DeLorean: Directed Statistical Warming through Time Traveling
Accuracy/Speed Trade-off

- Detailed Simulation
- Sampled Simulation
- DeLorean
- Analytical Modeling
Sampled Simulation

Practical approach: Sampled Simulation 1,2

Virtualized Fast Forwarding (KVM)

Functional Simulation: Warm-up (e.g., Caches, BP)

1% Detailed Simulation

Sampled Simulation Bottleneck

Cache warmup
97% of simulation time
Goal: Eliminate Traditional Cache Warm-up

Feasible simulation for systems w/ large caches
But how?

Statistical Cache Modeling

Input:
memory reuse

freq
reuse dist.

Cache
Model

Output:
miss ratio = f(cache size)

32kB 128kB 512kB 2MB 8MB
0% 4% 8% 12%

StatStack\(^1\), StatCache\(^2\), etc:
• Sparse input
• 20% overhead on native execution

DeLorean Overview

DeLorean

Simulator
- core
- DRAM

DeLorean
- Lukewarm Cache
- Associativity Model
- Capacity Model

Profile Data
- freq
- reuse dist.

Cache Req. → Cache Resp.

DRAM Req. → DRAM Resp.
The Lukewarm Cache

Do we need to statistically model every memory instruction?

Hits in the lukewarm cache are correct!

Misses in the lukewarm cache → key accesses

LRU Cache
no warm-up

\(f(x) \)
Capacity Model: StatStack

Sample of reuses in the vicinity of X ($RD-H_v$)

Reuse of X (RD_x)

$Hit = f(RD_x, RD-H_v)$
Time Traveling

Record key accesses
Misses in the Lukewarm Cache

Obtain reuses for key accesses

Detailed simulation and
directed cache warming

Go back in time

Go back in time
Directed Reuse Profiling

Obtain reuses for the key accesses while executing in KVM

Watchpoint on \(X \) → Protect \(P_X \)

Reuse of \(X \) but not the desired one

Obtain the reuse of \(X \)

First use

Access to \(P_X \) but not to \(X \) → false positive

Avoid false positives for efficient reuse collection
Time Traveling

Record key accesses
Misses in the Lukewarm Cache

Obtain reuses key accesses

Detailed simulation and directed cache warming

Repeat until reuses for all key accesses are found.

Explorer-n+1 is not always needed!
Results: Speed

Small number of key accesses
49x faster than CoolSim

Many key accesses, all Explorers needed as fast as CoolSim

5.7x faster than CoolSim\(^1\), 96x faster than SMARTS

Results: Accuracy

Average error 3.5%
Conclusion

• Multi-pass approach to identify and capture key memory reuses
 • Time Traveling: Exploits **near-native fast-forwarding (KVM)**
 • Targets memory reuse of **key accesses**

• Simulation speed
 • 96x faster than SMARTS

• Accuracy - 3% error on average

• Check the paper for more
 • Multicore simulation
 • Replacement policies

• Code publicly available at:
 • github.com/delorean-sim
Thank You
Danke
Merci
谢谢
ありがとう
Gracias
Kiitos
감사합니다
धन्यवाद
شكرًا
תודה
Directed Statistical Warming through Time Traveling

Nikos Nikoleris
Arm Research

Lieven Eeckhout
Ghent University

Erik Hagersten
Uppsala University

Trevor E. Carlson
National University of Singapore

MICRO-52