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GPUs and GPU Simulators

* GPU simulators
= Pre-silicon GPUs Architecture Exploration
= Software profiling and optimization
= QObtain performance characteristics for new architectures
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e GPU simulators
= 12.5KIPS

Simulators GPGPUSI gems- MGPUSIm MacSim Mu.It|2- Accel-Sim
m 3.X APU Sim
Sim. Rate
(KIPS) 3 N/A 28 N/A 0.8 12.5
[1]. Khairy, Mahmoud, et al. "Accel-Sim: An extensible simulation framework for validated GPU modeling.” ISCA 2020. Table source: [1]
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e GPU simulators
 Today’s GPUs achieve nearly 134 TFLOPS [2]
e QOver 1,000,000,000 slower than the real GPU

Simulators GPGPUSI gems- MGPUSIm MacSim Mu.It|2- Accel-Sim
m 3.X APU Sim
Sim. Rate
(KIPS) 3 N/A 28 N/A 0.8 12.5
[1]. Khairy, Mahmoud, et al. "Accel-Sim: An extensible simulation framework for validated GPU modeling.” ISCA 2020. Table source: [1]

[2]. NVIDIA, “NVIDIA H100 Tensor Core GPU Architecture,” https://www.nvidia.com/en-us/data-center/h100/, 2022
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Profiling Inter-kernel Sampling Intra-kernel Sampling
PKA[1] Offline Yes, handpicked features Stable IPC
TBPoint[2] Offline Yes, handpicked features Stable IPC
Sieve[3] Offline Yes, handpicked features N/A

[1]. Avalos Baddouh, Cesar, et al. "Principal kernel analysis: A tractable methodology to simulate scaled gpu workloads." MICRO 2021.
[2]. Huang, Jen-Cheng, et al. "TBPoint: Reducing simulation time for large-scale GPGPU kernels." IPDPS 2014.
[3]. Naderan-Tahan, et al"Sieve: Stratified GPU-Compute Workload Sampling." ISPASS 2023.

Methodolog 4



Sampled GPU Simulation NUS

National University
of Singapore

Profiling Inter-kernel Sampling Intra-kernel Sampling
PKA[1] Offline Yes, handpicked features Stable IPC
TBPoint[2] Offline Yes, handpicked features Stable IPC
Sieve[3] Offline Yes, handpicked features N/A
Photon Online Yes, GPU BBVs Stable warps and basic blocks

[1]. Avalos Baddouh, Cesar, et al. "Principal kernel analysis: A tractable methodology to simulate scaled gpu workloads." MICRO 2021.
[2]. Huang, Jen-Cheng, et al. "TBPoint: Reducing simulation time for large-scale GPGPU kernels." IPDPS 2014.
[3]. Naderan-Tahan, et al"Sieve: Stratified GPU-Compute Workload Sampling." ISPASS 2023.
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2 600 * Basic blocks’ execution
F 400+ .
3 time can be stable over
E 2001 etired Time = 1.00 * Issue Time + 4.23 .
2 time
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BB Issue Time (us) MM: A regular application u S|Ope Value CIOSG tO 1
— con * The least square
= method
E 400 1
£ 200
z Retired Time = 0.99 * Issue Time + 4.96

100 200 300 400 500 600
BB Issue Time (us)  SPMV: An irregular application

The issue and retired time of the dominating (in terms of execution
time) basic blocks, which all have the same entry and exit points.
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 Warps for regular
applications can be stable

Warp Retired Time (us)
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* The slope is close to 1.
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Warp Issue Time (us) SPMV: An irreqular application

The issue and retired time of warps

Background Methodolog 7



National University
of Singapore

Observations — Kernels NUS

101_

IPC

100_
10714
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BBV, BBV,
= Concat BBV xXWeight of each type of Warp
. #W t
Wei@ghto Wei@%rhtn * weigh Leype = # Mf;fpzze
GPU BBV e GPU Kernels with similar GPU BBV have
similar IPC
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= = = The distribution of basic blocks of
— Step 1: Online Analysis
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U T e - Kernel-Sampling
| Ky 1 K. (1 K it~
Workload o' fer LA . ..
T = — = Prior Kernels have similar GPU
%Step 1: Online Analysis - B BV
f-’f warpo . . .
5 [ vamaes  Skip the simulation of the kernel
Ml s  predict the simulation time with
: prior similar kernels’ IPC
= Ao = Prior Kernels do not have similar
Y GPU BBV
Step 2: Kernel Sampling
Prior Kemels have * basic-block-sampling and warp-
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Predict Kernel Time:
#insts
IPC

cycleSkernel =
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T = —— = Check if warps are stable.
o Step 1: Online Analysis Step 2: Detailed Simulation . .
E warpg I Monitor if warps are stable I ¢ BaSIC_B|OCk_Samp|Ing
é WarDinterval 1 I Monitor if each type of Basic Block is stable I [ ] Check If each type Of basic blOCk |S
k=) ‘Warpainterval 1
2 [ e stable.
.§ WarDPgwarps
 E— = Check the percentage of stable

iy basic blocks

Step 2: Kernel Sampling
Prior Kernels have ° Sta ble
similar GPU BBV
Iy = The slope value of the last N
PredictKernel'l;iil:ﬁ; WarpS (baS|C blOCkS) |S ClOSE tO 1.
cycleskernet = e

Background Dbservations Methodolog 13



National University
of Singapore

Methodology-Basic-Block-Sampling NUS

GPU ——— - —_—— - - — = = I ¢ BaSiC‘B|OCk-Samp“ng

Workload - = - — ) T . .
e = _ = Functional simulate
-~
= Step 1: Online Analysis Step 2: Detailed Simulation . . . .
g = Predict the simulation time of
S warpo I Monitor if warps are stable I
El . . .
i (Cmrenreernat | warps using the predicted time of
=
g Warpaing 1 .
E o each type of basic block.
E (YY)
<
.E WarDgwarps Step 3: Switch to basic-block-sampling
9 .
E A sample of warps F;innjtlll(:tl:l BB, BB, Ys BB,
@ Q BB Predicted Time
Preqicted timey time, oo time,
Step 2: Kernel Sampling Time
Prior Kernels have
similar GPU BBV
Predict Kernel Time:
#insts
cyCleskernel = ?

Background Dbservations Methodolog 14



National University
of Singapore

Methodology-Basic-Block-Sampling NUS

R » Basic-Block-Sampling
Workload g -

¢ = — e m o —— = Functional simulate
— Step 1: Online Analysis Step 2: Detailed Simulation . . . .
: 4 o = Predict the simulation time of
a: warpo onitor if warps are stable I . . .
2 WalPinterval Monitor if each type of Basic Block is stable war pS usin g t h e p re d | Cte d t ime Of
k= | P I
5 | Iy each type of basic block.
é WarPswarps :mte::iz; aSlwitch to basic-block-sampling ° Wa r p _ S a m p | i n g
2 A sample of warps Simulate BB, BB, X0 BB,
_ b BB Predicted Time = Predict the simulation of warps
rec cte ime, ime, ooe time, . .
Step 2: Kernel Sampling e - using the average warp runtime
;ﬁi;g‘;ﬂs&l}?{f Step 2 can directly @
switch to Scp 4 " Only the warp scheduler enables
@ Step 4: Warp Sampling
Predict Kernel Time: I timeog I I Himeu I I lirmeng I
cycleskernet = %cts I timeayg I I timegyg I

Backgrounc , Methodolog 15



National University
of Singapore

Experiments NUS

 Photon achieves up to 24.65 X speedup (average speedup 1.87 X)
with an average simulation error of 6.83%
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kernel execution time (left y-aixs with lines); Wall time (right y-axis with bars)
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* Photon reduces the simulation time needed to perform one inference
of ResNet-152 with batch size 1 from 7.05 days to just 1.7 hours with
a low sampling error of 10.7%.

== Full =%= Photon
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kernel execution time (left y-aixs with lines); Wall time (right y-axis with bars)

ackground Dbservations ethodology Experiments 17



Photon: A Fine-grained Sampled Simulation

Methodology for GPU Workloads

Changxi Liul, Yifan Sun?, Trevor E. Carlson!
INational University of Singapore
?College of William & Mary

B8 &

NUS HC
95

National University WILLIAM @)9 MARY

of Singapore

CHARTERED 1693



