

NOREBA: A Compiler-Informed Non-speculative Out-of-Order Commit Processor

Ali Hajiabadi⁺, Andreas Diavastos⁺, Trevor E. Carlson⁺

National University of Singapore
Universitat Politècnica de Catalunya

ASPLOS '21

NOREBA: Goal

- Current processors hold on to resources longer than necessary
- NOREBA implements an intelligent resource management technique based on true branch dependencies
- \rightarrow Performance Improvement
- \rightarrow Low Power and Area Overheads

General-Purpose Out-of-Order Processors

- End of Moore's law <u>requires</u> efficient computing
- However, general-purpose CPUs still have a significant impact on the overall performance; <u>Hard-to-parallelize work is left for the CPU¹</u>
- Re-thinking the traditional design to unlock efficiency:
 - <u>Co-design the different layers of the system</u>

In-Order Commit is conservative

What if Inst9, Inst10, Inst11, and Inst12 are independent from Branch?

In-Order Commit is conservative

What if **Inst9**, **Inst10**, **Inst11**, and **Inst12** are independent from **Branch**?

What if **Inst9**, **Inst10**, **Inst11**, and **Inst12** are independent from **Branch**?

In-Order Commit is conservative

What if **Inst9**, **Inst10**, **Inst11**, and **Inst12** are independent from **Branch**?

In-Order Commit is conservative

What if Inst9, Inst10, Inst11, and Inst12 are independent from Branch?

NOREBA: HW/SW Co-operative OoO-Commit

Questions

How to detect branch dependecies *non–speculatively*? How to implement OoO–commit *efficiently*? How to handle *exceptions* and context switches?

NOREBA: Static Compiler Analysis

NOREBA: Microarchitecture

Tracking true branch dependencies informed by the compiler for each instruction A lightweight implementation for OoO-commit that provides more opportunities to release resources

NOREBA: Challenge in Exception Handling

• Need to save and restore the state of the OoO-committed instructions

instructions for communicating with the OS

Evaluation: Setup

- Simulation: gem5
- Compiler: LLVM-10
- Benchmarks:
 - SPEC CPU2006: C/C++ programs, running single 1B instruction representatives (using SimPoint)
 - *MiBench*: entire program runs

L1d/i size	32 <i>KB,</i> 4 clk
L2 size	256 <i>KB,</i> 12 clk
L3 size	1 <i>MB,</i> 36 clk
Fetch/dispatch/commit width	4/4/4
Branch Predictor	TAGE-SC-L-8KB
Prefetcher	DCPT
Selective ROB	
ROB'	224 entries
BR-CQ	2 $ imes$ 8 entries
PR-CQ	8 entries
BIT/CQT size	8
CIT size	128
Baseline ROB	224 entries
IQ/LQ/SQ/RF	68/72/56/168

Evaluation: Performance

Reaches ~95% of a fully branch speculative OoO-commit implementation

Evaluation: Critical Branches

More dependent instructions and less critical → Fewer opportunities

~ 1.1X improvement for bzip2

Evaluation: Size of Resources

We are close to aggressive and branch speculative OoO-commit (~95% of SpeculativeBR OoO-C)

Higher performance for bigger cores with more resources <u>NOREBA continues to scale</u>

Evaluation: NOREBA and Prefetchers

Additive effect of combining NOREBA and prefetchers

→ Higher Performance using both

Prefetching allows continuing execution, but NOREBA allows continuing committing instructions

Evaluation: Power and Area Overhead

4% power overhead, 8% area overhead

Low overhead for the extra performance (~22% on average, up to 230%)

NOREBA: Overview of the Design

Implementation Able to handle *exceptions* and context switches

Conclusion

- Efficient interaction between different layers of the system <u>unlocks</u> efficiency and performance for general-purpose processors
- NOREBA provides a HW/SW co-design solution that enables OoOcommit and better resource management
 - 22% performance improvement over the baseline and achieving 95% of the aggressive branch speculative OoO-commit implementation
 - Low power and area overheads (~4% power, and ~8% area overhead)

Thanks for your attention

NOREBA: A Compiler-Informed Non-speculative Out-of-Order Commit Processor Ali Hajiabadi⁺, Andreas Diavastos⁺, Trevor E. Carlson⁺

National University of Singapore
Universitat Politècnica de Catalunya

ASPLOS '21