inst3 Load

BranchInst5 Inst7 Inst8

Inst10Inst9 Inst11 Inst12

Program Order

0
Cycle Count

Reorder Buffer

Execution Time = 1 cycle | Long Latency Load = 10 cycles | Fetch/Commit Width = 1 | ROB Size = 8

Head of ROB

ROB in Traditional General-Purpose Processors

4

Frontend Commit

Inst2 Inst1

Inst3 Load

BranchInst5 Inst7 Inst8

Inst10Inst9 Inst11 Inst12

Program Order

0
Cycle Count

1

Reorder Buffer

Execution Time = 1 cycle | Long Latency Load = 10 cycles | Fetch/Commit Width = 1 | ROB Size = 8

Head of ROB

ROB in Traditional General-Purpose Processors

4

Frontend Commit

Inst2

Inst1

Inst3

Load

BranchInst5 Inst7 Inst8

Inst10Inst9 Inst11 Inst12

Program Order

0
Cycle Count

12

Reorder Buffer

Execution Time = 1 cycle | Long Latency Load = 10 cycles | Fetch/Commit Width = 1 | ROB Size = 8

Head of ROB

ROB in Traditional General-Purpose Processors

4

Frontend Commit
Inst2 Inst1

Inst3Load

BranchInst5 Inst7 Inst8

Inst10Inst9 Inst11 Inst12

Program Order

0
Cycle Count

123

Reorder Buffer

Execution Time = 1 cycle | Long Latency Load = 10 cycles | Fetch/Commit Width = 1 | ROB Size = 8

Head of ROB

ROB in Traditional General-Purpose Processors

4

Frontend Commit
Inst2 Inst1Inst3

Load

Branch

Inst5

Inst7 Inst8

Inst10Inst9 Inst11 Inst12

Program Order

0
Cycle Count

1234

Reorder Buffer

Execution Time = 1 cycle | Long Latency Load = 10 cycles | Fetch/Commit Width = 1 | ROB Size = 8

Head of ROB

ROB in Traditional General-Purpose Processors

4

Frontend Commit
Inst2 Inst1Inst3

LoadBranch Inst5

Inst7 Inst8

Inst10Inst9 Inst11 Inst12

Program Order

0
Cycle Count

12345

Reorder Buffer

Execution Time = 1 cycle | Long Latency Load = 10 cycles | Fetch/Commit Width = 1 | ROB Size = 8

Head of ROB

ROB in Traditional General-Purpose Processors

4

Frontend Commit
Inst2 Inst1Inst3

LoadBranch Inst5Inst7

Inst8

Inst10Inst9 Inst11 Inst12

Program Order

0
Cycle Count

123456

Reorder Buffer

Execution Time = 1 cycle | Long Latency Load = 10 cycles | Fetch/Commit Width = 1 | ROB Size = 8

Head of ROB

ROB in Traditional General-Purpose Processors

4

Frontend Commit
Inst2 Inst1Inst3

LoadBranch Inst5Inst7Inst8

Inst10Inst9 Inst11 Inst12

Program Order

0
Cycle Count

1234567

Reorder Buffer

Execution Time = 1 cycle | Long Latency Load = 10 cycles | Fetch/Commit Width = 1 | ROB Size = 8

Head of ROB

ROB in Traditional General-Purpose Processors

4

Frontend Commit
Inst2 Inst1Inst3

LoadBranch Inst5Inst7Inst8

Inst10

Inst9

Inst11 Inst12

Program Order

0
Cycle Count

12345678

Reorder Buffer

Execution Time = 1 cycle | Long Latency Load = 10 cycles | Fetch/Commit Width = 1 | ROB Size = 8

Head of ROB

ROB in Traditional General-Purpose Processors

4

Frontend Commit
Inst2 Inst1Inst3

LoadBranch Inst5Inst7Inst8Inst10 Inst9

Inst11 Inst12

Program Order

0
Cycle Count

123456789

Reorder Buffer

Execution Time = 1 cycle | Long Latency Load = 10 cycles | Fetch/Commit Width = 1 | ROB Size = 8

Head of ROB

ROB in Traditional General-Purpose Processors

4

Frontend Commit
Inst2 Inst1Inst3

LoadBranch Inst5Inst7Inst8Inst10 Inst9Inst11

Inst12

Program Order

0
Cycle Count

12345678910

Reorder Buffer

Execution Time = 1 cycle | Long Latency Load = 10 cycles | Fetch/Commit Width = 1 | ROB Size = 8

Head of ROB

ROB in Traditional General-Purpose Processors

Blocked

4

Frontend Commit
Inst2 Inst1Inst3

LoadBranch Inst5Inst7Inst8Inst10 Inst9Inst11

Inst12

Program Order

0
Cycle Count

1234567891011

Reorder Buffer

Execution Time = 1 cycle | Long Latency Load = 10 cycles | Fetch/Commit Width = 1 | ROB Size = 8

Head of ROB

ROB Full

ROB in Traditional General-Purpose Processors

Blocked

4

Frontend Commit
Inst2 Inst1Inst3

LoadBranch Inst5Inst7Inst8Inst10 Inst9Inst11

Inst12

Program Order

0
Cycle Count

123456789101112

Reorder Buffer

Execution Time = 1 cycle | Long Latency Load = 10 cycles | Fetch/Commit Width = 1 | ROB Size = 8

Head of ROB

ROB Full

ROB in Traditional General-Purpose Processors

Blocked

4

Frontend Commit
Inst2 Inst1Inst3

LoadBranch Inst5Inst7Inst8Inst10 Inst9Inst11

Inst12

Program Order

0
Cycle Count

12345678910111213

Reorder Buffer

Execution Time = 1 cycle | Long Latency Load = 10 cycles | Fetch/Commit Width = 1 | ROB Size = 8

Head of ROB

ROB Full

ROB in Traditional General-Purpose Processors

4

Frontend Commit
Inst2 Inst1Inst3Load

Branch Inst5Inst7Inst8Inst10 Inst9Inst11Inst12

Program Order

0
Cycle Count

1234567891011121314

Reorder Buffer

Execution Time = 1 cycle | Long Latency Load = 10 cycles | Fetch/Commit Width = 1 | ROB Size = 8

Head of ROB

ROB in Traditional General-Purpose Processors

4

Frontend Commit
Inst2 Inst1Inst3Load

Branch

Inst5

Inst7Inst8Inst10 Inst9Inst11Inst12

Program Order

0
Cycle Count

123456789101112131415

Reorder Buffer

Execution Time = 1 cycle | Long Latency Load = 10 cycles | Fetch/Commit Width = 1 | ROB Size = 8

Head of ROB

ROB in Traditional General-Purpose Processors

4

Frontend Commit
Inst2 Inst1Inst3Load

Branch Inst5

Inst7Inst8Inst10 Inst9Inst11Inst12

Program Order

0
Cycle Count

12345678910111213141516

Reorder Buffer

Execution Time = 1 cycle | Long Latency Load = 10 cycles | Fetch/Commit Width = 1 | ROB Size = 8

Head of ROB

ROB in Traditional General-Purpose Processors

4

Frontend Commit
Inst2 Inst1Inst3Load

Branch Inst5Inst7

Inst8Inst10 Inst9Inst11Inst12

Program Order

0
Cycle Count

1234567891011121314151617

Reorder Buffer

Execution Time = 1 cycle | Long Latency Load = 10 cycles | Fetch/Commit Width = 1 | ROB Size = 8

Head of ROB

ROB in Traditional General-Purpose Processors

4

Frontend Commit
Inst2 Inst1Inst3Load

Branch Inst5Inst7Inst8

Inst10 Inst9Inst11Inst12

Program Order

0
Cycle Count

123456789101112131415161718

Reorder Buffer

Execution Time = 1 cycle | Long Latency Load = 10 cycles | Fetch/Commit Width = 1 | ROB Size = 8

Head of ROB

ROB in Traditional General-Purpose Processors

4

Frontend Commit
Inst2 Inst1Inst3Load

Branch Inst5Inst7Inst8

Inst10

Inst9

Inst11Inst12

Program Order

0
Cycle Count

12345678910111213141516171819

Reorder Buffer

Execution Time = 1 cycle | Long Latency Load = 10 cycles | Fetch/Commit Width = 1 | ROB Size = 8

Head of ROB

ROB in Traditional General-Purpose Processors

4

Frontend Commit
Inst2 Inst1Inst3Load

Branch Inst5Inst7Inst8

Inst10 Inst9

Inst11Inst12

Program Order

0
Cycle Count

1234567891011121314151617181920

Reorder Buffer

Execution Time = 1 cycle | Long Latency Load = 10 cycles | Fetch/Commit Width = 1 | ROB Size = 8

Head of ROB

ROB in Traditional General-Purpose Processors

4

Frontend Commit
Inst2 Inst1Inst3Load

Branch Inst5Inst7Inst8

Inst10 Inst9Inst11

Inst12

Program Order

0
Cycle Count

123456789101112131415161718192021

Reorder Buffer

Execution Time = 1 cycle | Long Latency Load = 10 cycles | Fetch/Commit Width = 1 | ROB Size = 8

Head of ROB

ROB in Traditional General-Purpose Processors

4

Frontend Commit
Inst2 Inst1Inst3Load

Branch Inst5Inst7Inst8

Inst10 Inst9Inst11Inst12

Program Order

0
Cycle Count

12345678910111213141516171819202122

Reorder Buffer

Execution Time = 1 cycle | Long Latency Load = 10 cycles | Fetch/Commit Width = 1 | ROB Size = 8

Head of ROB

ROB in Traditional General-Purpose Processors

4

Frontend Commit
Inst2 Inst1Inst3Load

Branch Inst5Inst7Inst8

Inst10 Inst9Inst11Inst12

Program Order

0
Cycle Count

12345678910111213141516171819202122

Reorder Buffer

Execution Time = 1 cycle | Long Latency Load = 10 cycles | Fetch/Commit Width = 1 | ROB Size = 8

Head of ROB

In-Order

Alternative Approach

5

Frontend Commit

Inst2Inst1 Inst3 Load

BranchInst5 Inst7 Inst8

Inst10Inst9 Inst11 Inst12

Program Order

0
Cycle Count

In-Order Commit is conservative
What if Inst9, Inst10, Inst11, and Inst12 are independent from Branch?

Reorder Buffer

Alternative Approach

5

Frontend Commit
Inst2 Inst1Inst3

LoadBranch Inst5Inst7Inst8

Inst10Inst9 Inst11 Inst12

Program Order

01234567
Cycle Count

In-Order Commit is conservative
What if Inst9, Inst10, Inst11, and Inst12 are independent from Branch?

Fast-forwarding 7 cycles

Reorder Buffer

Alternative Approach

5

Frontend Commit
Inst2 Inst1Inst3

LoadBranch Inst5Inst7Inst8

Inst10

Inst9

Inst11 Inst12

Program Order

012345678
Cycle Count

In-Order Commit is conservative
What if Inst9, Inst10, Inst11, and Inst12 are independent from Branch?

Reorder Buffer

Alternative Approach

5

Frontend Commit
Inst2 Inst1Inst3

LoadBranch Inst5Inst7Inst8Inst10

Inst9Inst11 Inst12

Program Order

0123456789
Cycle Count

In-Order Commit is conservative
What if Inst9, Inst10, Inst11, and Inst12 are independent from Branch?

Reorder Buffer

Alternative Approach

5

Frontend Commit
Inst2 Inst1Inst3

LoadBranch Inst5Inst7Inst8

Inst10

Inst9

Inst11

Inst12

Program Order

012345678910
Cycle Count

In-Order Commit is conservative
What if Inst9, Inst10, Inst11, and Inst12 are independent from Branch?

Reorder Buffer

Alternative Approach

5

Frontend Commit
Inst2 Inst1Inst3

LoadBranch Inst5Inst7Inst8

Inst10

Inst9

Inst11

Inst12

Program Order

01234567891011
Cycle Count

In-Order Commit is conservative
What if Inst9, Inst10, Inst11, and Inst12 are independent from Branch?

Reorder Buffer

Alternative Approach

5

Frontend Commit
Inst2 Inst1Inst3

LoadBranch Inst5Inst7Inst8

Inst10

Inst9

Inst11Inst12

Program Order

0123456789101112
Cycle Count

In-Order Commit is conservative
What if Inst9, Inst10, Inst11, and Inst12 are independent from Branch?

Reorder Buffer

Alternative Approach

5

Frontend Commit
Inst2 Inst1Inst3

LoadBranch Inst5Inst7Inst8

Inst10

Inst9

Inst11Inst12

Program Order

012345678910111213
Cycle Count

In-Order Commit is conservative
What if Inst9, Inst10, Inst11, and Inst12 are independent from Branch?

Reorder Buffer

Alternative Approach

5

Frontend Commit
Inst2 Inst1Inst3

Load

Branch Inst5Inst7Inst8

Inst10

Inst9

Inst11Inst12

Program Order

01234567891011121314
Cycle Count

In-Order Commit is conservative
What if Inst9, Inst10, Inst11, and Inst12 are independent from Branch?

Reorder Buffer

Alternative Approach

5

Frontend Commit
Inst2 Inst1Inst3

Load

Branch

Inst5

Inst7Inst8

Inst10

Inst9

Inst11Inst12

Program Order

0123456789101112131415
Cycle Count

In-Order Commit is conservative
What if Inst9, Inst10, Inst11, and Inst12 are independent from Branch?

Reorder Buffer

Alternative Approach

5

Frontend Commit
Inst2 Inst1Inst3

Load

Branch Inst5

Inst7Inst8

Inst10

Inst9

Inst11Inst12

Program Order

012345678910111213141516
Cycle Count

In-Order Commit is conservative
What if Inst9, Inst10, Inst11, and Inst12 are independent from Branch?

Reorder Buffer

Alternative Approach

5

Frontend Commit
Inst2 Inst1Inst3

Load

Branch Inst5Inst7

Inst8

Inst10

Inst9

Inst11Inst12

Program Order

01234567891011121314151617
Cycle Count

In-Order Commit is conservative
What if Inst9, Inst10, Inst11, and Inst12 are independent from Branch?

Reorder Buffer

Alternative Approach

5

Frontend Commit
Inst2 Inst1Inst3

Load

Branch Inst5Inst7Inst8

Inst10

Inst9

Inst11Inst12

Program Order

01234567891011121314151617
Cycle Count

In-Order Commit is conservative
What if Inst9, Inst10, Inst11, and Inst12 are independent from Branch?

18

Reorder Buffer

Alternative Approach

5

Frontend Commit
Inst2 Inst1Inst3

Load

Branch Inst5Inst7Inst8

Inst10

Inst9

Inst11Inst12

Program Order

01234567891011121314151617
Cycle Count

In-Order Commit is conservative
What if Inst9, Inst10, Inst11, and Inst12 are independent from Branch?

18
Saving 4 cycles compared to

in-order commit

Reorder Buffer

Alternative Approach

5

Frontend Commit
Inst2 Inst1Inst3

Load

Branch Inst5Inst7Inst8

Inst10

Inst9

Inst11Inst12

Program Order

01234567891011121314151617
Cycle Count

In-Order Commit is conservative
What if Inst9, Inst10, Inst11, and Inst12 are independent from Branch?

18

Out-of-Order

Saving 4 cycles compared to
in-order commit

Reorder Buffer

NOREBA: HW/SW Co-operative OoO-Commit

44

Questions !
How to detect branch dependecies non−specula+vely?

How to implement OoO−commit efficiently?
How to handle excep+ons and context switches?

Compiler
Static Compiler

Analysis

Architecture
Multi-Queue
Selective ROB

Operating System

Communicating the
OoO-Commit State

Branch dependencies
information

NOREBA: Static Compiler Analysis

45

Detecting the branch
reconvergence point

Detecting control
dependent instructions

Detecting data
dependent instructions

Marking branch
dependent regions

1

2

3

4

breqz a5, L1

L1:

lw a4, -40(s0)
lw a5, -36(s0)
subw a5, a4, a5
sw a5, -20(s0)
lw a4, -40(s0)
lw a5, -36(s0)
addw a5, a4, a5
sw a5, -24(s0)

lw a4, -40(s0)
lw a5, -36(s0)
addw a5, a4, a5
sw a5, -20(s0)
lw a4, -40(s0)
lw a5, -36(s0)
subw a5, a4, a5
sw a5, -24(s0)
j L2

setDependency 9 BR1

setDependency 8 BR1

setBranchId BR1

L2:

lw a4, -40(s0)
lw a5, -36(s0)
xor a5, a5, a4
sw a5, -52(s0)

lw a5, -20(s0)
xor a5, a5, a4
sw a5, -48(s0)
lw a5, -24(s0)
xor a5, a5, a4
sw a5, -56(s0)

1

2

3

setDependency 4 BR0

setDependency 6 BR1

BB1

BB2 BB3

BB4

setBranchId Branch_ID
Assigns an ID to the branch

setDependency #NUM Branch_ID
Specifies the branch dependency of the next #NUM

instructions

NOREBA: Microarchitecture

46

Frontend Backend

Instruction
Decode

Branch ID
Table

Dependency
Counter

If (Set Branch) If (Set Dependency)

Selective ROB
Commit Q1

Commit Q2

Commit QN

…

Commit
Queue Table

Committed
Instructions

Table

CommitROB’

Old

New

Program
New Instruction

Tracking true branch dependencies informed
by the compiler for each instruction

A lightweight implementation for OoO-commit that
provides more opportunities to release resources

NOREBA: Challenge in Exception Handling

• Need to save and restore the state of the OoO-committed instructions

47

Branch

Reconvergence Point

OoO-Committed

PredictionMisprediction

Exception

Correct Path

setCITEntry and getCITEntry
instructions for communicating with the OS

Selective ROB
Commit Q1

Commit Q2

Commit QN

…

Commit
Queue Table

Committed
Instructions

Table

CommitROB’

Old

New

Backend of NOREBA Core

OS

Evaluation: Setup

• Simulation: gem5
• Compiler: LLVM-10
• Benchmarks:

• SPEC CPU2006: C/C++ programs,
running single 1B instruction
representatives (using SimPoint)

• MiBench: entire program runs

48

L1d/i size 32KB, 4 clk

L2 size 256KB, 12 clk

L3 size 1MB, 36 clk

Fetch/dispatch/commit
width 4/4/4

Branch Predictor TAGE-SC-L-8KB

Prefetcher DCPT

Selective ROB

ROB’ 224 entries

BR-CQ 2 ✕ 8 entries

PR-CQ 8 entries

BIT/CQT size 8

CIT size 128

Baseline ROB 224 entries

IQ/LQ/SQ/RF 68/72/56/168

Evaluation: Performance

49

In-Order Commit All commit conditions preserved

This Work

This Work w/ unlimited queues

Speculating on Branch commit condition

~22% performance improvement on average
Up to 230% performance improvement

Reaches ~95% of a fully branch speculative OoO-commit implementation

↑26% ~96%↑18% ~95%

Evaluation: Critical Branches

50

More dependent instructions and
less critical è Fewer opportunities

~ 1.1X improvement for bzip2

Fewer dependent instructions and
more critical è More opportunities

~ 2.3X improvement for mcf More dependent instructions per branch

More Critical

Evaluation: Size of Resources

51

We are close to aggressive and
branch speculative OoO-commit
(~95% of SpeculativeBR OoO-C)

Higher performance for bigger cores
with more resources

NOREBA continues to scale
Small Core

ROB = 128
IQ = 56

LQ/SQ = 48/36
RF = 64

Medium Core
ROB = 192

IQ = 60
LQ/SQ = 72/42

RF = 128

Big Core
ROB = 224

IQ = 68
LQ/SQ = 72/56

RF = 168

Evaluation: NOREBA and Prefetchers

52

Normalized to NHM InO-C

Additive effect of combining NOREBA and prefetchers
è Higher Performance using both

Prefetching allows continuing execution, but NOREBA allows continuing committing instructions

Evaluation: Power and Area Overhead

53

4% power overhead, 8% area overhead

Low overhead for the extra performance
(~22% on average, up to 230%)

0%

20%

40%

60%

80%

100%

120%

In-Order Commit
NOREBA

Po
w
er

icache bpred idecode
ialu fpalu cmplxalu
dcache lsu rename
regf scheduler rob/SELECTIVE ROB
cdb CQT+BIT+DCT CIT

0%

20%

40%

60%

80%

100%

120%

In-Order Commit
NOREBA

A
re
a

NOREBA: Overview of the Design

54

Implementation !
DetecSng branch dependencies non−specula+vely

ImplemenSng OoO−commit efficiently
Able to handle excep+ons and context switches

Compiler
Static Compiler

Analysis

Architecture
Multi-Queue
Selective ROB

Operating System

Communicating the
OoO-Commit State

Branch dependencies
information

Conclusion

• Efficient interaction between different layers of the system unlocks
efficiency and performance for general-purpose processors

• NOREBA provides a HW/SW co-design solution that enables OoO-
commit and better resource management
• 22% performance improvement over the baseline and achieving 95% of the

aggressive branch speculative OoO-commit implementation
• Low power and area overheads (~4% power, and ~8% area overhead)

55

NOREBA:
A Compiler-Informed

Non-speculative
Out-of-Order Commit

Processor

Ali Hajiabadi✣, Andreas Diavastos✦, Trevor E. Carlson✣

✣ National University of Singapore
✦ Universitat Politècnica de Catalunya

ASPLOS ‘21

Thanks for your attention

