
The Accuracy and Efficiency of Posit Arithmetic

Stefan Dan Ciocirlan∗+, Dumitrel Loghin∗, Lavanya Ramapantulu, Nicolae T, ăpus,
+, Yong Meng Teo∗

∗Department of Computer Science, National University of Singapore, Singapore
+Department of Computer Science, University Politehnica of Bucharest, Romania

Email: ∗{dumitrel, teoym}@comp.nus.edu.sg, lavanya.r@gmail.com, +{stefandan, ntapus}@cs.pub.ro

Abstract—Motivated by the increasing interest in the posit
numeric format, in this paper we evaluate the accuracy and
efficiency of posit arithmetic in contrast to the traditional IEEE
754 32-bit floating-point (FP32) arithmetic. We first design and
implement a Posit Arithmetic Unit (PAU), called POSAR, with
flexible bit-sized arithmetic suitable for applications that can
trade accuracy for savings in chip area. Next, we analyze the
accuracy and efficiency of POSAR with a series of benchmarks
including mathematical computations, ML kernels, NAS Parallel
Benchmarks (NPB), and Cifar-10 CNN. This analysis is done on
our implementation of POSAR integrated into a RISC-V Rocket
Chip core in comparison with the IEEE 754-based Floting Point
Unit (FPU) of Rocket Chip. Our analysis shows that POSAR can
outperform the FPU, but the results are not spectacular. For NPB,
32-bit posit achieves better accuracy than FP32 and improves the
execution by up to 2%. However, POSAR with 32-bit posit needs
30% more FPGA resources compared to the FPU. For classic ML
algorithms, we find that 8-bit posits are not suitable to replace
FP32 because they exhibit low accuracy leading to wrong results.
Instead, 16-bit posit offers the best option in terms of accuracy
and efficiency. For example, 16-bit posit achieves the same Top-1
accuracy as FP32 on a Cifar-10 CNN with a speedup of 18%.

Index Terms—posit, floating-point, IEEE 754, RISC-V, accu-
racy, efficiency

I. INTRODUCTION

In the last few years, posit floating-point numeric for-

mat [16] has gained traction in the research community [6],

[9], [11], [14]. This format is an alternative to the classic

IEEE 754 standard [2] implemented by the vast majority of

modern hardware. However, IEEE 754 implementations use

significant chip area and power because they need to handle

many corner cases and exceptions described by the standard.

Some studies show that this standard is error-prone and its

different implementations may produce different results [15].

These issues become more relevant in modern computing

dominated by the explosion of Machine Learning (ML).

Among the alternatives to IEEE 754, unum [15] and its third

version, named posit [16], [23], were introduced by John L.

Gustafson to solve some of the issues of IEEE 754 floating-

point representation. Compared to IEEE 754, posit has variable

length fields to represent the exponent and the fraction of

a real number. Hence, posits can represent small numbers

more accurately by reserving more bits for the fraction and

fewer bits for the exponent. Moreover, posits have only two

special representations, namely for 0 and not-a-real (NaR),

whereas IEEE 754 reserves many binary representations for

not-a-number (NaN). This feature, together with the non-

existence of subnormal, make posit implementations simpler.

In this paper, we address the following research questions,

(i) are posits more accurate and efficient than IEEE 754? and

(ii) what is a good trade-off between accuracy and time-energy

efficiency when employing lower bit-size posits?

To answer these questions, we propose an alternative

hardware-software approach by (i) designing and implement-

ing a Posit Arithmetic Unit named POSAR in a Rocket Chip-

based [3] RISC-V [25] core replacing its Floating Point Unit

(FPU), and (ii) modifying existing software to run on this sys-

tem. RISC-V [25] is an open-source architecture with limited

available hardware implementations. However, RISC-V is very

promising due to its energy efficiency and modular ISA, thus,

it is timely to explore this new CPU architecture. Without

modifying the ISA, we use the F extension of the RISC-V

specification but change the internal processor representation

of floating-point numbers to posit. To address the challenge

of executing the same application software on the modified

hardware, we make minor high-level code changes and convert

IEEE 754 constants to posit.

In summary, we make the following contributions:

• We implement a Posit Arithmetic Unit named POSAR1 in

Chisel to replace the traditional Floating Point Unit (FPU)

of a Rocket Chip RISC-V core. In addition, we implement

a Scala library for posit arithmetic to test POSAR.

• POSAR supports any posit size and exponent size, but

in this paper we instantiate it for three sizes: 8, 16, and

32 bits, respectively. We test these instantiations in both

simulation mode and on an Arty A7-100T FPGA.

• Our evaluation of POSAR vs. Rocker Chip’s original FPU

shows that 32-bit posit achieves at least the same accuracy

as 32-bit IEEE 754 floating-point, while logging fewer

cycles, but using more FPGA resources. For example, 32-

bit posit uses 30% more FPGA resources but it is 30%

faster compared to 32-bit IEEE 754 float2.

• In contrast to other works [6], [20], we show that 8-bit

posit does not reach the same accuracy as 32-bit IEEE

754 when running a CNN. On the other hand, 16-bit

posit offers the best option in terms of accuracy and

efficiency. For example, 16-bit posit achieves the same

Top-1 accuracy as 32-bit IEEE 754 on a Cifar-10 CNN

with a speedup of 18%.

1The source code and an extended paper can be found at
https://github.com/dloghin/posar.

2These results are implementation-specific. That is, we compare specific
implementations of the IEEE 754 floating-point and posit standards.

https://github.com/dloghin/posar

In the next section, we provide details about the posit format

and we summarize related works. In Section III we present

the design and implementation of POSAR. In Section IV we

evaluate our approach before concluding in Section V.

II. BACKGROUND AND RELATED WORK

A. Posit Format

Posit [23] is a real number representation that aims to

improve the widely-used IEEE 754 floating-point standard

implemented by the majority of modern processors. A 32-bit,

single-precision floating-point in IEEE 754 comprises three

fields, as shown in Figure 1 (top), namely (i) a sign field

of 1 bit, (ii) an exponent field of 8 bits and (iii) a fraction

or mantissa field of 23 bits. In contrast to IEEE 754 which

reserves many binary representations for the special number

NaN (Not-a-Number), posit format has only two special

numbers, 0 and NaR (Not-a-Real). If the binary representation

of the posit has all the bits equal to zero, except for the first

bit from the left which represents the sign, then it is a special

number. If the sign bit is 0 then the special posit has the value

0, otherwise it represents the posit NaR. Compared to IEEE

754, posit representation comprises an additional field named

regime which determines the final exponent value together

with the exponent field, as shown in Figure 1 (bottom). In

posit, the regime and fraction fields are variable, while the

exponent field is customizable. In fact, a posit format can be

described by its total size, ps, and its exponent size, es.

In a posit, the regime field follows the 1-bit sign and

continues as long as the bits have the same value ri, followed

by a bit of opposed value. The number of regime bits of the

same value, rn, is used to determine the value k as k = −rn if

ri = 0, or k = rn−1 if ri = 1. k is a factor that multiplies the

maximum value of the exponent field, 2es, to which the actual

value of the exponent field, e, is added to determine the final

exponent (k · 2es + e). This feature of elastic exponent field

allows a larger fraction field, hence, a higher representation

accuracy compared to the fixed 23-bit mantissa of the IEEE

754 format. However, this higher accuracy occurs only in a

range called the “golden zone” [9] which can be useful in

scientific applications.

To improve the rounding error and to abide by mathematical

properties such as associativity and distributivity, the posit

standard introduces a quire [23] which is a long accumula-

tor [9]. However, the implementation of a quire uses 10 times

more area and increases the latency by 8 times compared to

posit without quire [9]. For example, an implementation of an

unum type co-processor in SMURF [5] for a RISC-V Rocket

Chip uses 9 times more area and consumes 12 times more

energy than the 64-bit FPU of the Rocket-Chip. Thus, in this

paper, we decided not to implement a quire in our POSAR.

B. Posit Implementations in Hardware

The closest implementation of a Posit Arithmetic Unit

(PAU) to POSAR is PERI, a posit-enabled RISC-V core

presented in a preprint [24]. Similar to our work, PERI imple-

ments a posit unit capable of executing RISC-V F extension

Mantissa

(23 bits)

Sign

(1 bit)

Exponent

(8 bits)

T L Fs
æÜÚá

	 t
ØëãâáØáç

	 sä I=JPEOO=

Fraction

(remainder fs bits, value f)

Sign

(1 bit)

Regime

(rs bits, value k)

T L Fs
æÜÚá

	 t
Þ	6ÐÞ>Ø

	 s E
B

tÙæ

Exponent

(es bits, value e)

Fig. 1: IEEE 754 single-precision float (top) vs. posit (bottom)

instructions and evaluates the processor on an Arty A7-100T

FPGA. However, we implement our project in the Chisel

language to integrate it with the Rocket Chip core, while

PERI uses Bluespec System Verilog and integrates the unit

into the SHAKTI core [12]. PERI uses two posit formats at

the same time. Both are 32-bit in size, with one having es = 2
and the other es = 3. To switch between these two formats,

PERI introduces a new instruction, FCV T.ES. In contrast,

our POSAR supports multiple bit-sized posits but uses only one

size at a time to keep full compatibility with existing software.

We evaluate 8- and 16-bit posits in addition to 32-bit posits

in this paper. In terms of benchmarking, both PERI and we

use k-means, along with the computation of sin(x) and e. In

addition, we evaluate π computation, matrix multiplication,

k nearest neighbors, naive Bayes, classification trees, NPB

applications and a CNN, while PERI is evaluated on JPEG

image processing and fast Fourier transform.

Other works propose incomplete posit arithmetic units [7],

[17], [18], [22]. Specifically, [7] presents a hardware generator

that can produce posit adders and multipliers, [17] presents

an adder/subtractor, [22] presents an adder, subtractor, and

multiplier, while [18] implements conversion of IEEE 754

to/from posit, adder, subtractor, and multiplier. Similar to us,

[7] show that posit unit operating on the same size (e.g.

32 bits) as an IEEE 754-compliant unit needs slightly more

hardware resources. In contrast, [22] observes that posit takes

significantly more FPGA resources than IEEE 754.

C. Posit in Scientific Computing and Machine Learning

In [8], the authors evaluate the impact of posit on NPB

benchmarks using software emulation. As expected, the emu-

lation leads to a much higher execution time of the program

using posit compared to the IEEE 754 format running natively

on the hardware. However, the accuracy of 32-bit posit is

higher compared to FP32. In [16], the authors show using

high-level emulation that 32-bit posit can achieve better accu-

racy and (potentially) faster execution compared to the IEEE

754 format on the LINPACK benchmark. In contrast, we use

a hardware-based approach to better understand the impact of

posit on cycle-efficiency, not only on accuracy.

Some works analyze the suitability of using posits in ML

applications [6], [11], [20]. [6] presents Deep Positron, a

Deep Neural Network (DNN) accelerator that can run on

FPGAs, and claim that 8-bit posits can achieve better inference

accuracy than 8-bit floats and integers, while being close

to the accuracy of 32-bit IEEE 754 floats. We also find

that 8-bit posits achieve good accuracy on CNNs, but they

produce wrong results for scientific applications or classic ML

algorithms. We acknowledge that we use Cifar-10 dataset for

the ML application, whereas Deep Positron uses medical low-

dimensionality datasets.

Johnson [20] evaluates multiple numeric formats, which

include posit, to replace IEEE 754 floats in DNNs. Among

others, the author shows that 8-bit posits with 1-bit exponents

can achieve similar Top-1 accuracy on a Resnet50 model

compared to classic 32-bit floats. Carmichael et al. [6] analyze

fixed-point, floating-point and posit representations on DNN

showing that posit offers the best accuracy while exhibiting

a smaller latency compared to floats. In [11], posits are

used to store ML parameters in memory, being converted to

classic IEEE 754 floats when computations are performed.

The authors claim that posits of smaller size can represent

the parameters compared to bigger sized IEEE 754 floats, and

hence, save up to 36% of memory space while less than 1%

accuracy loss is exhibited.

III. POSAR: DESIGN AND IMPLEMENTATION

In this section, we briefly describe the implementation of

POSAR. We wrote the high-level design code in the Chisel

language and integrated it into a Rocket Chip tiny core to

replace the original Floating Point Unit (FPU) that implements

the IEEE 754 standard. POSAR is activated during the execu-

tion phase of the pipeline. In addition to supporting all the

instructions of the F extension of RISC-V [25], POSAR is

elastic to cater to parameterized sizes for posit and exponent.

Using this elastic feature, we evaluate POSAR on 8-, 16-,

and 32-bit posits (ps) with 1-, 2-, and 3-bit exponents (es),

respectively. To verify our implementation, we wrote a posit

arithmetic library in Scala and tested the POSAR Chisel code

using unit testing. In this section, we discuss our internal

posit representation, the instructions implemented, and the

challenges of running programs on a posit-enabled processor.

Supported Instructions. POSAR supports all the instruc-

tions of the F extension of RISC-V [25]. For bitwise addition,

subtraction, multiplication, and division we used the Chisel

build-in operators. We acknowledge that this choice leaves

some room for further optimizations. For testing the hardware

implementation, we wrote a small library in Scala representing

posit numbers and we used it inside unit tests. We hope this

library will help others in trying different hardware implemen-

tations of posit operations.

Posit Representation. We use an internal posit representa-

tion comprising the sign s, the regime k and its size rs, the

exponent e and its actual size in the binary representation, ers,

the fraction f and its size fs, and one bit sn for the special

numbers 0 and NaR. We decode a binary posit representation

before performing an operation in POSAR. We encode our

internal representation into a binary representation at the end

of the operation.

IV. EVALUATION

A. Setup and Benchmarks

We compare the original 32-bit FPU of Rocket Chip which

claims to implement the IEEE 754 standard (FP32) with our

POSAR operating with posits of three bit widths, namely 8-

bit with 1-bit exponent denoted by Posit(8,1) or P8, 16-bit

with 2-bit exponent denoted by Posit(16,2) or P16, and 32-

bit with 3-bit exponent denoted by Posit(32,3) or P32. We

wrote the high-level code for POSAR in Chisel, integrated

it with Rocket Chip [3], and used SiFive’s Freedom E3103

development platform to implement and synthesize our code to

run on an Arty A7-100T FPGA. The original Rocket Chip with

FPU and Rocket Chip with POSAR run at the same frequency.

To evaluate our approach, we select benchmarks that use

floating-point operations. We organize these benchmarks into

three levels as follows. Level one benchmarks are used to

evaluate both the accuracy and efficiency, and they represent

the computation of well-known mathematical constants using

series and sequences. In particular, we compute the constants

π and e (Euler’s number), using numerical series, as shown in

Table I. For π, we use Leibniz and Nilakantha series. Since

Leibniz series converges slowly, we run it for two million

iterations. In contrast, Nilakantha series converges faster, thus,

we run it for 200 iterations. For e, we use Euler’s series which

is fast-converging, thus, we run it for 20 iterations.

Level two consists of kernels that are typically used in data

analytics and ML applications, as summarized in Table II.

For these kernels, we evaluate the efficiency of our POSAR

versus the FPU in terms of cycles. The correctness of the

results is checked against reference outputs. Next, we briefly

describe each kernel. Matrix Multiplication (MM) implements

the multiplication of two square matrices which is often

used in ML and HPC workloads. In our testbed, we can

accommodate matrices of size up to n = 182. k-means (KM)

groups a set of multi-dimensional points into k groups based

on their Euclidean distance. KM is often used in ML and data

analytics applications. k-nearest neighbors (KNN) classifies a

multi-dimensional point based on the Euclidean distance to its

k nearest neighbors. Linear Regression (LR) is a kernel used

in ML and data analytics. We implement Multivariate Linear

Regression which consists of matrix and vector operations.

Naive Bayes (NB) implements a simple Bayesian model.

The Classification Tree (CT) kernel is used in ML and data

analytics to represent a target variable based on some input

attributes. We implement both the creation (training) and usage

(inference) of CT. We use Iris dataset4 as input for level two

benchmarks, except MM. This dataset consists of n = 150 data

points with m = 4 dimensions representing flowers. These

points belong to k = 3 classes.

Level three of our benchmarking suite represents full-

fledged applications. In this paper, level three is represented by

one NAS Parallel Benchmark (NPB) [4] scientific application

and one Convolutional Neural Network (CNN) ML inference

3https://github.com/sifive/freedom
4https://archive.ics.uci.edu/ml/datasets/iris

https://archive.ics.uci.edu/ml/datasets/iris

application. Specifically, we selected Block Tri-diagonal (BT)

solver from NPB and we converted all floating-point variables

to 32-bit float. We use the verification threshold error, epsilon

(ǫ), as a measure of accuracy. That is, a smaller ǫ corresponds

to a higher accuracy. The CNN model is implemented in

Caffe [19] and trained on Cifar-10 [1] dataset. This CNN has

14 layers and the parameters file has a size of 351 kB. Since

our wimpy setup cannot accommodate the entire model, we

only run nly the last four layers of this CNN, starting from

relu3. We perform the validation on all 10,000 images of Cifar-

10 test dataset by running the executables on the Arty A7-

100T FPGA. The prediction results are compared against the

reference execution on an x86/64 host.

B. Accuracy and Efficiency

Level One. We evaluate the accuracy and efficiency of posit

in comparison with 32-bit, single-precision IEEE 754 floating-

point (FP32), using level one benchmarks summarized in Ta-

ble I. The accuracy is measured in terms of exact fraction digits

compared to the reference value of the mathematical constant.

The efficiency represents the number of cycles taken by Rocket

Chip running on the FPGA to execute the meaningful section

of the program. For posits, we compute the speedup with

respect to the FP32 execution.

The results presented in Table I show that P32 achieves

similar or better accuracy compared to FP32. Moreover, P32

achieves a speedup of 1.3 compared to FP32 FPU, when π

with Leibniz series is computed. The accuracy of small posit

representations, such as P8, is low when estimating numerical

series. This is expected if we consider the internals of posit

representation. Taking e = 2.7182 . . . as example, we first

observe that the closest P8 numbers are 2.625 (0x55) and

2.75 (0x56). That is, one cannot get better accuracy for e

than these two values. Secondly, Euler series leads to an issue

regarding the storage in P8 of the factorial which grows very

fast. The maximum value that P8 can represent is 192, which

is less than 6!. Hence, the accuracy of Euler’s series becomes

worst when the number of iterations grows. For example, when

N = 4, we get e = 2.75, but when N = 6 we get e = 3.

Posit operations take fewer cycles to complete, thus, ap-

plications with higher numbers of iterations exhibit better

efficiency. For example, P32 is 30%, 9%, and 3% faster than

FP32 for π Leibniz with two million iterations, π Nilakantha

with 200 iterations, and e with 20 iterations, respectively.

Our analysis revealed that this speedup is the result of faster

multiplication and division operations on posits. This, in turn,

is the result of simple exception and corner case handling.

Level Two. We observe that P32 and P16 lead to the same

final results as FP32 when running level two benchmarks

while saving up to 6% of the cycles, as shown in Table II.

However, LR with P8 and P16 produces wrong results. This is

because the final results are affected by the wrong value of one

of the determinants computed by the program. In fact, all the

programs operating with P8 produce wrong results, except CT.

This shows that small size posits are not suitable for some ML

kernels that need high numerical accuracy. We shall see below

that P8 performs better on a CNN. This observation is similar

to some of the related works [6], [20]. However, we note that

our evaluation is done on different datasets and different CNN.

On the other hand, P16 offers a good alternative to FP32,

when the dynamic range of the application is within the range

of P16.

Level Three. For the NPB application, P32 achieves one

level of magnitude higher accuracy than FP32. For example,

setting ǫ = 10−4 in BT leads to successful validation when

P32 is used. On the other hand, FP32 needs ǫ = 10−3 in

BT to pass the validation. Moreover, P32 exhibits a marginal

speedup compared to FP32. These results are in correlation

to those of level one benchmarks. Since there are more and

diverse floating-point operations in BT compared to level one

benchmarks, the accuracy gain of P32 is more visible. On the

other hand, the speedup gain is not spectacular because the

fraction of operations where posit is faster than IEEE 754 is

smaller. For the same reason of very large number of opera-

tions in BT, P8 and P16 do not exhibit good accuracy. In fact,

P8 cannot even represent accurately all the validation reference

values due to its limitted range. For example, the validation

reference value 7.38e− 5 of BT cannot be represented by P8

because its range stops at 2.44e− 4 (0x1).

When compared to the reference execution on an x86/64

host, the Cifar-10 CNN with FP32, P32 and P16 running on

our FPGA with a Rocket Chip core exhibit the same Top-

1 accuracy as the reference model, namely 68.15%. Even

P8 achieves a reasonable accuracy of 62.68%. In terms of

speed, all three posit representations are around 18% faster

compared to the execution with FP32. The results with P16

and P8 are very promising and open-up a series of future

optimizations. For example, these formats save respectively

half and three-quarters of the memory for representing inputs

and parameters compared to 32-bit FP32 or P32. Next, by

packing two P16 and four P8 operands per instruction, we can

reduce the execution time by two and four times, respectively.

We observe that one reason why P8 exhibits accuracy loss

is due to the out-of-range representation of some parameters

or input image pixels. There is at least one out-of-range

representation for each of the 10,000 input images of the Cifar-

10 test dataset. This is in contrast to P32 and P16 which

can represent these parameters without loss of accuracy. For

example, the minimum positive value of the weights of ip1

layer is 0.000001119 which cannot be represented by P8.

The closest posit size that can represent this value relatively

accurate is Posit(15,2) with 0.0000011176 (0x10b). We note

that scaling cannot be applied for P8 because of the wide

parameter distribution interval, that is, the minimum positive

value is 0.000001119 and the maximum one is 87.84.

C. Resource Utilization

As a proxy to the chip area taken by our implementation,

we evaluate the FPGA resource utilization of our POSAR

compared to the original FPU of Rocket Chip. We evaluate

the FPGA resource utilization of the entire system, namely

SiFive Freedom E310 with a Rocket Chip core that has an

TABLE I: Accuracy and Efficiency (Level One Benchmarks)

Benchmark Iterations

Accuracy Efficiency

[actual value | number of exact fraction digits] [cycles | speedup]
FP32 P8 P16 P32 FP32 P8 P16 P32

π (Leibniz) 2,000,000 3.14159 5 3.5 0 3.14 2 3.14159 5 216,022,827 166,022,835 1.30 166,022,829 1.30 166,022,830 1.30
π (Nilakantha) 200 3.1415929 6 3.125 1 3.141 3 3.1415922 6 57,940 52,937 1.09 52,952 1.09 52,937 1.09
e (Euler) 20 2.7182819 6 2.625 0 2.718 3 2.7182817 6 15,598 15,177 1.03 15,177 1.03 15,177 1.03

TABLE II: Efficiency (Level Two Benchmarks). Gray back-

ground means the result is different from the reference.

Benchmark Input
Speedup (vs. FP32)

P8 P16 P32

Matrix Multiplication (MM) n = 182 1.0 1.0 1.0

k-means (KM)
Iris dataset

n = 150
m = 4
k = 3

1.01 1.01 1.01
k Nearest Neighbours (KNN) 1.10 1.06 1.05
Linear Regression (LR) - 1.02 1.02
Naive Bayes (NB) 0.98 1.0 1.0
Classification Tree (CT) 6.2 1.03 1.01

FPU/POSAR, running on the Arty A7-100T FPGA. While

the results here denote savings in terms of resources from an

FPGA perspective, similar or even higher savings in terms of

the area will be obtained when the design is implemented on

an ASIC [10], [21]. Savings in area directly relate to savings

in both static and dynamic power and thus are important for

low-power constrained applications.

We observe that all the implementations use the same

amount of memory resources (Shift-register Look up table –

SRL, LUTRAM, and BRAM) which indicates that the compar-

ison involves only the modified FPU with the rest of the system

being the same across all implementations. For significant

savings in area and power without much loss in accuracy P16

seems to be a viable option that saves almost 50% of the DSPs

which translate to the multiply-accumulate (MAC) units in an

ASIC flow. These savings in area should translate to a 50%

drop in dynamic power as the MACs account for a higher

power compared to flops or other logic [13]. In contrast, P32

uses 30% more LUTs and 27% more DSPs compared to FP32.

These results are worse than those reported in [7], which needs

only 4% more LUTs compared to the FPU, but similar to the

ones reported in [18]. On the other hand, we note that the

original FPU of Rocket Chip is a work-in-progress. That is, it

may not implement all the corner cases of IEEE 754 standard.

Nonetheless, the higher resource utilization of P32 may be

counterbalanced by its speedup which can lead to higher time

and energy efficiency compared to FP32.

V. CONCLUSIONS

In this paper, we explored the opportunity of replacing a

traditional IEEE 754 floating-point unit (FPU) with our pro-

posed posit [16] unit named POSAR in the context of scientific

computations and machine learning (ML). We present the

implementation of POSAR which replaces the original FPU in

a RISC-V core. We compare the numeric accuracy, efficiency

in terms of cycles, FPGA resource utilization of three posit

sizes compared to 32-bit IEEE 754 floats.

ACKNOWLEDGMENT

This work was supported in part by Singapore Ministry of

Education through Academic Research Fund Tier 1.

REFERENCES

[1] Cifar-10 Dataset, https://www.cs.toronto.edu/ kriz/cifar.html.
[2] IEEE Standard for Floating-Point Arithmetic, IEEE Std 754-2019

(Revision of IEEE 754-2008), pages 1–84, 2019.
[3] Asanovic et al., The Rocket Chip Generator, University of California,

Berkeley, Tech. Rep. UCB/EECS-2016-17, 2016.
[4] Bailey, NAS Parallel Benchmarks, pages 1254–1259, Springer, 2011.
[5] Bocco et al., SMURF: Scalar Multiple-precision Unum Risc-V Floating-

point Accelerator for Scientific Computing, Proc. of Conference for Next
Generation Arithmetic, pages 1–8, 2019.

[6] Carmichael et al., Performance-Efficiency Trade-off of Low-Precision
Numerical Formats in Deep Neural Networks, Proc. of Conference for

Next Generation Arithmetic, 2019.
[7] Chaurasiya et al., Parameterized Posit Arithmetic Hardware Generator,

Proc. of 36th IEEE International Conference on Computer Design, pages
334–341, 2018.

[8] Chien et al., Posit NPB: Assessing the Precision Improvement in HPC
Scientific Applications, Wyrzykowski et al., editors, Parallel Processing

and Applied Mathematics, pages 301–310. Springer, 2020.
[9] De Dinechin et al., Posits: the Good, the Bad and the Ugly, Proc. of

Conference for Next Generation Arithmetic, pages 1–10, 2019.
[10] Ehliar and Liu, An ASIC Perspective on FPGA Optimizations, Proc.

of International Conference on Field Programmable Logic and Appli-

cations, pages 218–223, 2009.
[11] Fatemi Langroudi et al., Deep Learning Inference on Embedded

Devices: Fixed-Point vs Posit, Proc. of 1st Workshop on Energy

Efficient Machine Learning and Cognitive Computing for Embedded
Applications, pages 19–23, 2018.

[12] Gala et al., SHAKTI Processors: An Open-Source Hardware Initiative,
Proc. of 29th International Conference on VLSI Design, pages 7–8,
2016.

[13] Garland and Gregg, Low Complexity Multiply-accumulate Units for
Convolutional Neural Networks with Weight-sharing, ACM Transactions

on Architecture and Code Optimization, 15(3):1–24, 2018.
[14] Guntoro et al., Next Generation Arithmetic for Edge Computing, Proc.

of Design, Automation Test in Europe, pages 1357–1365, 2020.
[15] Gustafson, The End of Error: Unum Computing, Chapman & Hall/CRC

Computational Science. Taylor & Francis, 2015.
[16] Gustafson and Yonemoto, Beating Floating Point at its Own Game:

Posit Arithmetic, Supercomputing Frontiers and Innovations, 4(2):71–
86, 2017.

[17] Jaiswal and So, Architecture Generator for Type-3 Unum Posit Adder/-
Subtractor, Proc. of IEEE International Symposium on Circuits and

Systems, pages 1–5, 2018.
[18] Jaiswal and So, Universal Number Posit Arithmetic Generator on FPGA,

Proc. of Design, Automation Test in Europe Conference Exhibition,
pages 1159–1162, 2018.

[19] Jia et al., Caffe: Convolutional Architecture for Fast Feature Embedding,
Proc. of 22nd ACM International Conference on Multimedia, pages 675–
678, 2014.

[20] Johnson, Rethinking Floating Point for Deep Learning, CoRR,
abs/1811.01721, 2018.

[21] Kuon and Rose, Measuring the Gap Between FPGAs and ASICs,
IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, 26(2):203–215, 2007.
[22] Podobas and Matsuoka, Hardware Implementation of POSITs and

Their Application in FPGAs, Proc. of IEEE International Parallel and

Distributed Processing Symposium Workshops, pages 138–145, 2018.
[23] PositWorkingGroup, Posit Standard Documentation Release 3.2-draft,

https://bit.ly/3dGspX1, 2018.
[24] Tiwari et al., PERI: A Posit Enabled RISC-V Core, CoRR,

abs/1908.01466, 2019.
[25] Waterman, Design of the RISC-V Instruction Set Architecture, University

of California, Berkeley, 2016.

	Introduction
	Background and Related Work
	Posit Format
	Posit Implementations in Hardware
	Posit in Scientific Computing and Machine Learning

	POSAR: Design and Implementation
	Evaluation
	Setup and Benchmarks
	Accuracy and Efficiency
	Resource Utilization

	Conclusions
	References

