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Update condition
Interaction with cache, TLB and ROB
Multiple stores and loads
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Vulnerable Loads Identification in Real-world Applications
Modeling address generation delay
Measuring Delay Capacity

MDPeek: End-to-end Attacks with MDU Side Channel
Attacking Libjpeg
Attacking RSA Generation (MbedTLS and WolfSSL)

Defenses against MDPeek
Naive defenses
Store-to-load Coupling

7x faster than 
naive defenses

3 end-to-end attacks

Automated vulnerable 
code identification 

Systematic MDU update 
logic characterization
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movq (%rdx), %rdi
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(4) Use the loaded value
(5) Use the loaded value
(6) Use the loaded value after calculation

Unresolved Data Dependence

Delayed Store

Ready Load

Out of order ?
In Order ?

Before %rdi is ready
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Microbenchmark Intel: Memory Disambiguation Unit

ID Counter

0x0 0 – 15

… …

0x15 𝑘
… …

0xff 0 – 15

256 Counters

4 Bits

𝑘 = 0? In Order

Out of Order

N

Y

Aliasing?

𝒌 = 𝒌 − 𝟏

𝑘 = 15

N
Y

Memory Order 
Buffer Change of 𝑘 leaks which load is 

executed (Control Flow Information)
Which code can update the 
MDU ? (Update Condition)

.rep 10

imul $1, %rdi, %rdi

.endr

0x0e: movq $0, (%rdi)

0x15: movl (%rsi), %eax

Delayed Store

Load

Real-world Applications ?
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Method
Microbenchmark
Transient Execution
Performance Monitor Counter

...

Machine ClearX X 0 0

0 0

1 5

15 1 15 1 5

1

1

...

PMC record 
(MACHINE_CLEARS.COUNT)

Microbenchmark

%rdi≠%rsi
(non-aliased store and load)
%rdi=%rsi
(aliased store and load)

Testcase
Testcase with 
non-aliased store and load

Workflow of Characterization

Notation
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Method
Microbenchmark
Transient Execution
Performance Monitor Counter

An Example of Test Case
Effects of ROB on MDU

Testcase

Store with delayed address generation

Load to be tested

Delay the instruction in the ROB head

Adjust the number of nop to control the layout of ROB 



Characterization: Method

9

Method
Microbenchmark
Transient Execution
Performance Monitor Counter

An Example of Test Case
Effects of ROB on MDU
Adjust NUM_NOP



Characterization: Method

9

Method
Microbenchmark
Transient Execution
Performance Monitor Counter

An Example of Test Case
Effects of ROB on MDU
Adjust NUM_NOP

Insight
MDU can update only when 
both the delayed store and 

load are in the ROB.
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Characterization: Results and Insights

Insights on Update Condition
Store is allocated in the ROB earlier than load
Unresolved dependence is necessary
Address of the store is generated slower than load

Physical address of the load is ready
Both the addresses of the store and load are valid,
or the page offset of store and load ≥ 4 bytes

10
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Modeling Vulnerable Codes

op@rd
op^rd
...
op^rd
store [rd]
op^rs
...
op^rs
load [rs]
op
...
op

Def distance

LS distance
Delay Capacity 

of op@rd

Code Pattern for MDU Update

Instruction Model
store [rd], load [rs], op@rd, op^rd, op^rs

Distance Model
Distance: number of instructions
Delay capacity

Update Condition
Def distance + LS distance < Delay capacity

11



Modeling Vulnerable Codes

Instruction Model
store [rd], load [rs], op@rd, op^rd, op^rs

Distance Model
Distance: number of instructions
Delay capacity

Update Condition
Def distance + LS distance < Delay capacity

Precomputed Delay Capacity
Input: uops.info
Distance computing: using nop instructions
Cache state of the load
Instruction chains

Delay Capacity Experiments on loads

Def Distance

U
pd

at
e 

Ra
te

Delay Capacity Experiments on Some Arithmetic Instructions
Def Distance

U
pd

at
e 

Ra
te

12 Andreas Abel and Jan Reineke. uops.info: Characterizing Latency, Throughput, and Port Usage of Instructions on Intel Microarchitectures. In Proceedings 
of the International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), pages 673–686, 2019.



Modeling Vulnerable Codes

Instruction Model
store [rd], load [rs], op@rd, op^rd, op^rs

Distance Model
Distance: number of instructions
Delay capacity

Update Condition
Def distance + LS distance < Delay capacity

Precomputed Delay Capacity
Input: uops.info
Distance computing: using nop instructions
Cache state of the load
Instruction chains

Implementation
LLVM v11.0.0

Compute shortest path between
basic blocks

Identify stores and loads inside each
basic block, and a define instruction
chain for each store

Identify preceding stores for each
load, calculate Def distance and LS
distance

Identify loads that is potential to
update the MDU

13



An Example

1 // if u >= v

2 if (mp_cmp(&u, &v) != MP_LT) {

3 // u = u – v

4 mp_sub(&u, &v, &u);

5 }

6 else {

7 // v = v – u

8 mp_sub(&v, &u, &v);

9 }

mp_invmod_slow

Secret Dependent Branch

WolfSSL (v5.7.2)
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An Example

1 // if u >= v

2 if (mp_cmp(&u, &v) != MP_LT) {

3 // u = u – v

4 mp_sub(&u, &v, &u);

5 }

6 else {

7 // v = v – u

8 mp_sub(&v, &u, &v);

9 }

1 int mp_sub (mp_int * a, mp_int * b, mp_int * c) {

2 int sa, sb, res; sa = a->sign; sb = b->sign;

3 if (sa != sb) {

4 c->sign = sa; res = s_mp_add (a, b, c);

5 } else {

6 if (mp_cmp_mag (a, b) != MP_LT) {

7 c->sign = sa; res = s_mp_sub (a, b, c);

8 } else {

9 c->sign = (sa == MP_ZPOS) ? MP_NEG : MP_ZPOS;

10 res = s_mp_sub (b, a, c);

11 }

12 }

13 return res;

14 }

Inline
(O3)

Secret Dependent Branch

WolfSSL (v5.7.2)

mp_invmod_slow mp_sub
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An Example

1 // if u >= v

2 if (mp_cmp(&u, &v) != MP_LT) {

3 // u = u – v

4 mp_sub(&u, &v, &u);

5 }

6 else {

7 // v = v – u

8 mp_sub(&v, &u, &v);

9 }

1 int mp_sub (mp_int * a, mp_int * b, mp_int * c) {

2 int sa, sb, res; sa = a->sign; sb = b->sign;

3 if (sa != sb) {

4 c->sign = sa; res = s_mp_add (a, b, c);

5 } else {

6 if (mp_cmp_mag (a, b) != MP_LT) {

7 c->sign = sa; res = s_mp_sub (a, b, c);

8 } else {

9 c->sign = (sa == MP_ZPOS) ? MP_NEG : MP_ZPOS;

10 res = s_mp_sub (b, a, c);

11 }

12 }

13 return res;

14 }

mov    -0x130(%rbp),%rdx
mov    %eax,0x8(%rdx)
mov    -0x128(%rbp),%rdi
...
call   4e600 <s_mp_sub>

Compile

Secret Dependent Branch

Vulnerable Loads Location
Vulnerable Load 2 

Location

Vulnerable Load 1 
Location

Vulnerable Load 3 
Location

Delayed 
Store

Vulnerable Load 2

WolfSSL (v5.7.2)

mp_invmod_slow mp_sub

14
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Attack Framework and Primitives

Attack Primitive

D
en

si
ty

Execution Time / Cycle

Timing Difference
> 0
= 0

Attack Framework
Synchronization: page fault (with SGX-Step, page level)
Control flow Leakage: MDU counter update (byte level)
Reset: aliased store-load pairs
Prime: non-aliased store-load pairs
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Attacking Libjpeg
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8 pixels

8 
pi

xe
ls

idct_slow

page 12 page 13

Branch-1

Branch-2Scan 

Input Image

Observation
IDCT function iterates 8 times for each 8×8 pixel block
Different pixel layout results in different control flow
After scaling the image 12×, only 16 layouts are possible

/* Pass 1: process columns from input, store into work array. */
/* Note results are scaled up by sqrt(8) compared to a true IDCT; */
/* furthermore, we scale the results by 2**PASS1_BITS. */
for (ctr = DCTSIZE; ctr > 0; ctr--) {
...

}
/* Pass 2: process rows from work array, store into output array. */
/* Note that we must descale the results by a factor of 8 == 2**3, */
/* and also undo the PASS1_BITS scaling. */
for (ctr = 0; ctr < DCTSIZE; ctr++) {
...

}

jidcint.c: jpeg_idct_islow



Attacking Libjpeg

18

8 pixels

8 
pi

xe
ls

idct_slow

page 12 page 13

Branch-1

Branch-2Scan 

init

probeInput Image init

probe

Probe time

Cy
cl

e

Recover: (10, 0) → [1,1,0,1,0,1,0,1], [0,0,0,0,0,0,0,0] →

Observation
IDCT function iterates 8 times for each 8×8 pixel block
Different pixel layout results in different control flow
After scaling the image 12×, only 16 layouts are possible

Method
Synchronize with page faults
Measure the branch taken through MDU counters
Recover leaked pixels with pre-computed patterns

// Trigger Page Fault Here
/* Pass 1: process columns from input, store into work array. */
/* Note results are scaled up by sqrt(8) compared to a true IDCT; */
/* furthermore, we scale the results by 2**PASS1_BITS. */
for (ctr = DCTSIZE; ctr > 0; ctr--) {
...

}
/* Pass 2: process rows from work array, store into output array. */
/* Note that we must descale the results by a factor of 8 == 2**3, */
/* and also undo the PASS1_BITS scaling. */
for (ctr = 0; ctr < DCTSIZE; ctr++) {
...

}
// Trigger Page Fault Here



Attacking RSA Key Generation
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Observation
Inverse modular (invmod) is used during RSA key generation
Secrets (p, q or lcm(p-1,q-1)) serve as parameters of invmod
Secret-dependent branches exist in invmod function

int wc_MakeRsaKey(RsaKey* key, int size, long e, WC_RNG* rng)
{   ...

if (err == MP_OKAY) /* key->d = 1/e mod lcm(p-1, q-1) */
err = mp_invmod(&key->e, tmp3, &key->d);

}

WolfSSL v5.7.2

int mbedtls_rsa_deduce_crt(const mbedtls_mpi *P, 
const mbedtls_mpi *Q, const mbedtls_mpi *D,   
mbedtls_mpi *DP, mbedtls_mpi *DQ, mbedtls_mpi *QP)

{   ...
if (QP != NULL) {  /* QP = Q^{-1} mod P */

MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(QP, Q, P));
}

}

MbedTLS v3.6.1

1 // if u >= v

2 if (mp_cmp(&u, &v) != MP_LT) {

3 // u = u – v

4 mp_sub(&u, &v, &u);

5 }

6 else {

7 // v = v – u

8 mp_sub(&v, &u, &v);

9 }

invmod function



Attacking RSA Key Generation
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Observation
Inverse modular (invmod) is used during RSA key generation
Secrets (p, q or lcm(p-1,q-1)) serve as parameters of invmod
Secret-dependent branches exist in invmod function

Evaluation
1000 attacks on 2048-bit key
MbedTLS: 830 ms for a single trace, with success rate exceeding 97%
WolfSSL: 880 ms for a single trace, with success rate exceeding 95%

Recover: 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0

Va
lu

e

Probe time

MbedTLS Attack on then path

Recover: 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0

Va
lu

e

Probe time

WolfSSL Attack on else path

noise
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Serialization
Insight: MDU is enabled only when both a delayed store and load are allocated in the ROB
Method: Insert an lfence instruction between a potential delayed store and following loads
Performance Overhead: ~140%

store

load

store

store

load

load

store

lfence

load

store

store

lfence

load

load

vulnerable 
loads

hardened 
loads
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Serialization
Insight: MDU is enabled only when both a delayed store and load are allocated in the ROB
Method: Insert an lfence instruction between a potential delayed store and following loads
Performance Overhead: ~140%

Alignment
Insight: MDU is selected by the lowest 8 bits of the load PC
Method: Align the load PC to 256 bytes by inserting nop instructions
Performance Overhead: ~160%

002: store

00c: load

012: store

023: store

02f: load

032: load

vulnerable 
loads

002: store

00c: load

012: store

023: store

02f: jmp

... ...

100c: load

1032: jmp

200c: load
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Insight
Unresolved data dependence is necessary to update the MDU
Making the dependence explicit to the CPU
Adding deterministic dependence between the store and load addresses

mdu_update_dependence_1:
    movq (%rdi), %rdi

movq $0, (%rdi)
nop
nop
nop
movq (%rsi), %rsi
lfence

    ret

Update rate: 100%

mdu_update_dependence_2:
    movq (%rdi), %rdi

movq $0, (%rdi)
mov %rdi, %rax
and $0, %rax
or %rax, %rsi
movq (%rsi), %rsi

    lfence
    ret

Update rate: 0

vulnerable load

Explicit Dependence: 
%rsi = %rdi | 0
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Insight
Unresolved data dependence is necessary to update the MDU
Making the dependence explicit to the CPU
Adding deterministic dependence between the store and load addresses

Evaluation
Serialization: ~140%
Alignment: ~160%
Store-to-load Coupling: ~20%
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25

Systematic MDU Characterization
Update condition
Interaction with cache, TLB and ROB
Multiple stores and loads
NOT isolated between the normal and secure world

Vulnerable Loads Identification in Real-world Applications
Modeling address generation delay
Measuring Delay Capacity

MDPeek: End-to-end Attacks with MDU Side Channel
Attacking Libjpeg
Attacking RSA Generation (MbedTLS and WolfSSL)

Defenses against MDPeek
Naive defenses
Store-to-load Coupling

7x faster than 
naive defenses

3 end-to-end attacks

Automated vulnerable 
code identification 

Systematic MDU update 
logic characterization
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