
Characterizing the Cost-Accuracy
Performance of Cloud Applications

Sunimal Rathnayake
National University of Singapore

Singapore
sunimalr@comp.nus.edu.sg

Lavanya Ramapantulu
Nanyang Technological University

Singapore
r.lavanya@ntu.edu.sg

Yong Meng Teo
National University of Singapore

Singapore
teoym@comp.nus.edu.sg

ABSTRACT
Emergence of applications that produce results with different accu-
racy allows cloud consumers to leverage the advantages of elastic
cloud resources and pay-per-use pricing model. However, the trade-
off between cost, accuracy and execution time of cloud applications
has not been well studied due to multiple challenges. A key chal-
lenge faced by a cloud consumer is tuning the application and
determining cloud resource configuration that achieves the desired
application accuracy among the configuration space.

This paper proposes an approach to improve the cost-accuracy
performance of cloud applications for a given cost and accuracy.
To illustrate our approach, we use two popular convolution neural
networks’ (CNN) inference as examples with pruning as a tuning
tool for changing the accuracy, and yield several insights. Firstly, we
show the existence of multiple degrees of pruning as “sweet-spots”,
where inference time and cost can be reduced without losing accu-
racy. Combining such sweet-spots can halve inference cost and time
with one-tenth reduction in accuracy for Caffenet CNN. Secondly,
we show that in the large resource configuration space, these “sweet-
spots” form the cost-accuracy and time-accuracy Pareto-frontiers
whereby a Pareto-optimal configuration can reduce cost and exe-
cution time by 55% and 50% respectively for achieving the highest
possible inference accuracy. Lastly, to quantify the accuracy per-
formance of cloud applications, we introduce Time Accuracy Ratio
(TAR) and Cost Accuracy Ratio (CAR) metrics. We show that using
TAR and CAR reduces the time complexity in determining cloud
resource configurations from exponential to polynomial-time.

ACM Reference Format:
Sunimal Rathnayake, Lavanya Ramapantulu, and Yong Meng Teo. 2020.
Characterizing the Cost-Accuracy Performance of Cloud Applications. In
49th International Conference on Parallel Processing - ICPP : Workshops (ICPP
Workshops ’20), August 17–20, 2020, Edmonton, AB, Canada. ACM, New York,
NY, USA, 10 pages. https://doi.org/10.1145/3409390.3409409

1 INTRODUCTION
Competition among today’s cloud providers has resulted in vendors
offering a large number of cloud services and resource types with
pay-per-use charging spanning a multitude of consumer needs. The

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPP Workshops ’20, August 17–20, 2020, Edmonton, AB, Canada
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8868-9/20/08. . . $15.00
https://doi.org/10.1145/3409390.3409409

cost of executing an application remains a key consideration for
a cloud consumer in selecting cloud resources. Cloud consumers
have the opportunity to minimize the cost and execution time by
selecting the optimal cloud configuration for an application. Among
these applications, there are applications that produce results with
a notion of accuracy or a probabilistic output such as the machine
learning applications. With the advent of such applications that
produce probabilistic results with different accuracy, there is a new
opportunity for cloud consumers to minimize cloud cost through
cost-accuracy trade-off. Application and resource scaling on cloud
is a well explored topic where the focus has mainly been on resource
elasticity. Inspired by Amdahl’s [2] and Gustafson’s [9] laws on
parallel processing, the cloud research community has extended
the fixed-workload and fixed-time scaling on the cloud. These work
either focus on the impact of cloud resource configuration [8, 15,
21–23, 25, 28] on cost and time, or the impact of scaling problem
size on cost and time [26]. However, there is a lack of work on
understanding the impact of changing accuracy on both the cost
and execution time of the cloud application. This research question
is non-trivial due to the large resource configuration presented
by the wide spectrum of heterogeneous cloud resources and the
different degrees of changing application accuracy. We address this
challenge by investigating and quantifying the impact of accuracy
with respect to both cost and time.

Big data explosion and advancements in large applications such
as real-time image classification, natural language processing, among
others, pose new challenges for enterprises. There is a growing
demand for compute power and parallel processing with the need
to deliver results in real time or within expected time deadlines
for Internet-based applications. For example, the need for image
detection and filtering processing in social media platforms such as
Facebook social media network saw as many as 350 million photo
uploads per day in Jan 2019 [4]. Increasingly, before these pho-
tos are published they go through a filtering process to determine
whether they comply with the rules and regulations [6]. This filter-
ing process has to be completed in near real-time speed for photos
to appear on their profiles almost immediately. Today, Convolution
Neural Networks (CNNs) are widely used in such applications. As
CNNs perform a lot of computations, mainly convolutions, special-
ized hardware such as Graphics Processing Units (GPUs), Tensor
Processing Units and Field Programmable Gate Arrays (FPGAs) are
used to improve real-time performance. Results from CNNs are
associated with a percentage accuracy metric. Thus the expectation
is to produce a “close enough” result [10]. For instance, in image
filtering on social media, it would be good enough to say that a
given image is violating the rules with a 75% probability, so that the
image could be forwarded for manual review. Given the important

https://doi.org/10.1145/3409390.3409409
https://doi.org/10.1145/3409390.3409409

ICPP Workshops ’20, August 17–20, 2020, Edmonton, AB, Canada S. Rathnayake et al.

role CNNs play in today’s computing landscape and their suitabil-
ity as applications that produce results with varying accuracy, we
selected CNN as our example application in this paper.

To investigate the trade-off between the cost and accuracy of ap-
plications on cloud, we propose ameasurement driven approach and
use image classification CNN applications, Caffenet and Googlenet
as example cloud applications. To vary the accuracy of CNN infer-
ence, we change the parameters in CNN layers thereby resulting
in sparse layers. This technique is called pruning. The combina-
tion of layers pruned by different degrees results in versions of
the CNNs that produce classification results with different accu-
racy. While pruning has been well-studied with respect to CNN
algorithms, the impact of tuning such applications on different
cloud configurations is non-trivial. Using a measurement-based
analytical model we determine cost-accuracy and time-accuracy
Pareto-optimal cloud resource configurations. Measurement results
are obtained by running 50,000 unique inferences on Caffenet and
Googlenet CNN image classification models that were trained with
1.2 million images on Amazon EC2 cloud instances with GPU for
parallel processing.

This paper makes the following contributions:

(1) We present a measurement-driven model for investigating
the trade-offs between time and accuracy, and, cost and accu-
racy, and show the existence of “sweet-spot” regions where
the time and cost could be reduced with no reduction in
application accuracy.

(2) We show that multi-layer pruning is effective in reducing
the inference time with minimal accuracy drop. For example,
for Caffenet CNN on Amazon EC2, the inference time could
be halved with just one-tenth drop in accuracy.

(3) We show the existence of cost-accuracy and time-accuracy
Pareto-optimal configurations spanning considerably large
time and cost range, and opportunity to reduce cost and time.
Selecting the right degree of pruning and resource configu-
ration reduces execution time by up to 50% and cost by up
to 55% for obtaining highest possible inference accuracy for
Caffenet.

(4) We show that quantifying cost-accuracy and time-accuracy
performance measured in TAR and CAR is important in
selecting efficient application and resource configurations,
and demonstrate their usage as heuristics in a polynomial-
time cloud configuration determination algorithm.

The paper is organized as follows. Section 2 discusses related
work. Section 3 presents our approach followed by Section 4 where
we present results from our approach. Section 5 concludes the paper.

2 RELATEDWORK
We discuss the related work under two categories; (i) accuracy of
applications where we focus on scaling accuracy of applications,
and (ii) impact of scaling on cloud cost.

2.1 Accuracy-Performance of Applications
Changing the accuracy of applications in resource constrained en-
vironments is a well-explored resource topic. Especially, in the
embedded computing domain where applications are required to

deliver results under tight resource constraints (ie. power, stor-
age, memory), trading off the accuracy of applications is a popular
approach. Such an approach includes changing the precision of
variable representation, lossy computations and compression, data
and task sampling, among others [24]. However, outside embed-
ded computing domain, changing accuracy of applications have
received comparatively much less attention. The primary reason is
that the traditional applications operated in on-premise resources
with accesses to large processing capacity, memory, and storage.
With the advent of machine learning applications, specially CNNs
that produce imprecise results associated with an accuracy per-
centage, trading off accuracy has become relevant to applications
outside embedded systems as well. Li et al. [17] and Luo et al [20]
proposes pruning to reduce the number of parameters, resulting
in sparse matrices. In this paper, we use pruning to change infer-
ence accuracy. Quantization [7, 32] is used to change the length of
variables that hold CNN parameters. For example, a parameter data
type which is usually represented by 64-bits will be changed to be
represented by 32-bits. This has a direct impact on the memory
usage of the application. Quantization improves the execution time
if there is hardware support for higher speed computations with
shorter bit representation. Like Quantization, weight sharing [1]
is a technique to cluster parameters in CNNs together based on
a “closeness" measure. Multiple parameters that have values close
to each other would be reduced to one parameter. This also has a
direct impact on the memory and storage usage of the CNN rather
than the execution time.
In the context of the cloudwhere themajor concern is the cost, users
are more interested in reducing the execution time as it directly
translates into cost savings due to pay-per-use charging. Unlike
resource constrained environments such as embedded systems, the
cloud has ample storage and memory capacity for a relatively inex-
pensive price. Thus, in this work, we select pruning as the technique
for changing the accuracy of CNNs. When it comes to performance
of CNNs, the major focus has been on the training phase of the
application [14, 18, 29]. Li et al. [18] present a measurement based
analysis on training CNNs. They compare different implementa-
tions of popular CNN models on on-premise GPUs and investigate
performance bottlenecks. In contrast, we focus on CNN inference
and conduct our study on cloud GPU instances. It is important to
note that existing studies on CNNs have been focusing on the time-
performance of CNN hosted on on-premise systems. To the best of
our knowledge, there has been no published work that studies the
trade-off between cost and CNN inference accuracy on the cloud.

2.2 Application Scaling on Cloud
Unlike resource scaling, application scaling on the cloud has not
received much attention. CELIA [25] investigates the scaling of an
application under a cost budget and time deadline constraint on the
cloud. They propose a measurement-driven analytical modeling
approach for determining Pareto optimal cloud resource configura-
tions. Rathnayake et al. [26] focus on the impact of scaling problem
size of applications on cloud cost using an analytical model and an
optimization algorithm. In comparison to these works, this paper
focuses on scaling the accuracy of applications and study its impact
on cloud cost and time. Han [11] proposes a framework for develop-
ing scalable algorithms called elastic algorithms where they define

Characterizing the Cost-Accuracy
Performance of Cloud Applications ICPP Workshops ’20, August 17–20, 2020, Edmonton, AB, Canada

Figure 1: Caffenet CNN Architecture [16]
the accuracy of results with respect to a cost or time investment. Us-
ing this method, they generate algorithms that produce results with
different accuracy values to match the cost and time investment.
In comparison, instead of generating an algorithm we change the
accuracy of an already existing application (CNN model) to trade
off accuracy for execution time and cost. He et al. [12] proposes
scaling of cloud-hosted video streaming applications by varying
the quality of the video based on network statistics such as band-
width and latency. In contrast, we focus on compute intensive CNN
applications to study the tradeoff.

In summary, trading-off accuracy for performance is expanding
from embedded systems into cloud computing with the advent of
machine learning applications such as CNNs. However, there has
been limited research to investigate the trade-offs and opportunities
present on the cloud for such applications. This paper attempts to
bridge this gap and present insights to the cloud consumer on the
accuracy-cost and accuracy-time trade-offs on the cloud.
3 APPROACH
In this section, we present our approach which consists of (i) appli-
cation characterization, (ii) a measurement-driven analysis and (iii)
a measurement-driven analytical modeling approach for determin-
ing cloud resource configurations for a given accuracy within time
and cost deadline constraints, as illustrated in Figure 2.
3.1 Overview
Given an application which produces results of different accuracy
for different application configurations, and a set of cloud resources,
the objective of our approach is to understand the effect of applica-
tion accuracy on execution time and cost on cloud. The approach
consists of three main stages. Firstly, to characterize the application
we conduct a baseline execution and determine various experiment
parameters. Secondly, we take time measurements for different
application accuracy. Thirdly, we input these measurements into
our analytical models for determining execution time and cost for
different resource configurations. Cloud resource configurations
are filtered using a Pareto optimization filter to determine time and
cost Pareto optimal cloud configurations. Finally, with the mea-
surements and analytical model predictions, we derive insights on
the time-accuracy and cost-accuracy trade-offs in executing ap-
plications on cloud. Since we selected CNN as the representative
application, we describe our approach in detail in the context of
CNNs.

3.2 Application Characterization
To understand the CNN and to fix experiment parameters such
as the number of parallel inferences, we characterize the CNN on
cloud. Firstly, to understand the contribution of each CNN layer
towards inference time, we analyze the execution time distribution
for each layer. Secondly, to determine whether there is still an

Table 1: Caffenet Layers
Layer Size Number of Filters Filter Size
input 224 x 224 x3 - -
conv 1 55 x 55 x 96 96 11 x 11 x 3
conv 2 27 x 27 x 256 256 5 x 5 x 48
conv 3 13 x 13 x 384 384 3 x 3 x 256
conv 4 13 x 13 x 384 384 3 x 3 x 192
conv 5 13 x 13 x 256 256 3 x 3 x 192
fc1 4096 - -
fc2 4096 - -
fc3 1000 - -

opportunity to improve inference time, we evaluate the time taken
for a single inference and how it changes with pruning. Thirdly, to
ensure full utilization of the compute resources, we determine the
maximum number parallel inferences on a given cloud resource.

3.2.1 Pruning of CNNs. CNN layers are stored in the memory
as matrices. The CNN training process adjusts the values of the
elements of these matrices in order to tune the CNN for the highest
accuracy resulting in dense matrices. Pruning removes (changes
to zero) selected elements in these matrices. There are different
algorithms to determine the parameters (elements) that need to be
pruned. Li et al. [17] remove entire regions of convolution layers
instead of individual parameters based on L1 norm. Anvar et al. [3]
present a similar approach to [17], but with a more complex scoring
algorithm to rank parameters. Huang et al. [13] fromNvidia propose
modeling the pruning problem as a combinatorial optimization
problem with a cost function. Their objective is to determine the
subset of parameters that minimizes the cost function when pruned.
When CNN layers are pruned, the pruning algorithm selectively
changes the matrices’ elements to zero, resulting in sparse matrices.
For simplicity and implementation convenience, we use the pruning
tools developed by Li et al. [17] in this paper. Resulting sparse
matrices can be efficiently processed with special sparse matrix
computational libraries. In this work, we use an extended version
of Caffe framework [31] for efficient sparse matrix computation.

3.2.2 Accuracy of CNN Inference. The accuracy of CNN inference
refers to the percentage of correct predictions that the CNN does.
For example, for an image classification CNN, the accuracy is the ra-
tio between the number of images the CNN determined the correct
label and the total number of images given as input for classify-
ing. Keeping to the standards set by the machine learning research
community[19, 27], in this paper, we use two widely used accuracy
metrics as follows.

• Top 1 accuracy: The percentage of the number of times that
the class with the highest probability is the expected class
for the given input.
• Top 5 accuracy: The percentage of the number of times that
the expected class for the given input is one of the 5 classes
with the highest probability.

3.3 Measurements
For our analysis, we use measurements to determine both execution
time and cost for CNN inference on a cloud resource instance for
different accuracy. Firstly, for measuring the execution time, we

ICPP Workshops ’20, August 17–20, 2020, Edmonton, AB, Canada S. Rathnayake et al.

application

user

cloud resources

application
characterization

resource
characterization

time, cost models
Pareto

optimization

accuracy

predicted time

predicted cost

degree of pruning

inputs measurements model and optimization outputs

𝐴,𝑊

𝑅

𝑇′, 𝐶′,𝑊

compute CAR TAR

resource config

TAR and CAR

𝑏, 𝑡𝑏,𝑎 𝑇, 𝐶, 𝑝, 𝑎𝑝

Figure 2: Approach

Symbol Description
CNN Application and Data

A a CNN application
P set of A pruned with different degrees of pruning
p a degree of pruning in P
ap accuracy of p
W number of images for inference
n number of batches

Cloud Resources
G set of all cloud resources
R a cloud resource configuration of G
i a cloud resource type in R

vi number of GPUs in i

c1 cost per unit time for i
bi max parallel inference (batch size) of i

Model
C ′ cost budget for inference ofW
T ′ time deadline for inference ofW
C total cost for inference ofW
T total time for inference ofW

tb,ap time for inferring b with ap

Table 2: Symbols Used
execute CNN inference and record the time. To change the infer-
ence time, convolution layers of the CNN are pruned in different
degrees. Secondly, to compute the cost, we retrieve the cost per unit
time from the cloud provider and compute the inference cost by
multiplying the unit cost of the cloud resources used by inference
time. Thirdly, to compute the Top1 and Top5 accuracy, we count the
number of accurate inferences and compute the metrics as defined
in Section 3.2.2. Finally, we compute the TAR and CAR for each
application configuration using the formula shown in Section 3.5.
At the end of the measurement phase, we output a list of degrees of
pruning with their inference time, cost, TAR, and CAR. To minimize
the measurement error, we run each experiment three times and
record the minimum time measurement.

3.4 Time and Cost Models
This section presents the derivation of our analytical models for
determining execution cost and time on cloud resources for a given
CNN with different degrees of pruning.

The CNN inference cost on cloud depends on the total inference
time and the cost per unit time of the cloud resource configuration.

C = T

|R |−1∑
i=0

ci (1)

where T is the inference time, and ci is the cost per unit time for
cloud resource i . T is ratio between the number of batches to be
inferred and the time for inferring one batch for a given accuracy.

T =max

(
n

tb,a

)
(2)

where n is the number of batches and tb,a denotes the time for
a single batch inference for a batch size b and accuracy a. The
inference accuracy of a CNN depends on its degree of pruning as
described above in section 3.2.1. n relies on the maximum number
of parallel inferences possible on the GPU device (the batch size).

n =
W

b
(3)

whereW is the total number of images to be inferred.
Among cloud resources in a given cloud resource configuration

R, inference images are distributed as follows. IfWi denotes the
number of inference images for resource i ,

Wi =
W∑ |R |
j=1vj

vi (4)

Configurations predicted by the models are sent through Pareto-
optimization to filter cost-accuracy and time-accuracy Pareto op-
timal configurations that satisfy time deadline T ′ and cost budget
C ′.

3.5 Time Accuracy Ratio and Cost Accuracy
Ratio

To quantify the trade-offs between time and accuracy, and, cost and
accuracy, we introduce two metrics (i) Time Accuracy Ratio (TAR)
and (ii) Cost Accuracy Ratio (CAR).
TAR is defined as

TAR =
t

a
where t is the inference time and a denotes inference accuracy.
Similarly, CAR is defined as

CAR =
c

a

where c is the cost incurred on cloud to achieve inference accuracy
a.
TAR and CAR represent the time and cost respectively, for achieving
a single unit of accuracy where t , c ∈ (0, inf) and a ∈ [0, 1]. Higher
TAR valuemeans that the time required to achieve a unit of accuracy
is higher and higher CAR means that it incurs a higher amount of
cost to achieve a unit of accuracy. Hence, for both these metrics a
lower value indicates better performance when comparing system
configurations.

Characterizing the Cost-Accuracy
Performance of Cloud Applications ICPP Workshops ’20, August 17–20, 2020, Edmonton, AB, Canada

Table 3: Amazon EC2 Cloud Resource Types
Instance vCPUs GPUs Mem GPU Price GPU
Type (GB) Mem ($/hr) Type

(GB)
p2.xlarge 4 1 61 12 0.9 NVIDIA

K80p2.8xlarge 32 8 488 96 7.2
p2.16xlarge 64 16 732 19 14.4
g3.4xlarge 16 1 122 8 1.14 NVIDIA

M60g3.8xlarge 32 2 244 16 2.28
g3.16xlarge 64 4 488 32 4.56

4 EVALUATION
In this section, we present the evaluation of our approach. Firstly,
we present the experiment setup including application and cloud
resources. Secondly, we show the impact of changing accuracy
on the execution time on cloud. Thirdly, we present the impact
of changing accuracy on execution cost. Finally, we present two
metrics for quantifying the accuracy performance with respect to
time and cost and discuss their usage.
4.1 Experiment Setup
4.1.1 Application. We selected two widely used image classifi-
cation CNNs, Caffenet and Googlenet[30] implemented on caffe
machine learning framework as representative applications. Caf-
fenet is a Caffe implementation of Alexnet [16] CNN. As shown in
Figure 1, Caffenet consists of five convolution layers and three fully
connected layers while Googlenet is much deeper with 56 convo-
lution layers (two main convolution layers and nine “inception"
layers each containing six convolution layers). The architecture
of Googlenet is not shown due to space constraints. Since we are
interested only in inference, we obtained Caffenet and Googlenet
trained with a subset of ImageNet [5] dataset containing about 1.2
million. This training dataset contains images from 1000 categories
with approximately 1000 images from each category. A breakdown
of the properties of each layer is shown in Table 1. conv is used
to denote a convolution layer while fc denotes a fully-connected
layer. The convolution layers are non-uniform in size, number of
filters and the filter size. Convolution layer 1 is the largest in terms
of image size and, convolution layer 2 comes next. The last three
convolution layers are approximately equal in size. When it comes
the fully-connected layers, unlike convolution layers which are
three dimensional, these are vectors. Last fully-connected layer,
fc3, has 1000 neurons that relate to the number of possible outputs.
In contrast to the Caffenet, despite being a deeper CNN, Googlenet
has only 4 million parameters in its layers. We use the same RGB
input image size of 224x224 pixels for both CNNs. For inference, we
use 50000 images from ImageNet dataset which were not included
in training.

4.1.2 Cloud Resources. As CNN processing involves a large num-
ber of matrix operations, we evaluate our approach on GPU in-
stances from Amazon EC2 cloud. As shown in Table 3, we selected
six cloud resource types with GPUs from Amazon EC2 Oregon
region. Both p2 and g3 resource instances are powered by Intel
Xeon E5-2686 v4 CPUs with 2.3GHz base frequency. p2 instances
have NVIDIA k80 GPUs with 2,496 parallel processing cores while
g3 instances are equipped with NVIDIA M60 GPUs with 2048 par-
allel processing cores. Although the specifications states that GPUs
are attached, they are virtual GPUs. Moreover, when charging for

51% 16% 9% 10% 7%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

conv1 conv2 conv3 conv4 conv5 fc1 fc2 fc3

Figure 3: Caffenet Execution Time Distribution of CNN Lay-
ers
resource usage, the hourly price mentioned in the specification is
pro-rated to the nearest second.
4.2 Application Characterization
In application characterization, we focus on three parts. Firstly, we
determine the execution time distribution across CNN layers to
find the most impactful layers. Secondly, we investigate to which
extent CNN inference time can be improved with respect to a single
inference. Lastly, we determine the maximum number of parallel
inferences (batch size) on the GPU device for maximum utilization.

4.2.1 Execution Time Distribution of CNN Layers. To apply prun-
ing, we first determine the layers that have a large execution time
by individually measuring the time taken by each layer on caffe
framework during inference. Figure 3 shows the distribution of
execution time for different layers for Caffenet. We observe that the
convolution layers contribute more to the execution time compared
to other layers and the contribution of each convolution layer is
directly proportional to the values of the image parameters in the
convolution layers. As shown in Table 1, conv1 has the largest
image size (Figure 1) and conv2 comes second. conv3, conv5, and
conv5 have an approximately similar number of parameters. Fol-
lowing a similar pattern, the execution time contribution is 51%
for conv1, and 16% for conv2 followed by 9%, 10% and 7% for the
last three convolution layers respectively. The contribution of fully-
connected layers is very small compared to convolution layers.
Although fully connected layers are dense, as they are not involved
in the expensive convolution operation, their contribution to the
execution time is smaller.

4.2.2 Has Inference Performance Hit theWall? To determinewhether
there is still scope for improvement in the inference time, we apply
pruning for a single inference and study the impact on execution
time.While varying the prune percentage from 0% to 90% uniformly
across all convolution layers, we recorded the execution time for
a single inference. The resulting plot is shown in Figure 4. We ob-

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 10 20 30 40 50 60 70 80 90

T
im

e
(s

ec
)

Prune Ratio (%)

Caffenet
Googlenet

Figure 4: Time for a Single Inference

ICPP Workshops ’20, August 17–20, 2020, Edmonton, AB, Canada S. Rathnayake et al.

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 3200

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
im

e
(s

ec
)

Parallel Inferences

Caffenet
Googlenet

Figure 5: Parallel Inference on a GPU
serve that the inference time decreases with pruning percentage for
both CNNs. From 0% to 90% pruning, the execution time of a single
inference drops by about half from 0.09s to 0.05 seconds and about
one thirds from 0.16s t0 0.1 sec for Googlenet. Thus, we can safely
assume that there is still scope for performance improvement in
CNN inference.

4.2.3 Parallel Inference on GPU. A GPU consists of hundreds of
compute cores that operate in parallel. To get the maximum power
of GPUs, processing needs to be parallelized such that the GPU
resources are fully utilized. A simple way of increasing GPU uti-
lization in inference is by increasing the number of inferences that
run in parallel (also referred to as batch size). Since each GPU has
its own characteristics such as the number of cores and memory,
it is important to determine the amount of parallelism required to
fully utilize the GPU. Although in an on-premise system, a GPU
specification would be good enough to estimate this, cloud GPU
instance capabilities may vary from the specification due to vir-
tualization, multi-tenancy and other restrictions on the cloud. To
estimate this accurately, we experimentally determined the number
of parallel inferences required for full utilization of GPU. The re-
sults on Amazon EC2 p2.xlarge instance with Nvidia k80 is shown
in Figure 5. We observe that the GPU saturates around 300 parallel
inferences, thus it is safe to assume that GPU cloud instances will
be sufficiently utilized when the number of parallel inferences is
300 or above.

4.3 Effect of Accuracy on Inference Time
To understand the effect of accuracy on CNN inference time, we
investigate the change in execution time while changing accuracy.
As we use pruning to control accuracy, we prune CNN layers with
different degrees and measure the inference time and accuracy. As
shown in Figure 3, since convolution layers account for more than
90% of the total inference time, we focus only on the convolution
layers. Firstly, we discuss the effect of accuracy on execution time
for a CNN model hosted on a single standalone resource with a
single GPU. We focus on the impact of pruning individual CNN
layers and having dependency among CNN layers. Secondly, we
extend to CNN inference hosted on a cloud resource configuration
with multiple cloud resources with many GPUs and discuss the
impact of accuracy on execution time.

4.3.1 Pruning Single Layer Only. Figures 6 and 7 illustrate the ex-
ecution time, Top 1 and Top 5 inference accuracy for different
pruning ratios for Caffenet and Googlenet, respectively. The sub-
figures correspond to pruning of each convolution layer. Figure
7 shows only six selected convolution layers of Googlenet from
different levels of the CNN due to space constraints. We observe a
near-linear decrease in inference time with pruning for all convo-
lution layers of Caffenet whereas Googlenet has decrease in time
albeit some fluctuations. The largest reduction in time for Caffenet
is when pruning conv2 layer with one-fourth drop from 19 mins to
14 mins whereas the smallest reduction is for conv1 layer where
the drop is about one-eighth from 19 mins to 16.6 mins. Therefore,
by pruning only a single layer, a significant reduction of inference
time up to 25% can be achieved for Caffenet. Similarly, conv2-3x3
of Googlenet has the strongest impact among the selected six layers
where the time is reduced by about 30% from 13 mins to 9 mins.

Observation 1: There exist “sweet-spot” regions where inference
time reduces with an insignificant drop in accuracy.

Despite the reduction of inference time, we observe that Top
1 and Top 5 accuracy curves in Figure 6 remain unchanged for a
range of pruning ratios starting from 0%. For example, as illustrated
in Figure 1 (c), in Caffenet both Top 1 and Top 5 accuracy remain
almost unchanged until the pruning ratio reaches 50%. After 50%,
both curves demonstrate a gradual drop. However, it is evident
that for the same range where accuracy remains unchanged, the
inference time demonstrates a gradual decrease. A similar pattern
could be observed in all convolution layers. For the first six layers of

 15

 15.5

 16

 16.5

 17

 17.5

 18

 18.5

 19

 0 10 20 30 40 50 60 70 80 90
 0

 10

 20

 30

 40

 50

 60

 70

 80

(d) conv4

T
im

e
(m

in
)

A
cc

u
ra

cy
 (

%
)

Prune Ratio (%)

Time
Top 1 Accuracy
Top 5 Accuracy

 16.5

 17

 17.5

 18

 18.5

 19

 0 10 20 30 40 50 60 70 80 90
 0

 10

 20

 30

 40

 50

 60

 70

 80

(e) conv5

T
im

e
(m

in
)

A
cc

u
ra

cy
 (

%
)

Prune Ratio (%)

Time
Top 1 Accuracy
Top 5 Accuracy

 16.5

 17

 17.5

 18

 18.5

 19

 0 10 20 30 40 50 60 70 80 90
 0

 10

 20

 30

 40

 50

 60

 70

 80

(a) conv1

T
im

e
(m

in
)

A
cc

u
ra

cy
 (

%
)

Prune Ratio (%)

Time
Top 1 Accuracy
Top 5 Accuracy

 13

 14

 15

 16

 17

 18

 19

 0 10 20 30 40 50 60 70 80 90
 0

 10

 20

 30

 40

 50

 60

 70

 80

(b) conv2

T
im

e
(m

in
)

A
cc

u
ra

cy
 (

%
)

Prune Ratio (%)

Time
Top 1 Accuracy
Top 5 Accuracy

 15.5

 16

 16.5

 17

 17.5

 18

 18.5

 19

 0 10 20 30 40 50 60 70 80 90
 0

 10

 20

 30

 40

 50

 60

 70

 80

(c) conv3

T
im

e
(m

in
)

A
cc

u
ra

cy
 (

%
)

Prune Ratio (%)

Time
Top 1 Accuracy
Top 5 Accuracy

Figure 6: Caffenet Effect of Changing Accuracywith Individ-
ual Layer Pruning

Characterizing the Cost-Accuracy
Performance of Cloud Applications ICPP Workshops ’20, August 17–20, 2020, Edmonton, AB, Canada

 42.4

 42.5

 42.6

 42.7

 42.8

 42.9

 43

 43.1

 10 20 30 40 50 60 70 80 90
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

(d) inception-4d-5x5

T
im

e
(m

in
)

A
cc

u
ra

cy
 (

%
)

Prune Ratio (%)

Time
Top 1 Accuracy
Top 5 Accuracy

 42.3

 42.35

 42.4

 42.45

 42.5

 42.55

 42.6

 42.65

 42.7

 42.75

 42.8

 10 20 30 40 50 60 70 80 90
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

(e) inception-4e-5x5

T
im

e
(m

in
)

A
cc

u
ra

cy
 (

%
)

Prune Ratio (%)

Time
Top 1 Accuracy
Top 5 Accuracy

 41.8

 42

 42.2

 42.4

 42.6

 42.8

 43

 10 20 30 40 50 60 70 80 90
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

(f) inception-5a-3x3

T
im

e
(m

in
)

A
cc

u
ra

cy
 (

%
)

Prune Ratio (%)

Time
Top 1 Accuracy
Top 5 Accuracy

 12.2

 12.4

 12.6

 12.8

 13

 13.2

 13.4

 10 20 30 40 50 60 70 80 90
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

(a) conv1-7x7-s2

T
im

e
(m

in
)

A
cc

u
ra

cy
 (

%
)

Prune Ratio (%)

Time
Top 1 Accuracy
Top 5 Accuracy

 9

 9.5

 10

 10.5

 11

 11.5

 12

 12.5

 13

 10 20 30 40 50 60 70 80 90
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

(b) conv2-3x3

T
im

e
(m

in
)

A
cc

u
ra

cy
 (

%
)

Prune Ratio (%)

Time
Top 1 Accuracy
Top 5 Accuracy

 12.3

 12.4

 12.5

 12.6

 12.7

 12.8

 12.9

 13

 13.1

 13.2

 13.3

 13.4

 10 20 30 40 50 60 70 80 90
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

(c) inception-3a-3x3

T
im

e
(m

in
)

A
cc

u
ra

cy
 (

%
)

Prune Ratio (%)

Time
Top 1 Accuracy
Top 5 Accuracy

Figure 7: Googlenet Effect of Changing Accuracy with Indi-
vidual Layer Pruning
Googlenet as shown in Figure 7, the accuracy starts dropping only
after 60% of pruning while the time is seen drastically reduced. We
call this region where accuracy remains almost unchanged while
inference time reduces, sweet-spot region. Existence of sweet-spot
regions is important for a cloud consumer to achieve the maximum
possible inference accuracy with shorter time by selecting a degree
of pruning within the sweet-spot region. For example, for Caffenet
CNN inference on Amazon EC2 p2.xlarge instance, we can achieve
up to one-eights reduction of inference time with no accuracy
change, just by pruning conv2 layer by 50%.

Observation 2: Impact of pruning on accuracy and execution time is
different across convolution layers and does not directly correlate
with convolution layer parameter values.

We observe that the variation of Top 1 and Top 5 inference ac-
curacy differs across convolution layers. As shown in Figure 6, we
observe the largest change in accuracy is in conv1 layer where
the Top 5 accuracy drops from 80% to 0% when the prune ratio
varies from 0% to 90%. This is expected since conv1 is the layer that
receives the input image and also the largest in terms of the size of
the image surface parameter. Rest of the layers demonstrate Top
5 accuracy drop from 80% to around 25% for the same prune ratio
range. Similar variation pattern is observed for Top 1 accuracy as
well. When it comes to execution time, conv2 demonstrates the
largest time range from 19 mins to 14 mins and conv1 demonstrates
smallest execution time range from 19 mins to 16.5 mins. When
comparing these observations with the values of the parameters
in each layer, it is apparent that the accuracy and execution time

variation does not directly relate to the parameter values in the
layer. As shown in Table 1 conv4 in Caffenet contains the high-
est number of compute operations suggesting that pruning conv4
would have the highest impact on accuracy and execution time. But
our measurements show that this is not the case. Therefore, it is
not trivial to determine how to select the best layer and pruning
ratio for achieving the highest accuracy with the lowest execution
time.

4.3.2 Pruning Multiple Layers. To understand the implications on
time and accuracy due to dependency between convolution layers
in the CNN, we combine sweet-spots from multiple layers and
generate a single CNN model. We take guidance from Figure 3
which shows that in Caffenet, conv1 and conv2 account for more
than 60% of the inference time. As shown in Figure 8, we compare
three degrees of pruning; (i) no-pruning (nonpruned), (ii) pruning
only conv1 and conv2 until the last sweet-spot (conv1-2) and (iii)
pruning all convolution layers until the last sweet-spot (all-conv).

Observation 3: Combining CNN layer sweet-spots from multiple
layers results in lower execution time, but may result in a drop in
accuracy as well.

Considering the Top5 accuracy, last sweet-spots in Caffenet with
lowest execution time for conv1 and conv2 are at 30% and 50%
prune ratios. As shown in Figure 8, conv1-2 which has the first
two layers pruned recorded an execution time of 13 mins. In com-
parison, when the layers are pruned individually, the corresponding
execution times for conv1 and conv2 are 18.4 mins and 16.7 mins
respectively. Thus, by pruning the two layers together, we achieve
one-fifth reduction in execution time. When it comes to accuracy,
conv1-2 recorded 70% Top5 accuracy, a 10% drop from the original
accuracy of 80%. When all five layers are pruned until their last
sweet-spots, as shown in all-conv, the recorded execution time
is 11 mins and the Top5 accuracy is 62%. Thus, pruning all layers
resulted in one-third reduction of execution time and 18% drop in
accuracy. Similar observations could be made on Top1 accuracy
as well. Therefore, in addition to the impact of individual convolu-
tion layers, it is important to understand the effect of dependency
between convolution layers.

Since there are multiple ways to prune a given CNN, there exist
many degrees of pruning. Every degree of pruning is associated
with an inference accuracy.Moreover, each of them can be hosted on

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

nonpruned conv1-2 all-conv
 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

T
im

e
(m

in
)

A
cc

u
ra

cy
 (

%
)

Prune Configuration

Time
Top 1
Top 5

Figure 8: Caffenet Effect of Changing Accuracy with Multi-
Layer Pruning

ICPP Workshops ’20, August 17–20, 2020, Edmonton, AB, Canada S. Rathnayake et al.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 20 30 40 50 60 70 80

T
im

e
(h

rs
)

(b) Top5 Accuracy (%)

Configuration

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 15 20 25 30 35 40 45 50 55

T
im

e
(h

rs
)

(a) Top1 Accuracy (%)

Configuration

Figure 9: Impact of Accuracy on Cloud Execution Time
many cloud resource configurations. Thuswe investigate the impact
of inference on accuracy on execution time. For simplicity, we
focus on the simpler Caffenet CNN and select a set of 60 versions of
Caffenet CNN pruned in different degrees spanning a wide accuracy
range. We select a resource configuration space consisting of three
Amazon EC2 resource types from p2 category with three resource
instances from each type and assume a time deadline of ten hours.
Figure 9 is the resulting plot showing all feasible configurations for
inferring one million images with Caffenet.

Observation 4: Given a time deadline, there exist many feasible
configurations for CNN inference. Among them there are multiple
Pareto-optimal configurations.

4.3.3 Time-Accuracy Pareto Frontier. We observe that there are
7654 feasible configurations for executing the Caffenet inference
within the 10 hour time deadline. Among them, there are five Pareto-
optimal configurations each for Top1 accuracy and Top5 accuracy.
The Pareto-frontier is shown as a line in Figures 9 (a) and (b). Even
among the Pareto-optimal configurations, Top1 accuracy varies
from 27% to 53% whereas Top5 accuracy varies from 45% to 78%
with execution time ranging from 3 to 5 hours in both cases. Se-
lecting a Pareto-optimal configuration over other configurations
significantly reduces the execution time. For example, as shown in
Figure 9 (a), selecting the Pareto-optimal configuration with the
highest accuracy reduces execution time by 50% compared to other
configurations with the same accuracy.

4.4 Effect of Accuracy on Inference Cost
The effect of accuracy on cloud cost can be divided into two; (i)
within a single resource type and (ii) across different resource types.
Within a single resource type, the cost of a cloud resource instance
solely depends on the time used. Thus, the cost incurred for CNN
inference is a function of inference time. i.e. in f erence cost =
in f erence time ∗ cost per unit time . However, using a combina-
tion of resources makes the relationship more complex since we
have to take into the cost-accuracy performance of different cloud
resources. Figure 10 shows the total number of configurations that
are capable of executing Caffenet within a $300 cost budget.

Observation 5: Given a cost budget, there exist many feasible con-
figurations for CNN inference including multiple cost-accuracy
Pareto-optimal configurations.

We observe that there are 1042 feasible configurations for exe-
cuting the Caffenet inference within the $300 cost budget. Among
them, there are five Pareto-optimal configurations for both Top1
and Top5 accuracy. Moreover, among the Pareto-optimal configura-
tions, the Top1 accuracy varies from 27% to 53% and Top5 accuracy
varies from with cost ranging from $69 to $119. The cost-accuracy
Pareto-frontier overlaps with time-accuracy Pareto-frontier due
to cost being the restricting factor when allocating resources in
both cases. Cloud consumer can save cost significantly by select-
ing Pareto-optimal configurations over the rest. For example, as

 0

 50

 100

 150

 200

 250

 300

 20 30 40 50 60 70 80

C
o
st

 (
$

)

(b) Top5 Accuracy (%)

Configuration

 0

 50

 100

 150

 200

 250

 300

 15 20 25 30 35 40 45 50 55

C
o
st

 (
$
)

(a) Top1 Accuracy (%)

Configuration

Figure 10: Impact of Accuracy on Cloud Cost

Characterizing the Cost-Accuracy
Performance of Cloud Applications ICPP Workshops ’20, August 17–20, 2020, Edmonton, AB, Canada

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 71 72 73 74 75 76 77 78 79
T

im
e

(m
in

)
(b) Top5 Accuracy (%)

25.024.924.8
23.7
24.4
23.7

22.622.3

22.7 21.3

23.5
22.8

23.9

22.6
22.0

22.1

14.0
14.8
14.114.1

13.513.2

14.4

13.212.9 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 40 41 42 43 44 45 46 47 48 49

TAR

T
im

e
(m

in
)

(a) Top1 Accuracy (%)

39.639.539.3
40.2

39.6
38.6

36.836.3

36.536.9

38.5
37.4

39.8

37.4
36.3

36.3

22.8
24.9
23.723.9

22.923.0

25.2

23.323.0

Figure 11: Time-Accuracy of Degrees of Pruning with TAR

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

p2.xl p2.8xl p2.16xl g3.4xl g3.8xl g3.16xl

(a) Utilizing One GPU

C
A

R
 (

$
)

Resource Type

Top1
Top5

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

p2.xl p2.8xl p2.16xl g3.4xl g3.8xl g3.16xl

(b) Utilizing All GPUs

C
A

R
 (

$
)

Resource Type (%)

Top1
Top5

Figure 12: Caffenet CAR Across Resource Types
observed from Figure 10 (a), selecting the Pareto-optimal configu-
ration for the highest accuracy saves up to 55% cost.

4.5 Quantifying Accuracy Performance
As shown in Figures 9 and 10, there exist a series of configura-
tions spanning vertically on time axis and cost axis respectively
for a given accuracy. This behaviour is caused by having multiple
degrees of pruning that yield same accuracy but with difference
performance.

4.5.1 Time-Accuracy Performance. To understand the accuracy per-
formance of the application, we plot the execution time of Caffenet
degrees of pruning in Figure 11. We measure the inference time
and accuracy by changing the prune ratio for conv1 and conv2 of
Caffenet. Leveraging on the sweet-spot regions observed in Figure
6, we vary the prune ratio from 0% to 40% for conv1 and 0% to 50%
for conv2 in 10% increments. The TAR value for each pruning con-
figuration is labeled next to the configuration on the figure. Since
TAR represents the relative change between time and accuracy, for
a given accuracy, the configuration with a lower TAR gives the
least inference time thus, it can be used to determine the trade-offs
offered by different degrees of pruning.

4.5.2 Cost-Accuracy Performance. The effect of accuracy on cloud
cost can be divided into two parts; (i) within a single resource type
and (ii) across different resource types.

Within a single resource type, the cost of a cloud resource in-
stance solely depends on the time used. Thus, the cost incurred for
CNN inference is a function of inference time. i.e. in f erence cost =
in f erence time ∗ cost per unit time . Therefore, TAR is sufficient
to understand both the trade-offs between time and accuracy and,
cost and accuracy for a single cloud resource type. When it comes
to a comparison between different resources types, as shown in
Table 3, different cloud resource types have different cost and per-
formance. Thus, to quantify the cost of execution of cloud resource
with respect to accuracy, we use CAR metric.

Figure 12 shows computed CAR values for Caffenet with first
two convolution layers pruned by 20%, across six types of cloud
resource types from two resource categories, p2 and g3. Figure 12
(a) shows the CAR when all GPUs are allocated for inference and
Figure 12 (b) shows when only one GPU is allocated. We observe
that the CAR is approximately same for resource types within a
resource category and varies across resource categories. For exam-
ple, p2 has a CAR of approximately $0.57 whereas g3 has a CAR
of approximately $0.35 with all GPUs allocated. When allocating
cloud resources for CNN inference, it is ideal to utilize all GPUs in
the allocated resource. However there may be circumstances where
the application restricts the number of GPUs it can utilize due to
requirements such as memory and storage.

4.5.3 Efficient Cloud Resource Allocation. To determine the cloud
resource configuration for executing CNN inference efficiently, we
propose using TAR and CAR as a heuristics to decide on the order
of resource allocation. Given a CNN pruned in different degrees
resulting in a set of CNNs with different accuracy (P), a set cloud
resource instances (G), and a time deadline (T ′) and a cost budget
(C ′), Algorithm 1 illustrates our proposed resource allocation ap-
proach. The outputs are the resource configuration R, estimated
time T and estimated cost C .
First we order elements in P by descending order of accuracy. If
there are multiple elements with same accuracy, then those are
ordered in ascending order of TAR. Then, the algorithm iterates
through P and allocates cloud resources in the ascending order
starting from the lowest CAR until a resource configuration is found
that completes the inference within the given time deadline and
cost budget. Whenever the cloud resource configuration is changed,
the workload distribution across the new resource configuration is
performed as described in section 3.

Efficiency. A major challenge in exploring the cloud configuration
space is due to the large computational time required [25]. Config-
uration space exploration is a non polynomial time problem and
is upper bounded by O(2 |G |). By using CAR as a heuristic to pick
resources greedily, our algorithm performs under O(|G |loд |G |).
Algorithm 1 Resource Allocation with TAR and CAR
1: sort P in (i) accuracy descending order and (ii) TAR ascending

order for elements with same accuracy
2: for each p ∈ P do
3: sort G in ascending order of CAR
4: R ← ∅
5: for each д ∈ G do
6: R ← д //add resource with lowest CAR
7: distribute workload in R
8: compute T and C
9: if T < T ′ and C < C ′ then
10: return p,R, T , C
11: end if
12: end for
13: end for
14: return ∅ //no feasible resource allocation

ICPP Workshops ’20, August 17–20, 2020, Edmonton, AB, Canada S. Rathnayake et al.

5 CONCLUSION
This paper presents a measurement-driven approach for investi-
gating the cost-accuracy and time-accuracy trade-offs in executing
applications on cloud. To represent applications with variable accu-
racy, we select CNN as the example and apply our approach on two
widely used and well established image detection CNNs, Caffenet
and Googlenet. In contrast to existing work that focus on CNN
training performance, we investigate the CNN inference perfor-
mance. We train our CNNs with more than one million images
and use parameter pruning technique to change the inference accu-
racy. We perform our analysis on six types of cloud resources with
GPUs from Amazon EC2 cloud with an inference dataset containing
50,000 images.

We show the existence of “sweet-spot” regions where the in-
ference time can be reduced with no or insignificant reduction in
inference accuracy. With different application configurations, we
investigate the dependency among CNN layers and their impact on
inference time. We show that inference time can be halved for just
a one-tenth accuracy reduction with multi-layer pruning for Caf-
fenet. We expose the existence of time-accuracy and cost-accuracy
Pareto-optimal configurations in the large resource configuration
space where the consumer is able to reduce the time by 50% and
cost by 55% for achieving the highest possible inference accuracy
for Caffenet CNN by selecting Pareto-optimal configurations. For
quantifying the trade-off between inference time and accuracy, we
introduce Time Accuracy Ratio (TAR) metric and show its useful-
ness by comparing across different degrees of pruning to save time
for a given accuracy bound. To quantify the trade-off between cost
and accuracy, we introduce Cost Accuracy Ratio (CAR) metric. We
show that TAR and CAR can be utilized to efficiently determine
cloud resource configurations for achieving the best inference ac-
curacy within the given time deadline and cost budget constraints
in polynomial-time.

ACKNOWLEDGMENTS
This work was supported by Singapore Ministry of Education
through the Academic Research Fund Tier 1. The authors thank
Amazon Web Services for AWS Cloud research credits.

REFERENCES
[1] Ossama Abdel-Hamid, Abdel-rahman Mohamed, Hui Jiang, and Gerald Penn.

2012. Applying convolutional neural networks concepts to hybrid NN-HMM
model for speech recognition. In 2012 IEEE international conference on Acoustics,
speech and signal processing (ICASSP). IEEE, 4277–4280.

[2] Gene M. Amdahl. 1967. Validity of the Single Processor Approach to Achieving
Large Scale Computing Capabilities. In Proc. of Spring Joint Computer Conference.
483–485. http://doi.acm.org/10.1145/1465482.1465560

[3] Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung. 2017. Structured pruning of
deep convolutional neural networks. ACM Journal on Emerging Technologies in
Computing Systems (JETC) 13, 3 (2017), 32.

[4] brandwatch.com. 2019. 53 Incredible Facebook Statistics and Facts. https://www.
brandwatch.com/blog/facebook-statistics/

[5] Jia Deng,Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition. Ieee, 248–255.

[6] Facebook. 2019. Community Standards. https://www.facebook.com/
communitystandards/

[7] Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bourdev. 2014. Compress-
ing deep convolutional networks using vector quantization. arXiv preprint
arXiv:1412.6115 (2014).

[8] Zhenhuan Gong, Xiaohui Gu, and John Wilkes. 2010. Press: Predictive Elastic
Resource Scaling for Cloud Systems. In Proc. of the International Conference on
Network and Service Management. 9–16.

[9] John L Gustafson. 1988. Reevaluating Amdahl’s Law. Commun. ACM 31, 5 (1988),
532–533.

[10] Jie Han and Michael Orshansky. 2013. Approximate computing: An emerging
paradigm for energy-efficient design. In 2013 18th IEEE European Test Symposium
(ETS). IEEE, 1–6.

[11] Rui Han. 2015. Investigations Into Elasticity in Cloud Computing. arXiv preprint
arXiv:1511.04651 (2015).

[12] Jian He, Yonggang Wen, Jianwei Huang, and Di Wu. 2014. On the Cost–QoE
Tradeoff for Cloud Based Video Streaming Under Amazon EC2’s Pricing Models.
IEEE Transactions on Circuits and Systems for Video Technology 24, 4 (2014), 669–
680.

[13] Qiangui Huang, Kevin Zhou, Suya You, and Ulrich Neumann. 2018. Learning to
prune filters in convolutional neural networks. In 2018 IEEE Winter Conference
on Applications of Computer Vision (WACV). IEEE, 709–718.

[14] Heehoon Kim, Hyoungwook Nam, Wookeun Jung, and Jaejin Lee. 2017. Per-
formance analysis of CNN frameworks for GPUs. In 2017 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS). IEEE,
55–64.

[15] P Kokkinos, Theodora A Varvarigou, Aristotelis Kretsis, Polyzois Soumplis, and
Emmanouel A Varvarigos. 2013. Cost and Utilization Optimization of Amazon
EC2 Instances. In Proc. of 6th International Conference on Cloud Computing. 518–
525.

[16] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural information
processing systems. 1097–1105.

[17] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. 2016.
Pruning filters for efficient convnets. arXiv preprint arXiv:1608.08710 (2016).

[18] Xiaqing Li, Guangyan Zhang, H Howie Huang, ZhufanWang, andWeimin Zheng.
2016. Performance analysis of gpu-based convolutional neural networks. In 2016
45th International Conference on Parallel Processing (ICPP). IEEE, 67–76.

[19] Xiaofan Lin, Cong Zhao, and Wei Pan. 2017. Towards accurate binary convo-
lutional neural network. In Advances in Neural Information Processing Systems.
345–353.

[20] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. 2017. Thinet: A filter level prun-
ing method for deep neural network compression. In Proceedings of the IEEE
international conference on computer vision. 5058–5066.

[21] Ming Mao and Marty Humphrey. 2011. Auto-scaling to Minimize Cost and Meet
Application Deadlines in Cloud Workflows. In Proc. of International Conference
for High Performance Computing, Networking, Storage and Analysis. 49.

[22] Ming Mao, Jie Li, and Marty Humphrey. 2010. Cloud Auto-scaling with Dead-
line and Budget Constraints. In Proc. of 11th International Conference on Grid
Computing. 41–48.

[23] Aniruddha Marathe, Rachel Harris, David Lowenthal, Bronis R de Supinski, Barry
Rountree, and Martin Schulz. 2014. Exploiting Redundancy for Cost-effective,
Time-constrained Execution of HPCApplications on Amazon EC2. In Proc. of 23rd
International Symposium on High-performance Parallel and Distributed Computing.
279–290.

[24] Sparsh Mittal. 2016. A survey of techniques for approximate computing. ACM
Computing Surveys (CSUR) 48, 4 (2016), 62.

[25] Sunimal Rathnayake, Dumitrel Loghin, and Yong Meng Teo. 2017. CELIA: Cost-
time Performance of Elastic Applications on Cloud. In Proc. of 46th International
Conference on Parallel Processing. 342–351.

[26] Sunimal Rathnayake, Lavanya Ramapantulu, and Yong Meng Teo. 2018. Cost-
Time Performance of Scaling Applications on the Cloud. In 2018 IEEE International
Conference on Cloud Computing Technology and Science (CloudCom). IEEE, 30–33.

[27] Suman Ravuri and Oriol Vinyals. 2019. Classification accuracy score for condi-
tional generative models. In Advances in Neural Information Processing Systems.
12247–12258.

[28] Upendra Sharma, Prashant Shenoy, Sambit Sahu, and Anees Shaikh. 2011. A Cost-
aware Elasticity Provisioning System for the Cloud. In Proc. of 31st International
Conference on Distributed Computing Systems. 559–570.

[29] Hoo-Chang Shin, Holger R Roth, Mingchen Gao, Le Lu, Ziyue Xu, Isabella Nogues,
Jianhua Yao, Daniel Mollura, and Ronald M Summers. 2016. Deep convolutional
neural networks for computer-aided detection: CNN architectures, dataset char-
acteristics and transfer learning. IEEE transactions on medical imaging 35, 5
(2016), 1285–1298.

[30] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015.
Going deeper with convolutions. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 1–9.

[31] Wei Wen, Cong Xu, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. 2017.
Coordinating Filters for Faster Deep Neural Networks. In The IEEE International
Conference on Computer Vision (ICCV).

[32] Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong Chen. 2017. Incre-
mental network quantization: Towards lossless cnns with low-precision weights.
arXiv preprint arXiv:1702.03044 (2017).

View publication statsView publication stats

http://doi.acm.org/10.1145/1465482.1465560
https://www.brandwatch.com/blog/facebook-statistics/
https://www.brandwatch.com/blog/facebook-statistics/
https://www.facebook.com/communitystandards/
https://www.facebook.com/communitystandards/
https://www.researchgate.net/publication/343703399

	Abstract
	1 Introduction
	2 Related Work
	2.1 Accuracy-Performance of Applications
	2.2 Application Scaling on Cloud

	3 Approach
	3.1 Overview
	3.2 Application Characterization
	3.3 Measurements
	3.4 Time and Cost Models
	3.5 Time Accuracy Ratio and Cost Accuracy Ratio

	4 Evaluation
	4.1 Experiment Setup
	4.2 Application Characterization
	4.3 Effect of Accuracy on Inference Time
	4.4 Effect of Accuracy on Inference Cost
	4.5 Quantifying Accuracy Performance

	5 Conclusion
	Acknowledgments
	References

