Talking Technical: Tricks of the Trade

Terence Sim

School of Computing
National University of Singapore
Talking Technical

Do Research → Write → Paper → Present → Talk
A Better Picture

Do Research → Tell a Story → Paper

Talk

Re-telling Same Story → Different versions
Same Story, Different Retelling

Paper
- Details
- Equations/Proofs
- Algorithms
- Experiments
- Charts/ Figures/Table

Talk
- Talk ≠ Compress(paper)
- Main ideas
- Motivation
Road Map

Content ➔ Audience ➔ Medium ➔ Example
Talk: Content

Story:

Main ideas of your research
- Details depend on type of talk
 - Use mathematics sparingly!
 - Avoid abbreviations unless commonly known
 - SSFX vs. FSXF ???
- Enough details for people to understand complete story
Brief but complete

- Choose path from root to leaf
- Omit branches
Besides describing your method, talk about

- Motivation
 - Why did you engage in this research?
 - Why did you make certain choices?

- Surprises
 - Any surprising discovery? Why, or why not?
Prepare additional slides

- Hide them at the end
- These can contain additional proofs, experiments, diagrams, charts, etc.
- Anticipate some questions
 - Better still, lead audience to ask a question you have prepared for
Outline

- Introduction
- Problem Statement
- Literature Review
- Our Method
- Experiments
- Conclusion
Meta-content

- Outline is meta-content,
 - a road map to navigate the talk
- Unnecessary if talk is short
 - Just start with the problem statement
- If used, simply let audience read
 - Don’t insult audience
- If used, repeat it at appropriate places
Talk: Audience

- Human psychology
- Put humans in a dimly lit, cosy room, with a constant background drone
 - What happens?
Human Psychology

- Limited short-term memory
 - Remembers 7 ± 2 things

- Short attention span
 - “Tunes out” quickly if nothing interesting

- Visual-Aural receptiveness
 - Responds to Visual + Aural stimuli
 - Responds to eye contact
5 ways to put audience to sleep

- Speak inaudibly: mumble
- Maintain monotonous voice
- Fill slides with lots of equations and text
- Avoid eye contact
 - Look at floor or ceiling
- Hide behind rostrum
 - Do not appear until talk is over
5 ways to engage audience

- Dress smartly and conservatively
- Speak clearly
 - project voice, pronounce words
 - vary pitch and pace of voice
- Avoid visual overload
 - Minimize symbols, use icons/images instead
- Look at audience: left, back of room, right
- Move around, gesture, smile!
 - But not too much!
Tell them what you’re going to tell them

Tell them

Tell them what you told them
Tell them what you’re going to tell them
 - In your Introduction

Tell them
 - In your main body

Tell them what you told them
 - In your summary
Handling Q & A

- No questions?
 - Usually means boring talk
- Listen to question carefully, make sure you understand, then answer it
- Repeat/rephrase question
 - Clarifies your understanding
 - Allows other people to hear question
- Don’t get defensive!
 - Okay to admit ignorance, failure
Handling Q & A

- Watch the clock!
 - Don’t overrun your allotted time
 - Be flexible to adjust your pace
 - Don’t let difficult questions derail your talk
Road Map

- Content
- Audience
- Medium
- Example
Talk: Medium

Paper

- Offline, passive
- No speaker; no sound
- Cross-reference possible
- Paper is *dead tree*, not interactive

Talk

- Real-time, active
- Speaker; guide
- Linear presentation
 Limited X-ref
- Technological aids: animation, interaction
Fonts

- Arial, Verdana
- Arial, Verdana
- Arial, Verdana

- Times Roman
- Times Roman
- Times Roman
Colors

- Dark background, white words, OR
- White background, black words

- Avoid gaudy colors
Colors

- Dark background, white words, OR
- White background, black words

- Avoid gaudy colors
Animation + Video

- We rendered each face under varying illumination and pose.
- Illumination: single light source placed from left to right at increments of 20°, and from bottom to top at increments of 20°
- Pose: camera placed from left to right at increments of 20°, and from bottom to top at increments of 20°
Animation + Video
Animation + Video
Music Transcription Using an Instrument Model

Jun Yin, Terence Sim, Ye Wang and Arun Shenoy
ICASSP 2005
Music Transcription

Audio signal

Music score

Synthesis

Transcription

Easy!

Hard!
Alternative notation

- MIDI format
 - Musical Instrument
 - Digital Interface
 - Well-established “encoding”

<table>
<thead>
<tr>
<th>Onset</th>
<th>Duration</th>
<th>Pitch</th>
<th>Loudness</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>29</td>
<td>20</td>
<td>1.5278</td>
</tr>
<tr>
<td>26</td>
<td>30</td>
<td>22</td>
<td>1.4738</td>
</tr>
<tr>
<td>52</td>
<td>30</td>
<td>20</td>
<td>1.4726</td>
</tr>
<tr>
<td>52</td>
<td>30</td>
<td>24</td>
<td>1.4952</td>
</tr>
<tr>
<td>77</td>
<td>31</td>
<td>22</td>
<td>1.4188</td>
</tr>
<tr>
<td>77</td>
<td>31</td>
<td>25</td>
<td>1.4322</td>
</tr>
<tr>
<td>103</td>
<td>30</td>
<td>27</td>
<td>1.4605</td>
</tr>
<tr>
<td>129</td>
<td>30</td>
<td>29</td>
<td>1.4593</td>
</tr>
</tbody>
</table>
Basic music terminology

- **Musical Scale**
 - A3 = 220 Hz
 - Exponentially Stepped
 - Semitone Step = $\sqrt[12]{2}$
 - Octave Step = 2

<table>
<thead>
<tr>
<th>Note</th>
<th>Freq (hz)</th>
<th>Note</th>
<th>Freq (hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A3</td>
<td>A3 * 2^(0/12) = 220</td>
<td>C#4</td>
<td>A3 * 2^(4/12) = 277</td>
</tr>
<tr>
<td>A#3</td>
<td>A3 * 2^(1/12) = 233</td>
<td>D4</td>
<td>A3 * 2^(5/12) = 294</td>
</tr>
<tr>
<td>B3</td>
<td>A3 * 2^(2/12) = 247</td>
<td>D#4</td>
<td>A3 * 2^(6/12) = 311</td>
</tr>
<tr>
<td>C4</td>
<td>A3 * 2^(3/12) = 262</td>
<td>E4</td>
<td>A3 * 2^(7/12) = 330</td>
</tr>
</tbody>
</table>
Basic music terminology

- **Musical Sound**
 - Series of Sinusoid Waves
 - Fundamental = F
 - Related to pitch
 - Harmonics = kF, k integer
 - Harmonic Structure: characterizes an instrument

<table>
<thead>
<tr>
<th>Freq</th>
<th>Amp</th>
</tr>
</thead>
<tbody>
<tr>
<td>220</td>
<td>50</td>
</tr>
<tr>
<td>440</td>
<td>20</td>
</tr>
<tr>
<td>660</td>
<td>50</td>
</tr>
<tr>
<td>880</td>
<td>10</td>
</tr>
</tbody>
</table>

Harmonic Structure: [1, 0.4, 1, 0.2]
Basic music terminology

- Monophonic: 1 note at a time
 - No simultaneous notes
 - Transcribing this is relatively easy

- Polyphonic: many notes together
 - Harmonic structure overlap!
 - e.g. A3 + A4
 - (220, 440, 660, 880, …) + (440, 880, …)
 - e.g. C4 + E4 (some harmonics are close together)
 - Hard to decipher
Idea

- Use model of instrument to disambiguate

- Assume harmonic structure
 - Constant across pitch
 - Constant over time
 - Only 1 sample required
 - True for certain instruments, e.g. piano

- Search for harmonic structure in audio signal
Method

1. Create *frequency spectrum* from input audio and instrument sample

- **Input audio signal**
- **Instrument sample**
2. Create *musical spectrum* from frequency spectrum
 Discretize to 1496 bins
 (88 pitches * 17 harmonics)

3. Match using *spectrum subtraction algorithm*
 -- estimates *pitch* and *loudness*
Spectrum Subtraction Algorithm

Input Z_M

37 40 49 52 56 59 61 64

Ins. model 1

37 40 49 52 56 59 61 64

Slide Match Output

(a=1, p=37)
(a=0.8, p=40)
System Implementation

4. Detect *onset* and *duration*

5. Output table

<table>
<thead>
<tr>
<th>Onset</th>
<th>Duration</th>
<th>Pitch</th>
<th>Loudness</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>29</td>
<td>20</td>
<td>1.5278</td>
</tr>
<tr>
<td>26</td>
<td>30</td>
<td>22</td>
<td>1.4738</td>
</tr>
<tr>
<td>52</td>
<td>30</td>
<td>20</td>
<td>1.4726</td>
</tr>
<tr>
<td>52</td>
<td>30</td>
<td>24</td>
<td>1.4952</td>
</tr>
</tbody>
</table>

6. Convert to MIDI file
Some Results

- Segment 1
- Minuet in G Major
System performance

- Overall Precision: 0.96
- Overall Recall: 0.98

- Performance not affected by
 - The duration of the note
 - The number of simultaneous notes
 - The instrument of the music, as long as the correct instrument model is used

- Performance degraded by
 - The pitch of the note is too low
 - The instrument harmonic structure differs from that in the music
Main Contributions

- Proposed to use Instrument Model for transcription.
 - Disambiguates between overlapping harmonics
 - Able to transcribe polyphonic music
- Developed *Spectrum Subtraction Algorithm* to estimate Pitch and Amplitude.
 - Efficient: linear in number of pitches
- (Not shown) Extended to multi-instrument transcription.
Critique

- How was the talk in terms of
 - Content
 - Audience
 - Medium

- How can it be improved?
Summary

- Technical Talk ≠ Compress(paper)
- Pay attention to **Content, Audience, Medium**

Diagram:

1. **Do Research** → **Tell a Story** → **Paper**
2. **Talk** → **Re-telling Same Story** → **Talk**
3. **Different versions**
Thank You!