
HIDFIX: Efficient Mitigation of Cache-based 
Spectre Attacks via Hidden Rollbacks

42nd IEEE/ACM International Conference on 
Computer-Aided Design (ICCAD ‘23)

Arash Pashrashid, Ali Hajiabadi and Trevor E. Carlson

National University of Singapore



BOTTOM LINE UP FRONT

2

• Problem: mitigating speculative execution attacks in modern CPUs

• Prior work:
• High performance overhead: 30% to 200% overhead
• Non-secure: introducing opportunities for new attacks

• Our work, HIDFIX:
• Almost zero performance overhead
• Same/stronger security guarantees



Fundamental Security Problem of Modern CPUs

3

• Decades-long focus of computer architects: CPU performance

• Aggressive CPU optimizations have resulted in fatal security vulnerabilities 
affecting almost all modern processors

DOWNFALL COLLIDE+POWER

Platypus



Cache-based Spectre Attacks

• Focus of this work: SPECTRE targeting speculative execution
• Example: Spectre via Prime+Probe

4

Cache

Attacker Victim

Attacker

Attacker

Attacker

Attacker

Attacker

Attacker

Step 1
Step 2

VictimStep 3

Not secret
Not secret
Not secret

Secret

2 Misspeculation

Load Secret

3 Extracting the Secret

Secret-dependent trace in the cache

Speculative Access

e.g., access specific 
cache lines based on 

the secret value

e.g., load latency

Initializes the system for attack1prime_cache_state()

probe_cache_state()

SideChannel[secret]

secret = load A[index]

if (index < size_A)



How to Mitigate Spectre?

5

Restriction-based Invisible Speculation

Undo Speculation

Cache Randomization

Isolation

Access Obfuscation

These solutions are always on and incur unnecessary 
performance overheads, even when protection is not required

High Performance 
Overhead

Limited Protection

High Performance 
Overhead

Vulnerable to new SCAs

Medium Performance 
Overhead



Detection + Mitigation Approach

6

Cyclic-based

!arch-based

Restriction-basedML-based

Existing detectors Existing Mitigations

Invisible Speculation

Undo Speculation Cache Randomization

Access ObfuscationIsolation

(capable of selective enable)

Detection Mechanism

Can leak?

Disable Mitigation
(e.g., 99% of the time)

YesNo

Enable Mitigation



Are the Current Possible Combinations of Detection + 
Mitigations Reliable?

71. Spectify reference

Cyclone
Isolation

Access Obfuscation
1 BENIGNINTERFERE Attack

Bypassed

SINGLEPROBE Attack
Bypassed

Ideal Cyclic-based
Isolation

Access Obfuscation
2

SINGLEPRIME Attack
Bypassed

Ideal Detection
Isolation

Access Obfuscation
3



Attack 1: Bypassing Cyclone Detection
1. BENIGNINTERFERE 2. SINGLEPROBE 3. SINGLEPRIME

Cyclone1: detects " ⇝ $ ⇝ "	 as an attack

BENIGNINTERFERE attack: bypassing the Cyclone by using third party interfere: " ⇝ & ⇝ $ ⇝ "

N1 N2 N3 N4 N5 N6 N7 N8
time

Attacker (A) probe3

Probes cache set N

Victim (V)

Evicts cache line N4

eviction2Attacker (A)

Primes cache set N

prime1
N1 N2 N3 N4 N5 N6 N7 N8 N1 N2 N3 N4 N5 N6 N7 N8

Leakage

Primes cache set N
Attacker (A)1

time

Benign (B)2
Primes cache set N

Victim (V)3
Evicts cache line N4

Attacker (A)4
Probes cache set N

" ⇝ & & ⇝ $ $ ⇝ "

Leakage

8

if no third party interfere



Goal: Detection/Mitigation Co-design

• Blindly combining detection and mitigation is not effective and robust

• Our goal is to co-design detection and mitigation to achieve a solution that:

1. Accurately spots the speculatively leaked data through the cache

2. Reverts the data leaks before a potential attacker has a chance for extraction

3. Minimizes performance and efficiency overheads, while comprehensively 
blocking all the leaks

9



HIDFIX Methodology

1. Spotting Speculative Data Leaks
• Leak Condition 1: Cache location/memory address initialized by a potential attacker
• Leak Condition 2: Misspeculatively accessed by a potential victim

2. Reverting Misspeculative Data Leaks
• Re-initializing the cache locations and memory addresses that have misspeculatively leaked

10

10

Context Switch

10
Tracking Table

1

No data leak 
found from 

Tracking Tables

time
1

Data leak found 
in Tracking Tables

Rollback

Attacker1 Victim2 Context Switch3 Attacker4

0 1
Tracking Table

0 1
Tracking Table

n Initializing cache location or 
memory address n n Misspeculatively 

accessed n Re-initialization (Rollback)
Mispredicted 

speculation window



M
iti

ga
tio

n

Reverting Data Leaks 

De
te

ct
io

n

HIDFIX Microarchitecture

11

Re-initialize the leaked 
addresses by re-flushing

Re-initialize the leaked cache set(s) by 
reloading all the cache lines in the set 

(order specified by the LRU bits)

AlertAlert

Spotting Data Leaks

Cache Initialization Table (CIT) Address Initialization Table (AIT)

Tracking Misspeculation Events

Unresolved 
Instructions Table (UIT) L1 D-Cache



Experimental Setup

• Simulation:
• gem5 in syscall emulation (SE) mode

• CACTI 6.5 for power and area overheads

• Benchmarks:
• Benign programs: SPEC CPU2006 benchmark suite

• Malicious programs: Spectre-v1 (Prime+Probe, 
Flush+Reload, Flush+Flush), prior attacks breaking 
ML-based detectors, our own new attacks

• Representatives: ELFies as executable representative 
with a region size of 100M instructions

12

L1d/i size 32KB, 8-way

L2 size 256KB, 8-way

L3 size 1MB, 16-way

Fetch/dispatch/commit width 8/8/8

Branch Predictor TAGE-SC-L-8KB

RF (INT/FP) size 256/256

LQ/SQ/IQ/ROB size 32/32/96/192

AIT/CIT size 512/512

UIT size 16

gem5 Configuration 
(Skylake-like processors)



Security Evaluation

• Experimentally tested attacks
• HIDFIX shows 100% accuracy to spot 

misspeculative data leaks in known 
Spectre attacks:
• Spectre Proof-of-Concept (PoC) attacks
• ML evasive attacks (Spectify1)
• Our new attacks in this work

• HIDFIX rollbacks do not introduce 
new side effects to create SCAs
• E.g., prior work2 shows that E/MàS 

coherence state changes can introduce 
new vulnerabilities; HIDFIX does not 
introduce such transitions

• Full security analysis in the paper

13

Attacks Detection 
Accuracy Mitigated?

Sp
ec

tre
 

Po
C

Spectre-v1 (Prime+Probe) 100% ✓
Spectre-v1 (Flush+Reload) 100% ✓
Spectre-v1 (Flush+Flush) 100% ✓

Sp
ec

tif
y Expanded-Spectre-NOP 100% ✓

Expanded-Spectre-Mem 100% ✓
Benign-Program-Spectre 100% ✓

Th
is 

w
or

k BENIGNINTERFERE 100% ✓
SINGLEPROBE 100% ✓
SINGLEPRIME 100% ✓



Performance Evaluation

14

Application
(SPEC CPU2006)

#leaks 
Detected

#cycles
Baseline OoO core

#cycles
HidFix core

Performance 
Overhead (%)

zeusmp 44 65,516,404 65,523,444 0.0107%
bwaves 4 110,485,539 110,486,179 0.0006%
bzip2 6 76,260,838 76,261,798 0.0013%
cactus 0 121,449,812 121,449,812 0.0000%
gamess 32 53,436,713 53,441,833 0.0096%
gcc 15 303,419,510 303,421,910 0.0008%
gobmk 7 97,271,448 97,272,568 0.0012%
libquantum 0 144,772,205 144,772,205 0.0000%
mcf 86 435,546,173 435,559,933 0.0032%
omnetpp 8 171,908,584 171,909,864 0.0007%
soplex 6 256,567,930 256,568,890 0.0004%
Average1 18.45 135,986,161 135,989,670 0.0025%

geomean is used for performance overhead and number of cycles, and arithmetic mean for the number of leaks



Power and Area Overheads

• Power overhead: 0.5% over the baseline OoO core
• Overheads come from CIT, AIT, and UIT tables

• The area overhead: 5.6% over the baseline core

15

0%

20%

40%

60%

80%

100%

120%

Baseline OoO HidFix Baseline OoO HidFix

Area Power

AIT
CIT
UIT
ALU-cmplx
ALU-fp
ALU-int
BPU
CDB
D-Cache
Decode
I-Cache
Issue
LSQ
Renamce
RF
ROB



Conclusion

• Blindly combining detections and mitigations is not sufficient
• We present three new attacks to demonstrate the ineffectiveness 

of existing techniques

• HIDFIX: Co-designing detection and mitigation strategies
• Near-zero performance overhead
• End-to-end mitigation without the limitations of prior work
• Not introducing new side effects resulting in new SCAs
• Low area and power overheads

16



HIDFIX: Efficient Mitigation of Cache-based 
Spectre Attacks via Hidden Rollbacks

42nd IEEE/ACM International Conference on 
Computer-Aided Design (ICCAD ‘23)

Arash Pashrashid, Ali Hajiabadi and Trevor E. Carlson

National University of Singapore

Thanks for your attention


