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BOTTOM LINE UP FRONT
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• Problem: mitigating speculative execution attacks in modern CPUs

• Prior work:
• High performance overhead: 30% to 200% overhead
• Non-secure: introducing opportunities for new attacks

• Our work, HIDFIX:
• Almost zero performance overhead
• Same/stronger security guarantees



Fundamental Security Problem of Modern CPUs
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• Decades-long focus of computer architects: CPU performance

• Aggressive CPU optimizations have resulted in fatal security vulnerabilities 
affecting almost all modern processors
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Cache-based Spectre Attacks

• Focus of this work: SPECTRE targeting speculative execution
• Example: Spectre via Prime+Probe
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How to Mitigate Spectre?
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performance overheads, even when protection is not required

High Performance 
Overhead

Limited Protection

High Performance 
Overhead

Vulnerable to new SCAs

Medium Performance 
Overhead



Detection + Mitigation Approach
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Are the Current Possible Combinations of Detection + 
Mitigations Reliable?

71. Spectify reference
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Attack 1: Bypassing Cyclone Detection
1. BENIGNINTERFERE 2. SINGLEPROBE 3. SINGLEPRIME

Cyclone1: detects " ⇝ $ ⇝ "	 as an attack

BENIGNINTERFERE attack: bypassing the Cyclone by using third party interfere: " ⇝ & ⇝ $ ⇝ "
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if no third party interfere



Goal: Detection/Mitigation Co-design

• Blindly combining detection and mitigation is not effective and robust

• Our goal is to co-design detection and mitigation to achieve a solution that:

1. Accurately spots the speculatively leaked data through the cache

2. Reverts the data leaks before a potential attacker has a chance for extraction

3. Minimizes performance and efficiency overheads, while comprehensively 
blocking all the leaks
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HIDFIX Methodology

1. Spotting Speculative Data Leaks
• Leak Condition 1: Cache location/memory address initialized by a potential attacker
• Leak Condition 2: Misspeculatively accessed by a potential victim

2. Reverting Misspeculative Data Leaks
• Re-initializing the cache locations and memory addresses that have misspeculatively leaked
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HIDFIX Microarchitecture

11

Re-initialize the leaked 
addresses by re-flushing

Re-initialize the leaked cache set(s) by 
reloading all the cache lines in the set 

(order specified by the LRU bits)
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Experimental Setup

• Simulation:
• gem5 in syscall emulation (SE) mode

• CACTI 6.5 for power and area overheads

• Benchmarks:
• Benign programs: SPEC CPU2006 benchmark suite

• Malicious programs: Spectre-v1 (Prime+Probe, 
Flush+Reload, Flush+Flush), prior attacks breaking 
ML-based detectors, our own new attacks

• Representatives: ELFies as executable representative 
with a region size of 100M instructions
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L1d/i size 32KB, 8-way

L2 size 256KB, 8-way

L3 size 1MB, 16-way

Fetch/dispatch/commit width 8/8/8

Branch Predictor TAGE-SC-L-8KB

RF (INT/FP) size 256/256

LQ/SQ/IQ/ROB size 32/32/96/192

AIT/CIT size 512/512

UIT size 16

gem5 Configuration 
(Skylake-like processors)



Security Evaluation

• Experimentally tested attacks
• HIDFIX shows 100% accuracy to spot 

misspeculative data leaks in known 
Spectre attacks:
• Spectre Proof-of-Concept (PoC) attacks
• ML evasive attacks (Spectify1)
• Our new attacks in this work

• HIDFIX rollbacks do not introduce 
new side effects to create SCAs
• E.g., prior work2 shows that E/MàS 

coherence state changes can introduce 
new vulnerabilities; HIDFIX does not 
introduce such transitions

• Full security analysis in the paper
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Spectre-v1 (Prime+Probe) 100% ✓
Spectre-v1 (Flush+Reload) 100% ✓
Spectre-v1 (Flush+Flush) 100% ✓
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Th
is 

w
or

k BENIGNINTERFERE 100% ✓
SINGLEPROBE 100% ✓
SINGLEPRIME 100% ✓



Performance Evaluation
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Application
(SPEC CPU2006)

#leaks 
Detected

#cycles
Baseline OoO core

#cycles
HidFix core

Performance 
Overhead (%)

zeusmp 44 65,516,404 65,523,444 0.0107%
bwaves 4 110,485,539 110,486,179 0.0006%
bzip2 6 76,260,838 76,261,798 0.0013%
cactus 0 121,449,812 121,449,812 0.0000%
gamess 32 53,436,713 53,441,833 0.0096%
gcc 15 303,419,510 303,421,910 0.0008%
gobmk 7 97,271,448 97,272,568 0.0012%
libquantum 0 144,772,205 144,772,205 0.0000%
mcf 86 435,546,173 435,559,933 0.0032%
omnetpp 8 171,908,584 171,909,864 0.0007%
soplex 6 256,567,930 256,568,890 0.0004%
Average1 18.45 135,986,161 135,989,670 0.0025%

geomean is used for performance overhead and number of cycles, and arithmetic mean for the number of leaks



Power and Area Overheads

• Power overhead: 0.5% over the baseline OoO core
• Overheads come from CIT, AIT, and UIT tables

• The area overhead: 5.6% over the baseline core
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Conclusion

• Blindly combining detections and mitigations is not sufficient
• We present three new attacks to demonstrate the ineffectiveness 

of existing techniques

• HIDFIX: Co-designing detection and mitigation strategies
• Near-zero performance overhead
• End-to-end mitigation without the limitations of prior work
• Not introducing new side effects resulting in new SCAs
• Low area and power overheads

16



HIDFIX: Efficient Mitigation of Cache-based 
Spectre Attacks via Hidden Rollbacks

42nd IEEE/ACM International Conference on 
Computer-Aided Design (ICCAD ‘23)

Arash Pashrashid, Ali Hajiabadi and Trevor E. Carlson

National University of Singapore

Thanks for your attention


