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• Deep Neural Network Models -> Ubiquitous
• To support resource & power constraint edge devices
• Neural Network Hardware Accelerator

§ Sparse Convolutional Neural Networks (CNNs)
§ Accelerates network inference 

Overview
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GOAL : High Energy Efficiency
AI Accelerator

Image retrieved from :https://bigdata-madesimple.com/innovative-ai-chips-to-make-the-world-faster-and-more-efficient/

Ø Novel event-driven sparsity-aware accelerator
Ø Efficiently exploits sparsity
Ø Reduces memory access



• Introduction
§ Background on CNN & Sparsity

• Prior Work & Motivation 
• MnF Methodology 

§ Event-driven Dataflow
§ Hardware Design 

• Evaluation Setup & Results
• Conclusion

Outline
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Convolutional Neural Network (CNN)

• High level of parallelism 
• Typically transformed into Matrix multiplication (BUT we do it in a different way!)

Convolution [1]

CNN Architecture[2]

[1] Image retrieved from : https://peltarion.com/knowledge-center/documentation/modeling-view/build-an-ai-model/blocks/2d-convolution
[2] Image retrieved from : https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
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• Pruning weights of low importance
• No/Minimum drop in accuracy
• Benefits

– Reduce the number of 
computations

– Reduce the storage 
– Reduce the memory access
– Better performance on 

hardware

Pruning

Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both weights and connections for efficient neural networks. In Proceedings of the 28th International Conference on 
Neural Information Processing Systems - Volume 1, NIPS’15, page 1135-1143, Cambridge, MA, USA, 2015. MIT Press.

Pruning 
weights

Sparsity – Weight Pruning



Sui, X.; Lv, Q.; Zhi, L.; Zhu, B.; Yang, Y.; Zhang, Y.; Tan, Z. A Hardware-Friendly High-Precision CNN Pruning Method and Its FPGA Implementation. Sensors 2023, 23, 824. 
https://doi.org/10.3390/s23020824

Sparsity – Weight Pruning
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• Unstructured pruning
§ Weights are pruned irregularly without 

any pattern 
§ Unstructured sparsity
§ Exploited by: SCNN, Eyeriss v2, GoSPA

Different pruning techniques

• Structured pruning 
§ Weight pruned regularly following a 

particular pattern 
§ Structure sparsity
§ Exploited by: CambriconS, Nvidia A100, 

S2TA

https://doi.org/10.3390/s23020824


Xiaolong Ma, Sheng Lin, Shaokai Ye, Zhezhi He, Linfeng Zhang, Geng Yuan, Sia Huat Tan, Zhengang Li, Deliang Fan, Xuehai Qian, et al. 2021.Non-Structured DNN Weight 
Pruning–Is It Beneficial in Any Platform? IEEE Transactions on Neural Networks and Learning Systems (2021). 6

Unstructured Structured

High compression 
ratio

Lower compression 
ratio

Able to maintain 
accuracy

Able to maintain 
accuracy

Unstructured sparsity Structure sparsity

Low storage 
requirement

Less storage 
requirement

• Compression ratio of 
structured pruning is ~ 1.14x 
to 2.56x lower

• Storage requirement of 
structurally pruned models is 
1.7x to 3x less than or 
comparable (1.09x and 1.35x 
more) to unstructurally
pruned models.

Sparsity – Weight Pruning



• Activation is the input to a layer & output of a layer
• ReLU Function

§ Max(0, x)

§ Result in irregular data

• Typically processed in groups

Images retrieved from : http://eyeriss.mit.edu/2019_neurips_tutorial.pdf 7

Sparsity – Activation
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Sparsity – Activation

• Activation sparsity is ~50% 
• How about process it individually like SNN ?

Images retrieved from : http://eyeriss.mit.edu/2019_neurips_tutorial.pdf



Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both weights and connections for efficient neural networks. In Proceedings of the 28th International Conference 
on Neural Information Processing Systems - Volume 1, NIPS’15, page 1135-1143, Cambridge, MA, USA, 2015. MIT Press. 9

Perspective On Sparse CNNs

• Benefits
• Reduce the number of computations
• Reduce the storage 
• Reduce the memory access

• Challenges to hardware accelerators
• Supporting irregular data sparsity
• Avoid multiplications with zero operands
• Ensure high utilization of MAC units on hardware 
• Avoid high number of accesses to DRAM and 

global SRAM 

Energy Table



• Introduction
§ Background on CNN & Sparsity

• Prior Work & Motivation 
• MnF Methodology 

§ Event-driven Dataflow
§ Hardware Design 

• Evaluation Setup & Results
• Conclusion

Outline
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Yu-Hsin Chen, Tushar Krishna, Joel S. Emer, and Vivienne Sze. 2017. Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural networks. IEEE J. 
Solid-State Circ. 52, 1 (2017), 127–138.

Existing accelerators : Eyeriss v2
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ü Avoids zero-valued (pruned weights/ zero-
valued activation) storage and access

ü Skips zero-valued multiplications

Eyeriss v2 architecture

✗ Storage format memory overhead
✗ Read dependencies 
✗ Unnecessary input access
✗ 73% area overhead , 25% power overhead• Exploits unstructured pruning, stores 

data in the CSC format



Edward Hanson, Shiyu Li, Hai ‘Helen’ Li, and Yiran Chen. 2022. Cascading structured pruning: Enabling high data reuse for sparse DNN accelerators. In Proceedings of the 49th 
Annual International Symposium on Computer Architecture (ISCA’22). 522–535.

Existing accelerators : CSP
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• Hardware-software co-design
• Exploits structured pruning, and stores 

data in the customized compressed 
format

ü Avoids complex logic to handle irregular 
weight sparsity 

ü Skips zero-valued weight multiplications

CSP pruning technique

✗ Activation sparsity not exploited
✗ Unnecessary input access
✗ Computes ineffectual multiplications



Proposed Work
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• Prior works
§ Memory overhead
§ Complex and expensive hardware logic 
§ No support for activation sparsity 
§ Performs ineffectual multiplications

• Our work
§ Leverages structured pruning in Conv and FC layers, unstructured 

pruning in FC layers
§ Novel event-driven dataflow
§ Efficiently exploits activation sparsity
§ Without complex and high logic overhead 



• Introduction
§ Background on CNN & Sparsity

• Prior Work & Motivation 
• MnF Methodology 

§ Event-driven Dataflow
§ Hardware Design 

• Evaluation Setup & Results
• Conclusion

Outline
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• A novel event-driven dataflow to handle activation sparsity efficiently without 
complex, high-overhead logic.

• An accelerator enables a highly parallel computation of each activation with high 
energy efficiency and performance.

• Support sparsity in convolutional neural networks.

Multiply-and-Fire

15



Methodology – Event-driven Dataflow

16

ü Utilize structured pruning to save storage

Eyeriss V2
SCNN
Sparten
GoSPA
…



Methodology – Event-driven Dataflow

17

ü Utilize structured pruning to save storage

Eyeriss V2
SCNN
Sparten
GoSPA
…



Methodology – Event-driven Dataflow

18

ü Utilize structured pruning to save storage

Eyeriss V2
SCNN
Sparten
GoSPA
…

MnF



Methodology – Event-driven Dataflow

19

ü Utilize structured pruning to save storage

Eyeriss V2
SCNN
Sparten
GoSPA
…

MnF



Methodology – Event-driven Dataflow
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CSP, SPOTS, …

ü Utilize structured pruning to save storage
ü Utilize event-driven dataflow to highly reuse activation
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CSP, SPOTS, …

ü Utilize structured pruning to save storage
ü Utilize event-driven dataflow to highly reuse activation

MnF



Methodology – Event-driven Dataflow

26

ü Lower number of access and lower energy!
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Methodology – Event-driven Dataflow
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ü Lower number of access and lower energy!
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Methodology – Event-driven Dataflow
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ü Higher utilization!



Methodology – Event-driven Dataflow
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ü Only non-zero activations are processed
ü Non-zero activations are only accessed once.
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30

=

PE0

=

PE1

=

PE2

=

PE3
IFMs

OFMs

FiltersEvent

1Neuron WeightKernel

0 1 2

3 4 5

6 7 8

0

1

2

3

0 1 2 3
Input Feature Map Output 

Feature Map

0 1
2 3

0 1
2 3

0 1
2 3

0 1 2 3
0

1

2

3

0 1
2 3

0

1

2

3

0 1 2 3

MAC0

MAC2

MAC1

MAC3

0

1

2

3

0 1 2 3

Event

PE1

0 1
2 3

0 1
2 3

0 1
2 3

0 1
2 3

Filter-wise parallelism Kernel-wise parallelism

ü Only non-zero activations are processed
ü Non-zero activations are only accessed once.
ü Access weight regularly



Methodology – Hardware
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-> Low access energy



Methodology – Hardware
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Methodology – Hardware
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• Synopsys Design Compiler version P-2019.03, targeting the 22-nm technology node. 
• Clock gating of the inactive SRAMs is implemented with latches and included in the synthesis. 
• Gate-level simulations are performed using Synopsys VCS-MX K- 2015.09, and power analysis 

is performed with Synopsys PrimePower version P-2019.03. 
• All simulations and performance analyses of MnF hardware are carried out at a frequency of 

200 MHz.

Evaluation - Setup

35

MnF-DRAM: implementation with off-

chip memory

MnF-SRAM: our target design with 

only on-chip local memory access

MnF-DRAM MnF-SRAM

MAC Cluster Size 9 9

Multiplier per PE 27 27

Weight SRAM per PE 10.1 KB 648 KB

Acc SRAMMAC Cluster 4.69 KB 51.6 KB

Frequency (MHz) 200 200

Bit Precision Weight/Activation: 8 bits
Psum: 25 bits



Evaluation – Structured Accelerators
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• Comparison with Structured Sparsity-aware DNN Accelerators
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Diannao CambriconS CSP MNF-S MNF-D

• MnF-S is 40.7× and 11.2×more energy efficient than Cambricon-S and CSP, respectively. 
• MnF-D is 7.8× and 2.2×more energy efficient than Cambricon-S and CSP, respectively. 
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• Comparison with Structured Sparsity-aware DNN Accelerators
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Diannao CambriconS CSP MNF-S MNF-D

• MnF-S is overall 2.19× and 1.41× better than Cambricon-S and CSP, respectively. 
• MnF-D achieves a 2.38× and 1.53× faster speed than Cambricon-S and CSP, respectively. 



Evaluation
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• Comparison with Unstructured Sparsity-aware DNN Accelerators
(Power and Frames/J are scaled to 28 nm)

• Our targeted energy-saving design, MnF-S achieves 28.2×, 4.81×, 4.21×, and 2.14× better 
energy efficiency than Eyeriss, Eyeriss v2, NullHop and GoSPA, respectively. 

Design Eyeriss Eyeriss V2 NullHop GoSPA MnF-S MnF-D

Frames/S

AlexNet 35 342 - 460 473 473

VGG-16 1 - 14 30 41 42

MobileNet - 1471 - 1868 2894 3180

Frames/J
AlexNet 169 843 - 1587 2682 1700
VGG-16 5 - 53 107 225 135
MobileNet - 1708 - 4473 12426 4678



Evaluation
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• Comparison with Unstructured Sparsity-aware DNN Accelerators
(Power and Frames/J are scaled to 28 nm)

• In terms of speedup, compared to the Eyeriss series, NullHop, and the state-of-the-art design 
GoSPA, MnF (considering both MnF-S and MnF-D) is at least 1.39× faster on all the evaluated 
networks except for AlexNet. 

Design Eyeriss Eyeriss V2 NullHop GoSPA MnF-S MnF-D

Frames/S

AlexNet 35 342 - 460 473 473

VGG-16 1 - 14 30 41 42

MobileNet - 1471 - 1868 2894 3180

Frames/J
AlexNet 169 843 - 1587 2682 1700
VGG-16 5 - 53 107 225 135
MobileNet - 1708 - 4473 12426 4678



Evaluation – Power & Area Breakdown
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• On-chip memory, FIFOs, and buffer consume 73.5% of the power
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Evaluation – Power & Area Breakdown
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• On-chip memory consumes 73.5% of the total area in the MnF-D PE design 



Evaluation – Power & Area Breakdown
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• On-chip memory dominates the area and power.
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• A novel event-driven dataflow and an energy-efficient hardware accelerator for 
sparse DNN inference workloads
ü Only non-zero activations are processed
ü Non-zero activations are only accessed once.
ü Access weights regularly

• A geometric mean of 11.2×more energy efficiency (inferences/J) on all evaluated 
models and 1.4× speedup (inferences/second) on most of the evaluated models 
compared with the latest sparsity-aware DNN accelerator, CSP.

Conclusion – Multiply-and-Fire (MnF)
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• Exploiting activation sparsity
• Maximizing the reuse of activation data
• Designing an energy-efficient, high-

performance sparsity-aware DNN 
accelerator

• Achieving 11.2×more energy efficiency 
and 1.41× speedup

Q&A
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Thanks!


