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ABSTRACT 
Face photo-sketch matching has received great attention in recent 
years due to its vital role in law enforcement. The major challenge 
of matching face photo and sketch is difference of visual 
characteristics between face photo and sketch which is referred as 
modality gap. Earlier approaches have reduced the modality gap 
by synthesizing face photos and sketches in a same modality 
(photo or sketch). However, the effectiveness of these approaches 
is highly affected by synthesis results. That means a poor 
synthesis might degrade the performance of matching. Therefore, 
recent works have focused to directly match face photo and sketch 
of different modalities. However, the features used by these 
approaches are not robust against modality gap. In this paper, a 
modality-invariant face descriptor called Gabor Shape is proposed 
to retrieve face photos based on a probe sketch. Experiments on 
CUFS and CUFSF datasets show that the new descriptor 
outperforms the state-of-the-art approaches.   

Categories and Subject Descriptors 
I.4.7 [IMAGE PROCESSING AND COMPUTER VISION]: 
Feature Measurement – Feature representation; I.5.4 
[PATTERN RECOGNITION]: Application – Computer vision 

General Terms 
Algorithms 
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1. INTRODUCTION 
Most of current face recognition systems focus on photo-based 
face identification; which are not practical when a probe face 
photo is not available [7]. For example, in many cases, the only 
available information is the recollection of eye-witness which can 
be used by forensic artist to draw a sketch of suspect’s face. This 
sketch is very useful to automatically retrieve or narrow down 
face photos of potential suspects from police mug-shot databases. 

The major challenge of sketch based photo retrieval is matching 
images of different modalities which referred as “modality gap” 
[3,16]. Basically, a face photo is captured by a digital camera, 
while a face sketch is drawn by an artist. Even for same human 
subject, the face photo and its sketch might be different. The face 

shape might be exaggerated by artist or facial texture might be 
lost or replaced by artistic rendering in face sketch. This problem 
will be more exacerbated for forensic investigations, when the 
eye-witness cannot exactly recollect the suspect’s face. 

To date, various works have addressed the problem of face photo-
sketch matching; which can be categorized into two classes: intra-
modality [7,10,11,14] and inter-modality approaches [3,4,16]. 
Intra-modality approaches synthesize pseudo photo (sketch) from 
input sketch (photo) for matching sketches and photos in a same 
modality (photo or sketch). Consequently, the performance of 
these methods is highly dependent on the effectiveness of image 
synthesis, which might be even harder than retrieval problem [16]. 
On the other hand, inter-modality approaches directly match face 
photos and sketches using discriminative features which are 
integrated with advanced classifiers [16,5]. However, most of 
these approaches use some features which are not originally 
designed to tackle with modality gap [16]. Therefore, a modality-
invariant feature is eagerly needed to particularly deal with the 
presence of modality gap between face photo and sketch in photo-
sketch matching systems.  

The contributions of this paper can be summarized in two aspects: 
(1) We clearly explore the concept of modality gap and (2) A new 
modality invariant descriptor called Gabor Shape is proposed for 
face photo-sketch matching.    

2. MOTIVATION 
The modality gap is caused by the difference of visual cues which 
can be derived from face sketch and photo [3]. Generally, the 
visual cues of face image can be perceived from two different 
types of facial textures: fine and coarse textures. The fine texture 
(appearance) includes superficial and low contrast details of face 
skin such as flaws, moles, wrinkles as well as any 
shadow/reflection of lighting. Contrary, the coarse texture (shape) 
consists of the boundaries of main facial components with high 
contrast such as eyes, eyebrows, nose, lips, chin and ears which 
form the shape of face [3]. Thus, the amount of modality gap 
caused by coarse and fine textures can be explored separately.  

The coarse texture is necessary for artists to draw the principles of 
face sketch. Moreover, it makes the facial components in face 
photo to be distinct from face skin. Therefore, the visual cues of 
coarse texture are firmly present in both face sketch and photo. 
That means the modality gap is not significantly affected by 
coarse texture [3]. In contrast, the fine texture of face photo might 
be lost or even replaced by artistic rendering in corresponding 
face sketch. Consequently, the visual cues derived from the fine 
texture of face sketches are much different from those of face 
photos. That causes a high amount of modality gap. 

From the above discussion, it can be concluded that the modality 
gap is primarily caused by fine texture compared with coarse 
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Figure 1. (a) The framework of Gabor Shape face representation, (b) Radon transform of an image. 

texture. Therefore, coarse texture can be used to extract modality-
invariant features from face photo and sketch. One solution to 
extract feature based on coarse texture is to use edge-preserving 
smoothing operators, e.g. Bilateral filters, to decompose images 
into coarse and fine layers [2]. Then, the coarse layer 
corresponded to coarse texture can be used for feature extraction. 
However, there is not a clear definition of layer’s scales to 
separate fine and coarse layers precisely. Moreover, there are 
some range and domain parameters which have to be tuned 
precisely to control image decomposition [2]. Another possibility 
is to use both fine and coarse textures, but emphasizing coarse 
texture much more than fine texture in feature extraction stage. 
This is performed by the new descriptor Gabor Shape (GS) in two 
steps: First, the fine (coarse) texture is greatly attenuated 
(emphasized) using Gabor filters. Then the visual cues of face 
shape (coarse texture) are modeled by Radon transform as face 
descriptor. Indeed, by these two steps the fine texture is indirectly 
eliminated in feature extraction. The detail of Gabor Shape 
descriptor is presented by the following section. 

3. PROPOSED METHOD 
The overall framework of Gabor Shape is illustrated in Figure 1 
(a). Given a face image, Gabor Shape is modeled by the following 
steps: (1) A bank of Gabor filters applied on the face image to 
compute the Gabor magnitudes; (2) Each Gabor magnitude is 
further divided into non-overlapping patches; (4) Each local patch 
is represented by a set of histograms which are obtained by Radon 
sampling; (4) The Radon histograms of all local patches are 
concatenated to form the Gabor Shape representation.  

3.1 Gabor Filters 
Gabor filters have been extensively used for facial feature 
extraction [15,17], due to its excellent capacities to capture salient 
visual properties such as spatial localization, orientation 
selectivity and spatial frequency [9,15]. The Gabor filters with 
orientation ߤ  and scale ߥ are defined as [15]:  
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where ݖ ൌ ሺݔ, ሻ denotes the pixel and ݇ఓ,ఔݕ ൌ ݇ఔ݁௜థഋ is the wave 
vector with ݇ఔ ൌ ݇௠௔௫/ߣఔ and ߶ఓ ൌ  ௠௔௫ is the݇ .8/ߤߨ
maximum frequency, and ߣ is the spacing factor between filters in 
frequency domain. The convolution of a face image ݂ሺݔ,  ሻ andݕ
Gabor filter ߰ఓ,ఔሺݖሻ is calculated as:  

,ݖట௙ሺܩ ,ߤ ሻߥ ൌ ݂ሺݔ, ሻݕ כ ߰ఓ,ఔሺݖሻ (2) 

where כ indicates convolution operator. The complex response 

,ݖట௙ሺܩ ,ߤ ,ݖట௙ሺܩ ሻ can be represented asߥ ,ߤ ሻߥ ൌ .ሻݖఓ,ఔሺܯ e୧஘µഌሺ୸ሻ 
where ܯఓ,ఔሺݖሻ and ߠఓ,ఔሺݖሻ denote the magnitude and phase, 
respectively. Due to highly sensitivity of phase to spatial 
variation, only its magnitude is used for feature extraction [15].  

3.2 Radon Transform 
Radon transform computes projections of image intensity along 
tracing lines. Each line is characterized by its distance to the 
origin of axes s and rotation angle from reference axes ߠ א ሾ0,  .ሿߨ
The projection of a given image ݂: ሺݔ, ሻݕ ՜ ݃ in gray level along 
straight line ݈ሺݏ,  :ሻ is computed byߠ

࣬ఏ,௦ሾ݂ሺݔ, ሻሿݕ ൌ න ݂ሺݔ, ሻ݈݀ݕ
௟

 (3) 

where all points on the line ݈ satisfy the Equation (4):  

ݔ ሻߠሺ݊݅ݏ െ ݕ ሻߠሺݏ݋ܿ െ ݏ ൌ 0 (4) 

therefore, the Equation (3) can be rewritten as: 

࣬ఏ,௦ሾ݂ሺݔ, ሻሿݕ ൌ ඵ ݂ሺݔ, ݔሺߜሻݕ ݊݅ݏ ߠ െ ݕ ݏ݋ܿ ߠ െ  (5) ݕ݀ݔሻ݀ݏ

where ߜሺ. ሻ is the Dirac function. The Radon transform of the 
image is determined by a set of projections of the image along 
lines with different orientations and distances. The Radon 
transform is illustrated in Figure 1 (b).  

3.3 Gabor Shape Representation 
In order to capture the shape characteristics of Gabor 
magnitude ܯఓ,ఔሺݖሻ, we locally encode the shape of ܯఓ,ఔሺݖሻ by 
Radon transform. First, each Gabor magnitude ܯఓ,ఔሺݖሻ is divided 
into Nሺࣺ݊௢௥ ൈ ݊आ௘௥ሻ non-overlapping patches Ω ൌ ሼ ఓ߱,ఔ

௜ ሺݖሻ|ߤ א
ሼ0, … ,7ሽ, ߥ א ሼ0, … ,4ሽ, 1 ൑ ݅ ൑ ܰሽ, where ఓ߱,ఔ

௜ ሺݖሻ is the ith  local 
patch of magnitude ܯఓ,ఔሺݖሻ. Then, each patch ఓ߱,ఔ

௜ ሺݖሻ א Ω is 
processed by Radon sampling as follows: (1) Each local patch 

ఓ߱,ఔ
௜ ሺݖሻ is transformed into Radon space by ࣬ఏ,௦ሾ ఓ߱,ఔ

௜ ሺݖሻሿ; (2) 
Each ࣬ఏ,௦ሾ ఓ߱,ఔ

௜ ሺݖሻሿ of size ݏ ൈ is divided into ࣺ݊௢௥ ߠ ൈ ݊आ௘௥  
non-overlapping local regions as Radon samples; (3) A histogram 
with b bins is calculated for each Radon sample to summarize the 
Radon values; (4) All histograms extracted from the Radon 
samples of all the Gabor magnitudes are concatenated into a 
single histogram as Gabor Shape of the given face image.  

4. EXPERIMENTS 
Two experiments are conducted on CUFSF [16] and CUFS [14] 
datasets to demonstrate the effectiveness of Gabor Shape for face 
photo-sketch matching. All 606 photos in CUFS are taken under a 
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normal illumination condition. For each photo, there is a sketch 
without shape distortion which is drawn by an artist when viewing 
its corresponding photo. The CUFSF consists of 1194 
photo/sketch pairs with lighting variations (for photos) and shape 
exaggeration (for sketches). All face images are translated, rotated 
and scaled such that the centers of eyes and mouth are at fixed 
positions. All images are then cropped to 160x128 pixels. Some 
examples of face photo/sketch pairs are shown in Figure 2. 

In experiment 1, we compare Gabor Shape with popular face 
descriptors including LBP [1], SIFT [8] and LGBPHS [15] on 
CUFSF. The performance is evaluated by Receiving Operator 
Characteristic (ROC) curves as Verification Rate (VR) versus 
False Acceptance Rate (FAR). For all descriptors, the input image 
is divided into 7*5 non-overlapping local patches. The SIFT is 
obtained by concatenating 128-dimentional SIFT (4x4 spatial bins 
and 8 orientation bins over ሾ0 െ  .ሿ) of all the local patches [8]ߨ2
The LBP descriptor is computed by concatenating LBP 
histograms of all the local regions. The LBP is parameterized by 
r=8 (radius) and p=8 (sampling points) [1]. For LGBPHS, we use 
40 Gabor filters in 5 scales and 8 orientations. Each Gabor 
magnitude is encoded by LBP into local Gabor binary pattern 
(LGBP), which is further divided into local patches. The 
LGBPHS is formed by concatenation histogram sequences of 
LGBP local patches of all Gabor magnitudes [15].  

The Gabor filters used for Gabor Shape is same as LGBPHS. A 
set of experiments with different configuration of parameters are 
conducted to explore the effect of varying free parameters on the 
performance of Gabor Shape, including the number of local 
patches for Gabor magnitude ࣺ݊௢௥ ൈ ݊आ௘௥ (20×16, 10×8, 7×5, 
5×4)  and Radon sampling ࣺ݉௢௥ ൈ ݉आ௘௥ (1×4, 2×4, 3×4, 1×6, 
2×6, 3×6). The histogram bins b is selected as 8. The results show 
that the performance of Gabor Shape is not dominated by the 
setting of parameters. Eventually, these parameters are selected as 
7×5 and 2×6 for ࣺ݊௢௥ ൈ ݊आ௘௥ and ࣺ݉௢௥ ൈ ݉आ௘௥,  respectively. 
The dissimilarity between descriptors of photos and sketches is 
computed by Chi-square distance. The best match for a probe 
sketch is a photo with minimum dissimilarity.  

The results of experiment 1 are illustrated in Figure 3. Obviously, 
Gabor Shape outperforms LBP, SIFT and LGBPHS. The worst 
performance is obtained by LBP (30.43%), due to the presence of 
large modality gap. Achieving higher performance by LGBPHS 
(45.10%) states that the modality gap is reduced by LGBPHS. 
Since, Gabor magnitudes which used by LGBPHS emphasize 
coarse texture which is not involved into modality gap. SIFT 
exploits both fine and coarse textures in feature extraction. Thus, 
its performance (37.41%) is less than our descriptor (60.48%).   

The experiment 2 is designed to compare our method with the 
following state-of-the-art approaches on CUFSF and CUFS. The 
parameters of these approaches are tuned according to their 
papers. The training and testing set on the SUFSF dataset are 
generated by randomly selecting 500 and 694 subjects, 
respectively. On the CUFS dataset, we selected 306 subjects as 
training set; and the remaining 300 subjects form the testing set. 

MRF+RS-LDA [14]: First, a MRF-based photo synthesis is 
trained to synthesize pseudo photos from input sketches. Then, a 
face recognition based on RS-LDA [13] is used to match pseudo 
photos against a gallery of face photos with known identities. 

Kernel CSR [6]: A common discriminative subspace is learnt to 
directly match face photos and sketches in different modalities. 
The CSR model is separately trained for LBP and SIFT.  

 

Figure 2. Examples of face photo/sketch pairs, (left) CUFSF 
and (right) CUFS dataset. 

 
Figure 3. ROC curves of experiment 1: Comparing Gabor 
Shape with LGBPHS, SIFT and LBP on CUFSF dataset. 

LFDA [5]: A discriminate projection is learnt by fusing different 
LBP and SIFT descriptors in a single feature vector. LBP is 
computed with four radii r ൌ ሼ1,3,5,7ሽ and 8 sampling points. 
SIFT is computed from local patches with size 32 [5].  

CITP [16]: CITP is characterized by five trees in CITP forest and 
256 nodes for each tree. The pattern sampling is performed by a 
single ring with radius 2. A PCA-LDA classifier [12] with 
dimension of 600 is applied for feature reduction.  

In this experiment, PCA-LDA [12] is applied to reduce the 
dimension of Gabor Shape. Given a projection matrix which is 
learnt by a training set, all Gabor Shape descriptors of testing 
images are first projected into the space with lower dimension. 
Then, the dissimilarity between projected features is computed by 
Chi-square distance. In order to choose the appropriate PCA-LDA 
dimension, we evaluate the new descriptor by different PCA-LDA 
dimensions {200, 400, …,999}, as shown in Figure 4. The results 
suggest that the VR at 0.1% FAR slightly changes from 800 to 
999 (about 1%). Thus, we choose 800 as PCA-LDA dimension. 

 

Figure 4. VR at 0.1% FAR vs. PCA-LDA dimension. 

The results of experiment 2 on CUFSF are illustrated in Figure 5 
and Table 1.  Figure 5 shows that the best verification rate is 
achieved by Gabor Shape (96.32%) followed by CITP (93.95%).  
The lowest performance is obtained by MRF+RS-LDA (29.54%). 
Since, MRF-based photo synthesis is affected by the shape 
distortion. The verification rates of kernel CSR (for both LBP and 
SIFT) are much better than MRF+RS-LDA. That means the 
performance can be improved by learning appropriate common 



subspaces which are more robust against modality gap. Although 
the problem of modality gap is not directly addressed by LFDA, a 
promising result (90.78%) is achieved by fusing several features 
with different spatial partitions. Moreover, Gabor Shape obtains 
higher verification rate (96.32%) than CITP forest (93.95%). 
Since, a single CITP forest based on one sampling pattern is not 
able to capture all rich information of face images [16]. In order to 
boost the performance of CITP forest, a linear SVM is trained to 
fuse dissimilarities by different CITP forests of five different 
sampling patterns. The result in Table 1 shows that fusing five 
sampling patterns in CITP improves the verification rate at 0.1% 
FAR from 93.95% to 98.70%. Moreover, in order to fairly 
compare the fused CITP with Gabor Shape, we evaluate fused 
Gabor Shape. The fusion of Gabor Shape is performed by 
averaging the dissimilarities which are obtained from different 
Gabor Shape with different values of ࣺ݊௢௥ ൈ ݊आ௘௥ (10×8, 7×5, 
5×4). As shown in Table 1, the verification rate achieved by fused 
Gabor Shape (99.14%) is higher than fused CITP (98.70%).   

Table 2 shows the Rank-1 recognition rates of experiment 2 on 
CUFS. According to Table 2, our method outperforms the other 
approaches.  The recognition rate of MRF+RS-LDA verifies that 
it works well on CUFS with no large shape degradation.  

 

Figure 5. Results of experiment 2 on CUFSF: Comparing 
Gabor Shape with state-of-the-art approaches, VR vs. FAR. 

 

Table 1. Comparing GS with CITP, VR at 0.1% FAR. 

Single CITP Fused CITP Single GS Fused GS 

93.95% 98.70% 96.32 % 99.14% 

 
Table 2. Rank-1 recognition rates on the CUFS dataset. 

MRF+RS-LDA [14] LFDA [5] CITP [16] GS 

96.30% 99.47% 99.87% 99.91% 

5. CONCLUSION 
We proposed a new modality-invariant face descriptor for face 
photo retrieval by sketch example. Gabor Shape inspired by the 
fact that the modality gap between face photo and sketch is caused 
by fine texture not coarse texture. Therefore, the modality gap can 

be significantly reduced by features which are extracted from 
coarse texture (face shape). In Gabor Shape framework, first fine 
texture is attenuated by Gabor filters. Then, face shape which is 
represented by coarse texture is modeled by Radon transform. 
Experimental results on CUFS and CUFSF state that superior 
results are achieved by Gabor Shape compared to some state-of-
the-art approaches. For future works, we will focus on face sketch 
recognition in presence of extreme shape degradation for real-
world situations in which the eye-witness cannot properly recall 
the detail of suspect’s face. Moreover, a face sketch dataset drawn 
based on recollection of eye-witness is required for future 
researches. 
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