
MDPeek: Breaking Balanced Branches in SGX with
Memory Disambiguation Unit Side Channels

Chang Liu, Shuaihu Feng, Yuan Li, Dongsheng Wang, Wenjian He, Yongqiang Lyu and Trevor E. Carlson

ASPLOS 2025

Introduction: Control Flow Attack against SGX

1

Threat Model

1

Introduction: Control Flow Attack against SGX

Threat Model

Introduction: Control Flow Attack against SGX

1

Effects on Branch Predictor
Branch Shadowing
NightVision
PathFinder

Instruction Count or Type
Copycat
Nemesis
PortSmash

Effects on other HW Units
CacheZoom
Frontal Attack
AfterImage

Recent Control Flow AttacksThreat Model

Introduction: Control Flow Attack against SGX

1

Effects on Branch Predictor
Branch Shadowing
NightVision
PathFinder

Instruction Count or Type
Copycat
Nemesis
PortSmash

Effects on other HW Units
CacheZoom
Frontal Attack
AfterImage

Recent Control Flow Attacks

[1] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and Marcus Peinado. Inferring Fine-grained Control Flow Inside

SGX Enclaves with Branch Shadowing. In USENIX Security Symposium (USENIX Security), pages 557–574, 2017.

[2] Jiyong Yu, Trent Jaeger, and Christopher W. Fletcher. All Your PC Are Belong to Us: Exploiting Non-control-Transfer Instruction BTB

Updates for Dynamic PC Extraction. In Proceedings of the Annual International Symposium on Computer Architecture (ISCA), pages 1–

14, 2023.

[3] Hosein Yavarzadeh, Archit Agarwal, Max Christman, Christina Garman, Daniel Genkin, Andrew Kwong, Daniel Moghimi, Deian Stefan,

Kazem Taram, and Dean Tullsen. Pathfinder: High-Resolution Control-Flow Attacks Exploiting the Conditional Branch Predictor. In

Proceedings of the International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS),

pages 770–784, 2024.

[4] Daniel Moghimi, Jo Van Bulck, Nadia Heninger, Frank Piessens, and Berk Sunar. CopyCat: Controlled Instruction-Level Attacks on

Enclaves. In USENIX Security Symposium (USENIX Security), pages 469– 486, 2020.

[5] Jo Van Bulck, Frank Piessens, and Raoul Strackx. Nemesis: Studying Microarchitectural Timing Leaks in Rudimentary CPU Interrupt Logic.

In Proceedings of the Conference on Computer and Communications Security (CCS), pages 178–195, 2018.

[6] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan, Cesar Pereida García, and Nicola Tuveri. Port Contention for Fun and

Profit. In Symposium on Security and Privacy (SP), pages 870–887, 2019.

[7] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. CacheZoom: How SGX Amplifies the Power of Cache Attacks. In International

Conference on Cryptographic Hardware and Embedded Systems (CHES), pages 69–90, 2017.

[8] Ivan Puddu, Moritz Schneider, Miro Haller, and Srdjan Čapkun. Frontal Attack: Leaking Control-Flow in SGX via the CPU Frontend. In

USENIX Security Symposium (USENIX Security), pages 663–680, 2021.

[9] Yun Chen, Lingfeng Pei, and Trevor E. Carlson. AfterImage: Leaking Control Flow Data and Tracking Load Operations via the Hardware

Prefetcher. In Proceedings of the International Conference on Architectural Support for Programming Languages and Operating

Systems (ASPLOS), pages 16–32, 2023.

Motivation: Existing Defenses Bypassing

Controlled Channel

Attacks:
Interrupt-based

if(…)

Access
Page A

Access
Page B

then else

Page Fault Side Channel

2 Yuanzhong Xu, Weidong Cui, and Marcus Peinado. ControlledChannel Attacks: Deterministic Side Channels for Untrusted Operating Systems. In
Symposium on Security and Privacy (SP), pages 640–656, 2015.

Motivation: Existing Defenses Bypassing

Controlled Channel

Page Level

Attacks:
Interrupt-based

Defense:
Branch Balancing

if(…)

Access
Page A

Access
Page B

then else
if(…)

if(…)
then else

Same Page
Page Level Balancing

Page Fault Side Channel

2 Yuanzhong Xu, Weidong Cui, and Marcus Peinado. ControlledChannel Attacks: Deterministic Side Channels for Untrusted Operating Systems. In
Symposium on Security and Privacy (SP), pages 640–656, 2015.

Motivation: Existing Defenses Bypassing

Controlled Channel

Page Level

Nemesis

Attacks:
Interrupt-based

Defense:
Branch Balancing

if(…)

add
instruction

mul
instruction

then else
if(…)

Single-step Execution
Timing Side Channel

2 Jo Van Bulck, Frank Piessens, and Raoul Strackx. Nemesis: Studying Microarchitectural Timing Leaks in Rudimentary CPU Interrupt Logic. In
Proceedings of the Conference on Computer and Communications Security (CCS), pages 178–195, 2018.

Motivation: Existing Defenses Bypassing

Controlled Channel

Page Level

Nemesis

Instruction Type

Attacks:
Interrupt-based

Defense:
Branch Balancing

if(…)

add
instruction

mul
instruction

then else

Single-step Execution
Timing Side Channel

if(…)

if(…)
then else

Same Instruction Type
Instruction Type Balancing

2 Jo Van Bulck, Frank Piessens, and Raoul Strackx. Nemesis: Studying Microarchitectural Timing Leaks in Rudimentary CPU Interrupt Logic. In
Proceedings of the Conference on Computer and Communications Security (CCS), pages 178–195, 2018.

Motivation: Existing Defenses Bypassing

2

Controlled Channel

Page Level

Nemesis

Instruction Type

Copycat

Attacks:
Interrupt-based

Defense:
Branch Balancing

if(…)

add
add add

then else

Single-step Counting
Side Channel

if(…)

Daniel Moghimi, Jo Van Bulck, Nadia Heninger, Frank Piessens, and Berk Sunar. CopyCat: Controlled Instruction-Level Attacks on
Enclaves. In USENIX Security Symposium (USENIX Security), pages 469– 486, 2020.

Motivation: Existing Defenses Bypassing

2

Controlled Channel

Page Level

Nemesis

Instruction Type

Copycat

Instruction Count

Attacks:
Interrupt-based

Defense:
Branch Balancing

if(…)

add
add add

then else

Single-step Counting
Side Channel

if(…)

Instruction Count
Balancing

if(…)
then else

if(…)

Same Instruction Count

Daniel Moghimi, Jo Van Bulck, Nadia Heninger, Frank Piessens, and Berk Sunar. CopyCat: Controlled Instruction-Level Attacks on
Enclaves. In USENIX Security Symposium (USENIX Security), pages 469– 486, 2020.

Motivation: Existing Defenses Bypassing

Controlled Channel

Page Level

Nemesis

Instruction Type Instruction Count

Frontal Attack

Attacks:
Interrupt-based

Defense:
Branch Balancing

Store PC Leakage through
Frontal Side Channel

Copycat

𝑎!: jne 0x0c

𝑎": movq $0, (%rdi)

𝑎#: movq $0, (%rdi)

Single-step Execution
𝑇!
𝑇"

Frontal Attack

𝑇! ≠ 𝑇" iif (𝑎" − 𝑎!) ≠
(𝑎# − 𝑎!)mod 16

2 Ivan Puddu, Moritz Schneider, Miro Haller, and Srdjan Čapkun. Frontal Attack: Leaking Control-Flow in SGX via the CPU Frontend. In
USENIX Security Symposium (USENIX Security), pages 663–680, 2021.

Motivation: Existing Defenses Bypassing

Controlled Channel

Page Level

Nemesis

Instruction Type Instruction Count

Frontal Attack

PC 16-byte aligned

Attacks:
Interrupt-based

Defense:
Branch Balancing

Store PC 16-byte
Aligned from Branch

Copycat

𝑎!: jne 0x0c

𝑎": movq $0, (%rdi)

nop nop ...

𝑎′# : movq $0, (%rdi)

Branch Balancing against Frontal Attack

(𝑎" − 𝑎!) = (𝑎′# − 𝑎!)mod 16

Store PC Aligned

2 Ivan Puddu, Moritz Schneider, Miro Haller, and Srdjan Čapkun. Frontal Attack: Leaking Control-Flow in SGX via the CPU Frontend. In
USENIX Security Symposium (USENIX Security), pages 663–680, 2021.

Motivation: Existing Defenses Bypassing

Controlled Channel

Page Level

Nemesis

Instruction Type Instruction Count

Frontal Attack

PC 16-byte aligned

Cache AttacksBPU Attacks Port, TLB Attacks Prefetcher Attacks

Attacks:
Interrupt-based

Defense:
Branch Balancing

Attacks:
Microarchitecture

Side Channel

Copycat

2 Hosein Yavarzadeh, Archit Agarwal, Max Christman, Christina Garman, Daniel Genkin, Andrew Kwong, Daniel Moghimi, Deian Stefan, Kazem Taram, and Dean Tullsen. Pathfinder: High-Resolution Control-Flow
Attacks Exploiting the Conditional Branch Predictor. In Proceedings of the International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), pages 770–784, 2024.

Motivation: Existing Defenses Bypassing

Controlled Channel

Page Level

Nemesis

Instruction Type Instruction Count

Frontal Attack

PC 16-byte aligned

Cache Attacks

State Flushing:
CBP/BTB/BHB

BPU Attacks

State Flushing:
Cache

Port, TLB Attacks

Disabling:
SMT

Prefetcher Attacks

State Flushing:
Prefetcher

Attacks:
Interrupt-based

Defense:
Branch Balancing

Attacks:
Microarchitecture

Side Channel

Defense:
State Flushing
SMT Disabling

Copycat

2 Hosein Yavarzadeh, Archit Agarwal, Max Christman, Christina Garman, Daniel Genkin, Andrew Kwong, Daniel Moghimi, Deian Stefan, Kazem Taram, and Dean Tullsen. Pathfinder: High-Resolution Control-Flow
Attacks Exploiting the Conditional Branch Predictor. In Proceedings of the International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), pages 770–784, 2024.

Motivation: Existing Defenses Bypassing

2

Controlled Channel

Page Level

Nemesis

Instruction Type Instruction Count

Frontal Attack

PC 16-byte Aligned

Cache Attacks

State Flushing:
CBP/BTB/BHB

BPU Attacks

State Flushing:
Cache

Port, TLB Attacks

Disabling:
SMT

Prefetcher Attacks

State Flushing:
Prefetcher

Attacks:
Interrupt-based

Side Channel

Defense:
Branch Balancing

Attacks:
Microarchitecture

Side Channel

Defense:
State Flushing
SMT Disabling

Copycat

NEW ATTACKS that
can bypass all these

deployable defenses?

Our Contribution

3

Systematic MDU Characterization
Update condition
Interaction with cache, TLB and ROB
Multiple stores and loads
NOT isolated between the normal and secure world

Systematic MDU update
logic characterization

Our Contribution

3

Systematic MDU Characterization
Update condition
Interaction with cache, TLB and ROB
Multiple stores and loads
NOT isolated between the normal and secure world

Vulnerable Loads Identification in Real-world Applications
Modeling address generation delay
Measuring Delay Capacity

Automated vulnerable
code identification

Systematic MDU update
logic characterization

Our Contribution

3

Systematic MDU Characterization
Update condition
Interaction with cache, TLB and ROB
Multiple stores and loads
NOT isolated between the normal and secure world

Vulnerable Loads Identification in Real-world Applications
Modeling address generation delay
Measuring Delay Capacity

MDPeek: End-to-end Attacks with MDU Side Channel
Attacking Libjpeg
Attacking RSA Generation (MbedTLS and WolfSSL)

3 end-to-end attacks

Automated vulnerable
code identification

Systematic MDU update
logic characterization

Our Contribution

3

Systematic MDU Characterization
Update condition
Interaction with cache, TLB and ROB
Multiple stores and loads
NOT isolated between the normal and secure world

Vulnerable Loads Identification in Real-world Applications
Modeling address generation delay
Measuring Delay Capacity

MDPeek: End-to-end Attacks with MDU Side Channel
Attacking Libjpeg
Attacking RSA Generation (MbedTLS and WolfSSL)

Defenses against MDPeek
Naive defenses
Store-to-load Coupling

7x faster than
naive defenses

3 end-to-end attacks

Automated vulnerable
code identification

Systematic MDU update
logic characterization

Background: Memory Disambiguation Unit

4

movq (%rdx), %rdi

0x0e: movq $0, (%rdi)

0x15: movl (%rsi), %eax

addl %eax, %ebx

addl %eax, %edx

addl %ebx, %ecx

(1) Fetch address from [%rdx]
(2) Store 0 to this address

(3) Load a value from [%rsi]

(4) Use the loaded value
(5) Use the loaded value
(6) Use the loaded value after calculation

Unresolved Data Dependence

Delayed Store

Ready Load

Out of order ?
In Order ?

Before %rdi is ready

Background: Memory Disambiguation Unit

5

movq (%rdx), %rdi

0x0e: movq $0, (%rdi)

0x15: movl (%rsi), %eax

addl %eax, %ebx

addl %eax, %edx

addl %ebx, %ecx

Unresolved Data Dependence Intel: Memory Disambiguation Unit

ID Counter

0x0 0 – 15

… …

0x15 𝑘
… …

0xff 0 – 15

4 Bits

𝑘 = 0? In Order

Out of Order

N

YDelayed Store

Load

Selected by the least significant
8 bits of the Load PC

256 Counters

Background: Memory Disambiguation Unit

5

movq (%rdx), %rdi

0x0e: movq $0, (%rdi)

0x15: movl (%rsi), %eax

addl %eax, %ebx

addl %eax, %edx

addl %ebx, %ecx

Unresolved Data Dependence Intel: Memory Disambiguation Unit

ID Counter

0x0 0 – 15

… …

0x15 𝑘
… …

0xff 0 – 15

256 Counters

4 Bits

𝑘 = 0? In Order

Out of Order

N

YDelayed Store

Load

Selected by the least significant
8 bits of the Load PC

Aliasing?

𝑘 = 𝑘 − 1

𝑘 = 15

N
Y

Memory Order
Buffer

Main Idea: MDU Side Channel

6

Microbenchmark Intel: Memory Disambiguation Unit

ID Counter

0x0 0 – 15

… …

0x15 𝑘
… …

0xff 0 – 15

256 Counters

4 Bits

𝑘 = 0? In Order

Out of Order

N

Y

Aliasing?

𝒌 = 𝒌 − 𝟏

𝑘 = 15

N
Y

Memory Order
Buffer Change of 𝑘 leaks which load is

executed (Control Flow Information)
Which code can update the
MDU ? (Update Condition)

.rep 10

imul $1, %rdi, %rdi

.endr

0x0e: movq $0, (%rdi)

0x15: movl (%rsi), %eax

Delayed Store

Load

Real-world Applications ?

1 Reverse-engineering of
MDU Update Logic 2

3 4MDPeek:
End-to-end Attacks

Defenses against

MDPeek

Vulnerable Load
Identification

Characterization: Method

7

Method
Microbenchmark
Transient Execution
Performance Monitor Counter

...

Machine ClearX X 0 0

0 0

1 5

15 1 15 1 5

1

1

...

PMC record
(MACHINE_CLEARS.COUNT)

Microbenchmark

%rdi≠%rsi
(non-aliased store and load)
%rdi=%rsi
(aliased store and load)

Testcase
Testcase with
non-aliased store and load

Workflow of Characterization

Notation

Characterization: Method

8

Method
Microbenchmark
Transient Execution
Performance Monitor Counter

An Example of Test Case
Effects of ROB on MDU

Testcase

Store with delayed address generation

Load to be tested

Delay the instruction in the ROB head

Adjust the number of nop to control the layout of ROB

Characterization: Method

9

Method
Microbenchmark
Transient Execution
Performance Monitor Counter

An Example of Test Case
Effects of ROB on MDU
Adjust NUM_NOP

Characterization: Method

9

Method
Microbenchmark
Transient Execution
Performance Monitor Counter

An Example of Test Case
Effects of ROB on MDU
Adjust NUM_NOP

Insight
MDU can update only when
both the delayed store and

load are in the ROB.

Characterization: Results and Insights

Results
Shown as follows

10

Characterization: Results and Insights

Insights on Update Condition
Store is allocated in the ROB earlier than load

10

Characterization: Results and Insights

Insights on Update Condition
Store is allocated in the ROB earlier than load
Unresolved dependence is necessary

10

Characterization: Results and Insights

Insights on Update Condition
Store is allocated in the ROB earlier than load
Unresolved dependence is necessary
Address of the store is generated slower than load

10

Characterization: Results and Insights

Insights on Update Condition
Store is allocated in the ROB earlier than load
Unresolved dependence is necessary
Address of the store is generated slower than load

Physical address of the load is ready

10

Characterization: Results and Insights

Insights on Update Condition
Store is allocated in the ROB earlier than load
Unresolved dependence is necessary
Address of the store is generated slower than load

Physical address of the load is ready
Both the addresses of the store and load are valid,
or the page offset of store and load ≥ 4 bytes

10

1 Reverse-engineering of
MDU Update Logic 2

3 4MDPeek:
End-to-end Attacks

Defenses against

MDPeek

Vulnerable Load
Identification

Modeling Vulnerable Codes

op@rd
op^rd
...
op^rd
store [rd]
op^rs
...
op^rs
load [rs]
op
...
op

Def distance

LS distance
Delay Capacity

of op@rd

Code Pattern for MDU Update

Instruction Model
store [rd], load [rs], op@rd, op^rd, op^rs

Distance Model
Distance: number of instructions
Delay capacity

Update Condition
Def distance + LS distance < Delay capacity

11

Modeling Vulnerable Codes

Instruction Model
store [rd], load [rs], op@rd, op^rd, op^rs

Distance Model
Distance: number of instructions
Delay capacity

Update Condition
Def distance + LS distance < Delay capacity

Precomputed Delay Capacity
Input: uops.info
Distance computing: using nop instructions
Cache state of the load
Instruction chains

Delay Capacity Experiments on loads

Def Distance

U
pd

at
e

Ra
te

Delay Capacity Experiments on Some Arithmetic Instructions
Def Distance

U
pd

at
e

Ra
te

12 Andreas Abel and Jan Reineke. uops.info: Characterizing Latency, Throughput, and Port Usage of Instructions on Intel Microarchitectures. In Proceedings
of the International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), pages 673–686, 2019.

Modeling Vulnerable Codes

Instruction Model
store [rd], load [rs], op@rd, op^rd, op^rs

Distance Model
Distance: number of instructions
Delay capacity

Update Condition
Def distance + LS distance < Delay capacity

Precomputed Delay Capacity
Input: uops.info
Distance computing: using nop instructions
Cache state of the load
Instruction chains

Implementation
LLVM v11.0.0

Compute shortest path between
basic blocks

Identify stores and loads inside each
basic block, and a define instruction
chain for each store

Identify preceding stores for each
load, calculate Def distance and LS
distance

Identify loads that is potential to
update the MDU

13

An Example

1 // if u >= v

2 if (mp_cmp(&u, &v) != MP_LT) {

3 // u = u – v

4 mp_sub(&u, &v, &u);

5 }

6 else {

7 // v = v – u

8 mp_sub(&v, &u, &v);

9 }

mp_invmod_slow

Secret Dependent Branch

WolfSSL (v5.7.2)

14

An Example

1 // if u >= v

2 if (mp_cmp(&u, &v) != MP_LT) {

3 // u = u – v

4 mp_sub(&u, &v, &u);

5 }

6 else {

7 // v = v – u

8 mp_sub(&v, &u, &v);

9 }

1 int mp_sub (mp_int * a, mp_int * b, mp_int * c) {

2 int sa, sb, res; sa = a->sign; sb = b->sign;

3 if (sa != sb) {

4 c->sign = sa; res = s_mp_add (a, b, c);

5 } else {

6 if (mp_cmp_mag (a, b) != MP_LT) {

7 c->sign = sa; res = s_mp_sub (a, b, c);

8 } else {

9 c->sign = (sa == MP_ZPOS) ? MP_NEG : MP_ZPOS;

10 res = s_mp_sub (b, a, c);

11 }

12 }

13 return res;

14 }

Inline
(O3)

Secret Dependent Branch

WolfSSL (v5.7.2)

mp_invmod_slow mp_sub

14

An Example

1 // if u >= v

2 if (mp_cmp(&u, &v) != MP_LT) {

3 // u = u – v

4 mp_sub(&u, &v, &u);

5 }

6 else {

7 // v = v – u

8 mp_sub(&v, &u, &v);

9 }

1 int mp_sub (mp_int * a, mp_int * b, mp_int * c) {

2 int sa, sb, res; sa = a->sign; sb = b->sign;

3 if (sa != sb) {

4 c->sign = sa; res = s_mp_add (a, b, c);

5 } else {

6 if (mp_cmp_mag (a, b) != MP_LT) {

7 c->sign = sa; res = s_mp_sub (a, b, c);

8 } else {

9 c->sign = (sa == MP_ZPOS) ? MP_NEG : MP_ZPOS;

10 res = s_mp_sub (b, a, c);

11 }

12 }

13 return res;

14 }

mov -0x130(%rbp),%rdx
mov %eax,0x8(%rdx)
mov -0x128(%rbp),%rdi
...
call 4e600 <s_mp_sub>

Compile

Secret Dependent Branch

Vulnerable Loads Location
Vulnerable Load 2

Location

Vulnerable Load 1
Location

Vulnerable Load 3
Location

Delayed
Store

Vulnerable Load 2

WolfSSL (v5.7.2)

mp_invmod_slow mp_sub

14

1 Reverse-engineering of
MDU Update Logic 2

3 4MDPeek:
End-to-end Attacks

Defenses against

MDPeek

Vulnerable Load
Identification

Attack Framework and Primitives

Attack Framework
Synchronization: page fault (with SGX-Step, page level)
Control flow Leakage: MDU counter update (byte level)
Reset: aliased store-load pairs
Prime: non-aliased store-load pairs

15

Attack Framework and Primitives

Attack Framework
Synchronization: page fault (with SGX-Step, page level)
Control flow Leakage: MDU counter update (byte level)
Reset: aliased store-load pairs
Prime: non-aliased store-load pairs

15

X X 1 5

1

1 ? 0 0

15

...

Reset

Probe

𝑇! (in-order) 𝑇" (out-of-order)

𝑇! − 𝑇" < 150 cycles

Attack Framework and Primitives

Attack Primitive

D
en

si
ty

Execution Time / Cycle

Timing Difference
> 0
= 0

Attack Framework
Synchronization: page fault (with SGX-Step, page level)
Control flow Leakage: MDU counter update (byte level)
Reset: aliased store-load pairs
Prime: non-aliased store-load pairs

16

X X 1 5

1

1 ? 0 0

15

...

Reset

Probe

𝑇! (in-order) 𝑇" (out-of-order)

𝑇! − 𝑇" < 150 cycles

Attacking Libjpeg

17

8 pixels

8
pi

xe
ls

idct_slow

page 12 page 13

Branch-1

Branch-2Scan

Input Image

Observation
IDCT function iterates 8 times for each 8×8 pixel block
Different pixel layout results in different control flow
After scaling the image 12×, only 16 layouts are possible

/* Pass 1: process columns from input, store into work array. */
/* Note results are scaled up by sqrt(8) compared to a true IDCT; */
/* furthermore, we scale the results by 2**PASS1_BITS. */
for (ctr = DCTSIZE; ctr > 0; ctr--) {
...

}
/* Pass 2: process rows from work array, store into output array. */
/* Note that we must descale the results by a factor of 8 == 2**3, */
/* and also undo the PASS1_BITS scaling. */
for (ctr = 0; ctr < DCTSIZE; ctr++) {
...

}

jidcint.c: jpeg_idct_islow

Attacking Libjpeg

18

8 pixels

8
pi

xe
ls

idct_slow

page 12 page 13

Branch-1

Branch-2Scan

init

probeInput Image init

probe

Probe time

Cy
cl

e

Recover: (10, 0) → [1,1,0,1,0,1,0,1], [0,0,0,0,0,0,0,0] →

Observation
IDCT function iterates 8 times for each 8×8 pixel block
Different pixel layout results in different control flow
After scaling the image 12×, only 16 layouts are possible

Method
Synchronize with page faults
Measure the branch taken through MDU counters
Recover leaked pixels with pre-computed patterns

// Trigger Page Fault Here
/* Pass 1: process columns from input, store into work array. */
/* Note results are scaled up by sqrt(8) compared to a true IDCT; */
/* furthermore, we scale the results by 2**PASS1_BITS. */
for (ctr = DCTSIZE; ctr > 0; ctr--) {
...

}
/* Pass 2: process rows from work array, store into output array. */
/* Note that we must descale the results by a factor of 8 == 2**3, */
/* and also undo the PASS1_BITS scaling. */
for (ctr = 0; ctr < DCTSIZE; ctr++) {
...

}
// Trigger Page Fault Here

Attacking RSA Key Generation

19

Observation
Inverse modular (invmod) is used during RSA key generation
Secrets (p, q or lcm(p-1,q-1)) serve as parameters of invmod
Secret-dependent branches exist in invmod function

int wc_MakeRsaKey(RsaKey* key, int size, long e, WC_RNG* rng)
{ ...

if (err == MP_OKAY) /* key->d = 1/e mod lcm(p-1, q-1) */
err = mp_invmod(&key->e, tmp3, &key->d);

}

WolfSSL v5.7.2

int mbedtls_rsa_deduce_crt(const mbedtls_mpi *P,
const mbedtls_mpi *Q, const mbedtls_mpi *D,
mbedtls_mpi *DP, mbedtls_mpi *DQ, mbedtls_mpi *QP)

{ ...
if (QP != NULL) { /* QP = Q^{-1} mod P */

MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(QP, Q, P));
}

}

MbedTLS v3.6.1

1 // if u >= v

2 if (mp_cmp(&u, &v) != MP_LT) {

3 // u = u – v

4 mp_sub(&u, &v, &u);

5 }

6 else {

7 // v = v – u

8 mp_sub(&v, &u, &v);

9 }

invmod function

Attacking RSA Key Generation

20

Observation
Inverse modular (invmod) is used during RSA key generation
Secrets (p, q or lcm(p-1,q-1)) serve as parameters of invmod
Secret-dependent branches exist in invmod function

Evaluation
1000 attacks on 2048-bit key
MbedTLS: 830 ms for a single trace, with success rate exceeding 97%
WolfSSL: 880 ms for a single trace, with success rate exceeding 95%

Recover: 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0

Va
lu

e

Probe time

MbedTLS Attack on then path

Recover: 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0

Va
lu

e

Probe time

WolfSSL Attack on else path

noise

1 Reverse-engineering of
MDU Update Logic 2

3 4MDPeek:
End-to-end Attacks

Defenses against

MDPeek

Vulnerable Load
Identification

Defenses: Serialization and Alignment

21

Serialization
Insight: MDU is enabled only when both a delayed store and load are allocated in the ROB
Method: Insert an lfence instruction between a potential delayed store and following loads
Performance Overhead: ~140%

store

load

store

store

load

load

store

lfence

load

store

store

lfence

load

load

vulnerable
loads

hardened
loads

Defenses: Serialization and Alignment

22

Serialization
Insight: MDU is enabled only when both a delayed store and load are allocated in the ROB
Method: Insert an lfence instruction between a potential delayed store and following loads
Performance Overhead: ~140%

Alignment
Insight: MDU is selected by the lowest 8 bits of the load PC
Method: Align the load PC to 256 bytes by inserting nop instructions
Performance Overhead: ~160%

002: store

00c: load

012: store

023: store

02f: load

032: load

vulnerable
loads

002: store

00c: load

012: store

023: store

02f: jmp

... ...

100c: load

1032: jmp

200c: load

Defenses: Store-to-load Coupling

23

Insight
Unresolved data dependence is necessary to update the MDU
Making the dependence explicit to the CPU
Adding deterministic dependence between the store and load addresses

mdu_update_dependence_1:
 movq (%rdi), %rdi

movq $0, (%rdi)
nop
nop
nop
movq (%rsi), %rsi
lfence

 ret

Update rate: 100%

mdu_update_dependence_2:
 movq (%rdi), %rdi

movq $0, (%rdi)
mov %rdi, %rax
and $0, %rax
or %rax, %rsi
movq (%rsi), %rsi

 lfence
 ret

Update rate: 0

vulnerable load

Explicit Dependence:
%rsi = %rdi | 0

Defenses: Store-to-load Coupling

24

Insight
Unresolved data dependence is necessary to update the MDU
Making the dependence explicit to the CPU
Adding deterministic dependence between the store and load addresses

Evaluation
Serialization: ~140%
Alignment: ~160%
Store-to-load Coupling: ~20%

Conclusion

25

Systematic MDU Characterization
Update condition
Interaction with cache, TLB and ROB
Multiple stores and loads
NOT isolated between the normal and secure world

Vulnerable Loads Identification in Real-world Applications
Modeling address generation delay
Measuring Delay Capacity

MDPeek: End-to-end Attacks with MDU Side Channel
Attacking Libjpeg
Attacking RSA Generation (MbedTLS and WolfSSL)

Defenses against MDPeek
Naive defenses
Store-to-load Coupling

7x faster than
naive defenses

3 end-to-end attacks

Automated vulnerable
code identification

Systematic MDU update
logic characterization

MDPeek: Breaking Balanced Branches in SGX with
Memory Disambiguation Unit Side Channels

Chang Liu, Shuaihu Feng, Yuan Li, Dongsheng Wang, Wenjian He, Yongqiang Lyu and Trevor E. Carlson

Thanks

Questions?

