
1

STADS: Software Testing as Species Discovery
Spatial and Temporal Extrapolation from Tested Program Behaviors

MARCEL BÖHME∗, National University of Singapore and Monash University, Australia

A fundamental challenge of software testing is the statistically well-grounded extrapolation from program

behaviors observed during testing. For instance, a security researcher who has run the fuzzer for a week has

currently no means (i) to estimate the total number of feasible program branches, given that only a fraction has

been covered so far, (ii) to estimate the additional time required to cover 10% more branches (or to estimate the

coverage achieved in one more day, resp.), or (iii) to assess the residual risk that a vulnerability exists when no

vulnerability has been discovered. Failing to discover a vulnerability, does not mean that none exists—even if

the fuzzer was run for a week (or a year). Hence, testing provides no formal correctness guarantees.
In this article, I establish an unexpected connection with the otherwise unrelated scientific field of ecology,

and introduce a statistical framework that models Software Testing and Analysis as Discovery of Species

(STADS). For instance, in order to study the species diversity of arthropods in a tropical rain forest, ecologists

would first sample a large number of individuals from that forest, determine their species, and extrapolate

from the properties observed in the sample to properties of the whole forest. The estimation (i) of the total

number of species, (ii) of the additional sampling effort required to discover 10% more species, or (iii) of the

probability to discover a new species are classical problems in ecology. The STADS framework draws from

over three decades of research in ecological biostatistics to address the fundamental extrapolation challenge

for automated test generation. Our preliminary empirical study demonstrates a good estimator performance

even for a fuzzer with adaptive sampling bias—AFL, a state-of-the-art vulnerability detection tool. The STADS

framework provides statistical correctness guarantees with quantifiable accuracy.

CCS Concepts: • Security and privacy→ Penetration testing; • Software and its engineering→ Soft-
ware testing and debugging;

1 INTRODUCTION
The development of automated and practical approaches to vulnerability detection has never

been more important. The recent world-wide WannaCry cyber-epidemic clearly demonstrates the

vulnerability of our well-connected software systems. WannaCry exploits a software vulnerability
on Windows machines to gain root access on a huge number of computers all over the world. The

ransomware uses the root access to encrypt all private data which would be released only if a

ransom is paid. Hospitals had to shut down because life-saving medical devices were infected [125].

A 2017 study found that world-wide the cost of cyber crime for the average company is US$ 11.7

million, a 22.7% increase from the preceeding year [96]. In February 2017, a bug was discovered in

the HTML parser of Cloudflare, a company which offers performance and security services to about

six million customer websites (incl. OKCupid and Uber). The bug leaked information, including

private keys and passwords [123]. In July 2017, a hacker stole 31 million USD from Ethereum, a

blockchain-based platform, exploiting a vulnerability in the implementation of a protocol that was

formally verified to be cryptographically sound [124]. To discover software vulnerabilities at scale,
we need automated testing tools that can be used in practice, that work by the push of a button.

1

∗
Dr. Böhme conducted this research at the National University of Singapore and has since moved to Monash University.

1
We concretely position this work within the software security domain and leverage the appropriate terminology. We take

this position due to the practical impact and the recent, considerable traction of automated testing in the security domain.

The security domain also provides a more compact terminology: “Fuzzing” instead of “automated software testing”, “fuzzer”

instead of “testing tool”, “fuzzing campaign” instead of “execution of the testing tool”, etc. Nevertheless, the central concepts

that we present in this article apply to automated software testing and analysis, in general.

, Vol. 1, No. 1, Article 1. Publication date: April 2018.

Automated software testing (or fuzzing) has been an extremely successful automated vulnerability

detection technique in practice. Our own fuzzers [6, 8, 9, 82] discovered 100+ bugs and more than 40

vulnerabilities in large security-critical software systems. Fuzzers, such as AFL [98], Libfuzzer [109],

syzkaller [120], Peach [117], Monkey [113], and Sapienz [70] are now routinely used as automated

testing and vulnerability detection techniques in large companies, such as Google [116], Microsoft

[112], Mozilla [114], and Facebook [103]. The 2004 DARPA Grand Challenge inspired substantial

research in self-driving cars that are now a reality. The 2016 DARPA Cyber Grand Challenge

[102], the world’s first machine-only hacking tournament with $3.75 million in prize money, will

arguably provide a similar push of research in advanced automated vulnerability detection. A fuzzer
generates and executes program inputs, while a dynamic analysis (e.g., injected program assertions

[89, 92]) identifies test executions that expose a vulnerability.

1.1 Extrapolation: A Fundamental Challenge of Automated Testing
A fundamental challenge of software testing is the statistically well-grounded extrapolation from

program behaviours observed during testing [97]. Unlike automated verification, fuzzing does not

allow to make universal statements over program properties [37].

No formal guarantees. If a verifier terminates without a counter-example, it formally guaran-

tees the absence of vulnerabilities for all inputs. In contrast, a fuzzer perpetually generates random

inputs and checks whether any of those exposes a vulnerability. Clearly, if the fuzzer generates a

vulnerability-exposing input, a vulnerability exists. Yet, failing to expose a vulnerability does not
mean that none exists. In fact, Hamlet and Taylor [55] argue that no matter how long the fuzzer is

run (e.g., a year)—if no vulnerability is discovered, we cannot report with any degree of confidence

that none exists. So then, what is the utility of a fuzzing campaign that exposes no vulnerabilities?
No cost-effectiveness analysis. Suppose, a security researcher has run the fuzzer for one week

and exercised 60% of all program branches. Today, she has no means to estimate how much longer

it would take to achieve, say 70% coverage, or how much coverage would be achieved after, say

one more week. Perhaps the program is just very difficult to fuzz. However, there exists no formal

measure of fuzzability, either, that would allow to estimate the resources needed to achieve an

acceptable progress during a fuzzing campaign. In fact, our security researcher has no means to

determine whether the fuzzer can even achieve 70% branch coverage, at all. Some branches may

just not be feasible. Perhaps 100% of feasible branches have already been covered. In that case,

how should a security researcher judge the campaign’s progress towards completion? In practice,

exactly when to abort a fuzzing campaign is mostly a judgement call that requires experience and

guesswork.

No smart scheduling. The lack of oversight has consequences not only for individual security

researchers but for large multi-national companies as well. For instance, Google Security has heavily

invested into a large-scale fuzzing infrastructure called OSS-Fuzz which is now generating some 10

trillion test inputs per day for more than 50 security-critical open-source software projects [116].

Each project is assigned roughly the same time budget. This is a waste of resources since fuzzing

campaigns for certain programs stop making any progress after only a few hours while campaigns

for other programs continue to make progress for days on end. For now, there is no automated

mechanism to measure how far a fuzzing campaign has progressed towards completion. Hence, no

smart scheduling strategies for fuzzing campaigns have been developed, yet.

A security researcher has no means to estimate the progress of the current fuzzing campaign

towards completion or the confidence that the campaign inspires in the program’s correctness. At

any time into the campaign, the researcher has no means to gauge (let alone predict) the expected

return on investment: How much more would she learn if she continued the campaign?

2

Fig. 1. Species of arthropods (i.e., “bugs”) discovered during ecological surveys in Singapore and Malaysia.
The diversity and richness of arthropod species in tropical rain forests are notoriously difficult to assess due to
the immense sampling effort that is required. According to a recent estimate [4], there are 6.1 million tropical
arthropod species (high richness), most of which are rare (high diversity). Photo Credit : Marcel Böhme with
the permission from Lee Kong Chian Natural History Museum, Singapore.

1.2 An Unexpected Connection With Ecology
In this article, I establish an unexpected connection with the scientific field of ecology, a branch of

biology that deals with the relations of organisms to one another and to their physical surroundings.

I argue that methodologies to estimate the number of species in an assemblage
2
provide an ideal

statistical framework within which one can assess and extrapolate the progress of a fuzzing

campaign towards completion and the confidence it inspires in the program’s correctness. I conduct

a preliminary empirically evaluation and outline future research directions to tailor and improve

these methodologies for the requirements of automated software engineering and security.

Discovery in testing. My key observation is that automated software testing and analysis are

about discovery. A fuzzer generates test inputs by sampling from the program’s input space, and

thus discovers properties about the program’s behavior. Depending on the concrete objective,

discovery means to find new bugs or vulnerabilities [7], to exercise interesting program paths [98],

to cover new coverage goals, to kill stubborn mutants [64], to explore new program states [5, 85],

to report unexpected information flows [71], or to explore new event sequences [113].

Discovery in ecology. Similarly, ecologists are concerned with the discovery of species in an

assemblage. For instance, in order to study the biodiversity of arthropods in a tropical rain forest

(Figure 1), ecologists would first sample a large number of individuals from that forest and determine

their species. However, since sampling effort is necessarily limited, the sample is usually incomplete.

The sample may contain several abundant species and miss many rare species. Biostatisticians

spent the last three decades constructing a well-grounded statistical framework within which they

can extrapolate, with quantifiable accuracy, from properties of the sample to properties of the

complete assemblage (e.g., arthropod diversity in the tropical rain forest) [12, 20, 35].

2
An assemblage is a group of individuals belonging to a number of different species that occur together in space and time.

For example, all birds that live on an island today form an assemblage; all plants currently on Earth form an assemblage; etc.

3

STADS framework. My key observation allows us to model software testing and analysis as

discovery of species (STADS). Consequently, STADS provides direct access to a rich statistical

framework in ecology. Within the STADS framework, security researchers can leverage method-

ologies to accurately estimate the degree to which a software has been tested and to extrapolate,

with quantifiable accuracy, from the behavior observed during testing to the complete program

behavior. We show that an estimate of the probability to discover a new species provides a statistical
correctness guarantee. Moreover, we present novel methodologies to assess campaign completeness
(i.e., the progress of an ongoing campaign towards completion), cost effectiveness (e.g., the additional
resources required to achieve an acceptable completeness), and residual risk that a vulnerability

exists when none has been discovered.

Terminology. A fuzzer generates test inputs for a program. In STADS, a test input corresponds to
an individual or sampling unit. A dynamic analysis identifies the species for an input. For instance,

the AFL [98] instrumentation identifies the path exercised by an input; AddressSanitizer [89]

identifies the memory error exposed by an input (if at all). A species is rare if only a few generated

test inputs belong to that species while a species is abundant if a large number of test inputs belong

to that species. The relative abundance of a species describes the probability to generate a test input

that belongs to that species. The program’s input space represents the assemblage. The set of test

inputs generated throughout a fuzzing campaign corresponds to the survey sample. We refer to

Chao and Collwell (2017) [20], Chao and Lou [23], and Collwell et al. [33] for recent reviews of the

literature on the pertinent models and estimators spanning three decades of research in ecology.

Hypothesis. I hypothesize that within STADS rare species which have been discovered explain

the species within the fuzzer’s search space that remain undiscovered. Intuitively, it is the “difficulty”

to discover a rare species—measured by the total number of test inputs that needed to be generated

before discovering the rare species—that provides insights on the discovery of undetected species

which are evidentlymuch rarer. A similar hypothesis is underpinning the nonparametric biostatistics

in ecology [17]. In order to test this central hypothesis, we need to establish the accuracy of existing

estimators and extrapolators from ecology within the STADS framework.

Species richness S . Estimating the total number of species S in the assemblage is a classical

problem in ecology. If an ecologist samples n individuals and discovers S (n) species, then (S −S (n))
species remain undetected. In order to quantify the species richness of the complete assemblage,

nonparametric estimators Ŝ have been developed that become more accurate as sampling effort

n increases [15, 16]. For instance, recently ecologists estimated the total number of species on

Earth as 8.7 million [77] while only 14% have been discovered despite two centuries of taxonomic

classification. In STADS, an estimate Ŝ of the asymptotic total number of species allows us to

estimate the proportion Ĝ = S (n)/Ŝ of all Ŝ species that have been discovered. For instance, we

could estimate the feasible branch coverage, i.e., the proportion of actually feasible branches covered
so far. The species coverageG can be used to assess campaign completeness, i.e., how much progress

has been made towards completion. It could also be used to devise smart scheduling strategies
for fuzzing campaigns that automatically abort a campaign that has reached a certain degree of

completeness Ĝ, and schedule the next one.

Discovery probabilityU (n). In ecology, the discovery probabilityU (n)measures the probability

to discover a new species with the n + 1th generated test input. The discovery probability can be

estimated accurately and efficiently from the sample alone [48]. In the STADS framework, if the

dynamic analysis is able to identify vulnerabilities, then the discovery probability U provides a

statistical guarantee that no detectable vulnerability exists if none has been discovered. In other

words, security researchers can use the STADS statistical framework for residual risk assessment.

In ecology, the sample coverage C = 1 − U quantifies the completeness of the sample, i.e., the

4

proportion of individuals in the assemblage whose species is represented in the sample. Sample

coverage is routinely used to choose the most accurate estimator for other quantities, such as

species richness S [11] and to compare attributes of species across different assemblages [23].

Extrapolating species discovery S (n +m∗) and U (n +m∗). An extrapolation allows to assess

the trade-off between investing more resources and gaining more insight. In ecology, there exist

methodologies to quantify this return on investment. In STADS, a security researcher can use these

methodologies to make an informed decision whether to continue or abort a fuzzing campaign.

Suppose, the client requires a statistical guarantee of U (n +m∗) = 10
−8

as upper bound on the

probability that the fuzzer finds a vulnerability in the program. The researcher can estimate the

additional fuzzing effortm∗ that is required to achieve that degree of confidence in the program’s

correctness. Suppose, a fuzzer has achieved a statement coverage of G (n) = 60%. Within STADS,

the statistically well-grounded extrapolation allows to estimate the coverage G (n +m∗) that would
be achieved ifm∗ more test inputs were generated.

1.3 Contributions
This article addresses the fundamental challenge of statistically well-grounded extrapolation both

(i) spatially (i.e., from behaviors observed during fuzzing to all program behaviors) as well as

(ii) temporally (i.e., if the campaign was continued for some more time). We provide the first general

statistical model of software testing and analysis as discovery of species (STADS). For the first time,

practitioners can use well-researched methodologies from ecology to make informed decisions

about the fate of a fuzzing campaign and quantify what has been learned about the program. Within

STADS researchers can, for the first time, formally define novel metrics, and identify or develop

their estimators to investigate interesting properties of software, fuzzing campaign, and fuzzer.

• A fuzzer’s effectiveness and efficiency may be measured and compared across other fuzzers.

Effectiveness is determined by the number of species within the fuzzer’s search space.

Efficiency is determined by the number of species discovered per generated test input.

• A campaign’s completeness, cost-effectiveness, and residual risk may be assessed as it is

ongoing. Campaign completeness can be judged by the species coverageG (n) or the sample

coverageC (n) = 1−U (n). Cost-effectiveness can be assessed via extrapolation of the species

discovered S (n +m∗) or confidence achievedU (n +m∗) ifm∗ additional test inputs were
generated. The campaign’s residual risk can be assessed via the discovery probabilityU (n).

• The difficulty to fuzz a program (i.e., software fuzzability) can be estimated from the relative

species abundance distribution. Intuitively, as the proportion of rare species increases, the

difficulty to discover species increases as well.

The primary contribution of this article is the STADS model which establishes the connection

with ecology to provide access to a rich statistical framework that can address the challenges in

automated software testing and analysis. However, due to space limitation, we can only present

and investigate some pertinent aspects of the STADS framework. Specifically, this article makes

the following secondary contributions.

• Hypothesis. I hypothesize that rare species which have been discovered explain the species
within the fuzzer’s search space that remain undiscovered. This hypothesis underpinning

the STADS framework is tested successfully in our empirical study. Estimators and extrapola-

tors that are based on rare species (i.e., singleton and doubleton species) demonstrate a good

performance for automated software testing and analysis. Within the STADS framework,

we make no assumptions about the total number, relative abundance distribution, or location

of species within the program’s input space.

5

• STADSmodels. Themultinomial model—where each input belongs to exactly one species—
is integrated into the STADS framework and empirically evaluated. For instance, an input

can execute only one path, exercise only one method call sequence, compute only one final

output, crash only at one program location. The Bernoulli product model—where each input

belongs to one or more species—is integrated into the STADS framework. For instance,

a single input can exercise multiple coverage-goals (e.g., program statements, branches,

or methods), kill multiple mutants, witness multiple information flows, violate multiple

assertions, expose multiple bugs, and traverse multiple program states. For both models,

we provide an extensive survey of ecological methodologies to estimate and extrapolate

relevant quantities within the STADS framework, and show how these methodologies can

solve hard problems that have been long-standing in automated software engineering.

• Evaluation. In order to conduct an empirical evaluation of the multinomial model within

the STADS framework, we fuzz six security-critical open-source programs for a cumu-

lative 8.2 months using the popular, state-of-the-art fuzzer AFL [98]. The evaluation of

two estimators (Ĝ (n) [15], Û (n) [48]) and one extrapolator Ŝ (n +m∗) [90] demonstrate

a reasonably low bias and high precision. We find that, despite the adaptive sampling

bias of AFL, the methodologies are statistically consistent, meaning that bias decreases

and precision increases as more test inputs are generated. The estimate for one fuzzing

campaign is fairly representative for other fuzzing campaigns of the same length.
3

The STADS framework exhibits some peculiar features that make the direct application of exist-

ing ecologic methodologies more challenging: One has to deal with extremely large populations
containing a huge number of species (e.g., millions of program branches), where most species are
rare. Sampling strategies of feedback-directed fuzzers are (intentionally) subject to adaptive bias.

For instance, in search-based software testing (SBST) [73, 74] the species discovered by future test

inputs depend on the “fitness” of past test inputs. We point out many opportunities to identify,

improve, tailor, and develop novel methodologies that address the peculiarities of the STADS model

and sketch solutions to correct the adaptive bias of feedback-directed fuzzers.

1.4 Outline
The remainder of this article is structured as follows. Section 2 illustrates the main technical

challenges and contributions using a practical motivating example. Section 3 introduces the STADS

framework and multinomial model more formally and explains how the model relates to automated

testing tools in practice. Sections 4 and 5 follow with a survey and discussion of estimation and

extrapolation in multinomial model of the STADS framework, respectively. In Section 6, we provide

a preliminary empirical evaluation of the estimators and extrapolators within the multinomial

model. In Section 7, we extend the STADS framework to account for inputs that can belong to

multiple species by introducing the Bernoulli product model. In Section 8, we survey the relevant

related literature. After an extended discussion of the peculiarities of the STADS framework and

opportunities for future research in Section 9, we conclude in Section 10.

2 MOTIVATING EXAMPLE
We introduce the main ideas of our statistical framework of software testing and analysis as

discovery of species (STADS) using the following motivating example. We ran the fuzzer American

Fuzzy Lop (AFL) for one week on the program libjpeg-turbo compiled with AddressSanitizer (ASAN).

3
More specifically, an estimate is fairly representative for other fuzzing campaigns where the same program is fuzzed for

the same time using the same fuzzer and seed corpus (if any).

6

Without Extrapolation With Extrapolation
american fuzzy lop 2.44b (djpeg)

__
run time : 0 days, 12 hrs, 0 min, 5 sec	cycles done : 53
last new path : 0 days, 0 hrs, 17 min, 44 sec	current paths : 4944
last uniq crash : none seen yet	uniq crashes : 0

. . .

extrapolation edition yeah! (djpeg)

residual risk : 7·10^-06 | total inputs : 63.6M |
path coverage : 77.6% paths covered | singletons : 447 |

discover new path : 0 hrs, 1 min, 36 sec | doubletons : 70 |
142k new inputs needed | |

12h into the campaign & 18mins since last path. Only 78% of all paths?

(a) Keep going? (c) Let’s keep going!

american fuzzy lop 2.44b (djpeg)
__

run time : 1 day, 0 hrs, 0 min, 5 sec	cycles done : 74
last new path : 0 days, 0 hrs, 0 min, 31 sec	current paths : 5127
last uniq crash : none seen yet	uniq crashes : 0

. . .

extrapolation edition yeah! (djpeg)

residual risk : 8·10^-07 | total inputs : 124.8M |
path coverage : 97.9% paths covered | singletons : 95 |

discover new path : 0 hrs, 15 min, 9 sec | doubletons : 42 |
1.3M new inputs needed | |

12h later, AFL has found only about 150 new paths. ∼98% of all paths that the fuzzer can cover are covered.
However, it found the last one only 31s ago. It would take ∼15 mins to discover just one more path.

(b) Continue or abort? How far towards “completion”? (d)We should probably abort!

Fig. 2. The left-hand side (“without extrapolation”) shows the first few lines of AFL’s retro-style UI (AFL
v2.44b). Specifically, it shows the pertinent information for the fuzzing campaign (a) at 12 hours and (b) at 24
hours. The right-hand side (“with extrapolation”) shows our extension with estimates of the residual risk (i.e.,
the probability to discover a (crashing) path with the next input that is generated), the path coverage (i.e., the
proportion of paths discovered), and the time or test inputs needed to discover the next path—for the fuzzing
campaign (c) at 12 hours and (d) at 24 hours.

AFL [98] is the state-of-the-art fuzzer for automated vulnerability detection. Libjpeg-turbo [110] is a
popular, security-critical image parsing library that is used in many browser and server frameworks.

ASAN [89] is a dynamic analyzer that identifies buffer overflows and other memory-related errors

and vulnerabilities. We use that fuzzing campaign to illustrate the challenges and opportunities of

automated testing and analysis in general.

Path discovery. While the true objective of AFL is to discover a maximal number of errors, it is

an unlikely measure of progress; errors are (thankfully) rather sparse in the program’s input space.

Instead, the more immediate (and measurable) goal of AFL is to explore paths.
4
AFL’s compiler-

wrapper afl-gcc instruments the program such that each path yields a different path-id. ASAN
instruments the program such that it crashes for inputs exposing a memory-related error. Hence,

AFL’s concrete testing objective is to discover a maximal number of paths and crashes.

Species discovery. In ecology, researchers sample individuals from an assemblage and identify

their species to gain insights about the species richness and diversity of the assemblage. AFL’s

fuzzer afl-fuzz generates and executes test inputs for the instrumented program by applying

random mutation operators at random points in a random seed file. In other words, AFL is a (biased)

stochastic process that samples test inputs from the program’s input space. Our assemblage is the
program’s input space.

5
Our individual is a discrete input. Our sample is the set of all test inputs

that have been generated throughout the current campaign. In this example, our species is the tuple
(path-id, crashing) where crashing is true if the input crashes the program and false otherwise.

ASAN and afl-gcc together form the dynamic analysis that identifies the species for a program
input. The general testing objective is always to discover a maximal number of species.

4
To address path explosion, AFL clusters paths that exercise the same control-flow edges and do not yield substantially

different hit counts for each edge [9]. Effectively, AFL reports the number of discovered path clusters rather than the number

of discovered paths. For simplicity, we stick to the AFL terminology.

5
This is grossly simplified. Technically, our assemblage is the set of all program inputs that AFL is capable of generating

using the available seed files and mutation operators. All statistical claims will hold only over AFL’s search space.

7

Challenges. Figure 2.a) shows the progress for our fuzzing campaign after the passage of 12

hours—just like a security researcher might see it. In 12 hours, AFL has generated ∼63 million

(63M) test inputs and completed 53 cycles through the seed inputs. AFL has discovered about 5

thousand (5k) paths, and about 18 minutes (18 min) have passed since the discovery of the most

recent path. Since the security researcher is given only the total number of paths, she cannot make

an informed decision concerning the progress of the fuzzing campaign towards completion. About

18 minutes have passed since the last discovery of a new path. So, the researcher might reckon that

the probability to discover a new path is very low. However, as we will see below, the time since the

last discovery is rather unreliable and often changes several times per minute by up to four orders
of magnitude. No crashes have been found. At 12 hours, the security researcher has no handle on

the progress of the fuzzing campaign towards completion or on the correctness of the program.

Figure 2.b) shows the progress for our fuzzing campaign after 24 hours. The security researcher

has learned that the number of discovered paths has not increased substantially in the last 12 hours.

She may (or may not) decide to discontinue the fuzzing campaign based on this observation alone.

However, the most recent path was found only a few seconds ago. So, she might be swayed to

continue for at least a few more hours. Still, no crashes have been found. Even after 24 hours, the

security researcher has no definite handle on making an informed decision about the completeness

of the fuzzing campaign or how confident she can be in the correctness of the program.

2.1 Assessing Residual Risk Using the Discovery Probability

“Testing can be used to show the presence

of bugs, but never to show their absence.”

Edsger Dijkstra (1970) [37]

Finding no vulnerabilities in a (long-running) fuzzing campaign does not mean that none exists.

A residual risk assessment would allow us to quantify the confidence the campaign inspires in the

correctness of the program. In fact, our STADS framework provides statistical guarantees about the
absence of vulnerabilities with quantifiable accuracy (e.g., 95%-confidence intervals). In order to

assess the residual risk, we suggest to estimate the probabilityU to discover a new species with the

next generated test input. If the dynamic analysis, as in our motivating example, is able to identify

vulnerabilities, then undiscovered vulnerabilities correspond to undiscovered species. Hence, the

discovery probabilityU provides an upper bound on the probability to discover a new vulnerability

with the next input that is generated. From this perspective, I argue that testing can be used to show

that bugs are absent with a certain likelihood (1−U) that can be estimated efficiently and accurately

during a fuzzing campaign, with a likelihood that increases over the course of a campaign.

In ecology, the discovery probabilityU gives the proportion of individuals in the assemblage whose

species are not represented in the sample. In our motivating example, the discovery probability

gives the proportion of all inputs in the input space that exercise yet undiscovered paths. We

could say,U represents how much of the program behavior remains untested. The inverse of the
discovery probability 1/U provides the number of test inputs that we can expect to generate before

discovering a new (path) species. The sample coverageC = 1−U is the complement of the discovery

probability and effectively quantifies the degree of confidence that the fuzzing campaign inspires

in the correctness of the program. In our example, at least C% of all inputs that AFL is capable of

generating are expected to execute without crashes.

Out of the box, AFL already reports the time since the last discovery of a new species (Fig. 2.a+b;

last new path). This time to last discovery can be used as an estimate of the expected time to the

next discovery. However, as we will see shortly, this estimate is very unreliable. Given the number

8

(a) Empirical probability (Ûemp) (b)Moving median (Ûmm) (c) Good-Turing estimate Û)

●

●
●

●
●

●

●

●●●
●●

●

●●
●

●
●

●

●

●●
●

●

●
●
●

●●
●

●

●
●●
●

●
●

●

●

●

●
●

●
●

●

●

●●

●●

●●

●●

●

●
●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●
●
●

●
●
●
●

●

●
●●
●

●●

●

●
●
●

●
●

●●
●

●

●
●

●

●●

●

●

●

●●
●●
●
●

●

●●
●

●

●

●

●
●●●
●●

●

●

●●

●
●
●
●

●
●●

●

●●

●

●
●
●

●

●

●●
●

●

●

●
●

●

●
●

●
●

●
●●
●
●
●●

●●
●
●●●

●
●
●

●

●

●
●●

●

●

●

●●
●●●
●

●
●

●

●●

●

●

●●

●

●●

●●

●

●●●

●

●

●

●●

●

●

●

●
●

●

●

●
●●●●
●
●

●
●
●
●●
●

●●

●

●●●●
●
●

●

●

●

●

●

●

●

●

●

●●●●●

●
●
●
●
●

●

●
●

●

●
●

●

●

●●●
●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●
●

●
●

●

●
●●

●
●

●
●

●

●
●
●
●

●●

●●

●
●

●

●

●●●
●
●
●

●

●●●●

●

●●

●
●

●

●

●
●●●

●

●
●

●

●●

●●●
●
●

●

●
●

●●●

●●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●
●

●

●●●
●

●
●

●

●
●

●●

●

●

●
●●

●●

●
●

●

●

●●

●

●
●

●

●●

●

●●

●

●
●●●

●
●

●

●
●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●
●

●

●

●
●
●
●●●

●●●
●

●
●

●●

●●

●

●
●

●

●

●

●

●●●
●
●
●

●

●

●

●

●●

●
●
●

●

●
●

●

●
●

●

●

●
●

●

●●●
●

●

●

●
●

●
●

●
●●
●
●●

●
●

●

●

●
●●

●

●
●

●

●

●●

●
●
●●
●

●

●

●
●

●

●●

●●●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●●
●●
●

●

●●
●●
●
●

●

●

●

●●●

●

●
●
●

●

●

●

●

●●

●
●
●

●

●
●
●

●

●
●●

●

●

●●

●

●

●●
●

●

●●●

●
●

●

●

●

●●

●

●

●●

●

●

●

●
●
●
●
●

●

●

●

●

●●

●
●

●●●●

●

●●
●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●
●
●●

●

●
●
●●
●

●
●

●

●

●

●
●

●●
●●
●
●
●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●●
●

●

●

●
●

●

●●
●●●

●

●
●
●●

●
●
●●

●

●

●

●

●●

●

●

●●

●

●●●

●

●
●

●

●

●

●

●

●

●
●

●●
●

●
●

●

●

●

●

●

●
●

●
●
●

●●
●
●
●

●

●
●

●
●
●
●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●●●●

●
●

●●

●
●
●

●●
●

●
●

●
●●●
●

●

●
●
●
●

●

●

●●
●
●●

●

●

●

●

●

●

●

●
●

●

●●

●●

●
●
●

●
●
●

●

●

●
●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●●●

●

●

●

●
●

●

●●
●

●

●
●
●

●●

●

●

●
●

●
●

●
●●

●●

●
●●●

●

●

●
●

●
●

●●
●●
●
●
●

●
●

●

●
●
●

●●●●●

●

●
●
●
●

●
●

●

●

●●
●

●
●

●

●

●

●
●
●
●

●

●

●

●●●

●●●
●

●

●

●●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●
●
●

●

●

●

●

●

●
●

●
●

●
●
●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●
●●●

●

●

●

●
●

●

●

●

●●

●
●●

●

●
●
●

●

●

●

●

●

●
●
●●

●

●

●●

●

●

●●

●●

●

●
●

●

●
●
●

●

●

●
●

●
●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●
●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●●●

●

●

●

●

●

1e−06

1e−04

1e−02

1e+00

0 6 12 18 24

Time (in hours)

D
is

co
ve

ry
 P

ro
b.

 E
st

im
at

e

●

●
●

●
●

●

●

●●●
●●

●

●●
●

●
●

●

●

●●
●

●

●
●
●

●●
●

●

●
●●
●

●
●

●

●

●

●
●

●
●

●

●

●●

●●

●●

●●

●

●
●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●
●
●

●
●
●
●

●

●
●●
●

●●

●

●
●
●

●
●

●●
●

●

●
●

●

●●

●

●

●

●●
●●
●
●

●

●●
●

●

●

●

●
●●●
●●

●

●

●●

●
●
●
●

●
●●

●

●●

●

●
●
●

●

●

●●
●

●

●

●
●

●

●
●

●
●

●
●●
●
●
●●

●●
●
●●●

●
●
●

●

●

●
●●

●

●

●

●●
●●●
●

●
●

●

●●

●

●

●●

●

●●

●●

●

●●●

●

●

●

●●

●

●

●

●
●

●

●

●
●●●●
●
●

●
●
●
●●
●

●●

●

●●●●
●
●

●

●

●

●

●

●

●

●

●

●●●●●

●
●
●
●
●

●

●
●

●

●
●

●

●

●●●
●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●
●

●
●

●

●
●●

●
●

●
●

●

●
●
●
●

●●

●●

●
●

●

●

●●●
●
●
●

●

●●●●

●

●●

●
●

●

●

●
●●●

●

●
●

●

●●

●●●
●
●

●

●
●

●●●

●●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●
●

●

●●●
●

●
●

●

●
●

●●

●

●

●
●●

●●

●
●

●

●

●●

●

●
●

●

●●

●

●●

●

●
●●●

●
●

●

●
●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●
●

●

●

●
●
●
●●●

●●●
●

●
●

●●

●●

●

●
●

●

●

●

●

●●●
●
●
●

●

●

●

●

●●

●
●
●

●

●
●

●

●
●

●

●

●
●

●

●●●
●

●

●

●
●

●
●

●
●●
●
●●

●
●

●

●

●
●●

●

●
●

●

●

●●

●
●
●●
●

●

●

●
●

●

●●

●●●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●●
●●
●

●

●●
●●
●
●

●

●

●

●●●

●

●
●
●

●

●

●

●

●●

●
●
●

●

●
●
●

●

●
●●

●

●

●●

●

●

●●
●

●

●●●

●
●

●

●

●

●●

●

●

●●

●

●

●

●
●
●
●
●

●

●

●

●

●●

●
●

●●●●

●

●●
●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●
●
●●

●

●
●
●●
●

●
●

●

●

●

●
●

●●
●●
●
●
●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●●
●

●

●

●
●

●

●●
●●●

●

●
●
●●

●
●
●●

●

●

●

●

●●

●

●

●●

●

●●●

●

●
●

●

●

●

●

●

●

●
●

●●
●

●
●

●

●

●

●

●

●
●

●
●
●

●●
●
●
●

●

●
●

●
●
●
●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●●●●

●
●

●●

●
●
●

●●
●

●
●

●
●●●
●

●

●
●
●
●

●

●

●●
●
●●

●

●

●

●

●

●

●

●
●

●

●●

●●

●
●
●

●
●
●

●

●

●
●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●●●

●

●

●

●
●

●

●●
●

●

●
●
●

●●

●

●

●
●

●
●

●
●●

●●

●
●●●

●

●

●
●

●
●

●●
●●
●
●
●

●
●

●

●
●
●

●●●●●

●

●
●
●
●

●
●

●

●

●●
●

●
●

●

●

●

●
●
●
●

●

●

●

●●●

●●●
●

●

●

●●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●
●
●

●

●

●

●

●

●
●

●
●

●
●
●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●
●●●

●

●

●

●
●

●

●

●

●●

●
●●

●

●
●
●

●

●

●

●

●

●
●
●●

●

●

●●

●

●

●●

●●

●

●
●

●

●
●
●

●

●

●
●

●
●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●
●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●●●

●

●

●

●

●

1e−06

1e−04

1e−02

1e+00

0 6 12 18 24

Time (in hours)

D
is

co
ve

ry
 P

ro
b.

 E
st

im
at

e

●

●
●

●
●

●

●

●●●
●●

●

●●
●

●
●

●

●

●●
●

●

●
●
●

●●
●

●

●
●●
●

●
●

●

●

●

●
●

●
●

●

●

●●

●●

●●

●●

●

●
●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●
●
●

●
●
●
●

●

●
●●
●

●●

●

●
●
●

●
●

●●
●

●

●
●

●

●●

●

●

●

●●
●●
●
●

●

●●
●

●

●

●

●
●●●
●●

●

●

●●

●
●
●
●

●
●●

●

●●

●

●
●
●

●

●

●●
●

●

●

●
●

●

●
●

●
●

●
●●
●
●
●●

●●
●
●●●

●
●
●

●

●

●
●●

●

●

●

●●
●●●
●

●
●

●

●●

●

●

●●

●

●●

●●

●

●●●

●

●

●

●●

●

●

●

●
●

●

●

●
●●●●
●
●

●
●
●
●●
●

●●

●

●●●●
●
●

●

●

●

●

●

●

●

●

●

●●●●●

●
●
●
●
●

●

●
●

●

●
●

●

●

●●●
●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●
●

●
●

●

●
●●

●
●

●
●

●

●
●
●
●

●●

●●

●
●

●

●

●●●
●
●
●

●

●●●●

●

●●

●
●

●

●

●
●●●

●

●
●

●

●●

●●●
●
●

●

●
●

●●●

●●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●
●

●

●●●
●

●
●

●

●
●

●●

●

●

●
●●

●●

●
●

●

●

●●

●

●
●

●

●●

●

●●

●

●
●●●

●
●

●

●
●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●
●

●

●

●
●
●
●●●

●●●
●

●
●

●●

●●

●

●
●

●

●

●

●

●●●
●
●
●

●

●

●

●

●●

●
●
●

●

●
●

●

●
●

●

●

●
●

●

●●●
●

●

●

●
●

●
●

●
●●
●
●●

●
●

●

●

●
●●

●

●
●

●

●

●●

●
●
●●
●

●

●

●
●

●

●●

●●●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●●
●●
●

●

●●
●●
●
●

●

●

●

●●●

●

●
●
●

●

●

●

●

●●

●
●
●

●

●
●
●

●

●
●●

●

●

●●

●

●

●●
●

●

●●●

●
●

●

●

●

●●

●

●

●●

●

●

●

●
●
●
●
●

●

●

●

●

●●

●
●

●●●●

●

●●
●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●
●
●●

●

●
●
●●
●

●
●

●

●

●

●
●

●●
●●
●
●
●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●●
●

●

●

●
●

●

●●
●●●

●

●
●
●●

●
●
●●

●

●

●

●

●●

●

●

●●

●

●●●

●

●
●

●

●

●

●

●

●

●
●

●●
●

●
●

●

●

●

●

●

●
●

●
●
●

●●
●
●
●

●

●
●

●
●
●
●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●●●●

●
●

●●

●
●
●

●●
●

●
●

●
●●●
●

●

●
●
●
●

●

●

●●
●
●●

●

●

●

●

●

●

●

●
●

●

●●

●●

●
●
●

●
●
●

●

●

●
●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●●●

●

●

●

●
●

●

●●
●

●

●
●
●

●●

●

●

●
●

●
●

●
●●

●●

●
●●●

●

●

●
●

●
●

●●
●●
●
●
●

●
●

●

●
●
●

●●●●●

●

●
●
●
●

●
●

●

●

●●
●

●
●

●

●

●

●
●
●
●

●

●

●

●●●

●●●
●

●

●

●●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●
●
●

●

●

●

●

●

●
●

●
●

●
●
●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●
●●●

●

●

●

●
●

●

●

●

●●

●
●●

●

●
●
●

●

●

●

●

●

●
●
●●

●

●

●●

●

●

●●

●●

●

●
●

●

●
●
●

●

●

●
●

●
●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●
●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●●●

●

●

●

●

●

1e−06

1e−04

1e−02

1e+00

0 6 12 18 24

Time (in hours)

D
is

co
ve

ry
 P

ro
b.

 E
st

im
at

e

●

●
●

●

●

●

●

●●●
●●

●

●
●
●

●

●

●

●

●●
●

●

●
●
●

●●
●

●

●
●●
●

●
●

●

●

●

●

●

●
●

●

●

●●

●●

●●

●
●

●

●
●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●
●
●

●
●
●
●

●

●
●●
●

●●

●

●

●
●

●
●

●●
●

●

●
●

●

●
●

●

●

●

●●
●●
●
●

●

●●
●

●

●

●

●

●●●
●●

●

●

●●

●
●
●
●

●
●●

●

●●

●

●
●
●

●

●

●●
●

●

●

●

●

●

●
●

●
●

●
●●
●
●
●●

●●
●
●●●

●

●
●

●

●

●
●
●

●

●

●

●●
●●
●
●

●
●

●

●●

●

●

●●

●

●●

●●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●
●●●●
●
●

●
●
●
●●
●

●
●

●

●●●●
●
●

●

●

●

●

●

●

●

●

●

●●●●
●

●
●
●
●
●

●

●
●

●

●

●

●

●

●●●
●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●
●

●
●

●

●
●●

●
●

●
●

●

●
●
●
●

●●

●●

●

●

●

●

●●●
●
●
●

●

●●●●

●

●●

●
●

●

●

●
●●●

●

●
●

●

●●

●
●
●
●
●

●

●
●

●●●

●●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●
●●
●

●
●

●

●
●

●●

●

●

●
●●

●●

●

●

●

●

●●

●

●
●

●

●●

●

●●

●

●

●●●

●
●

●

●
●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●
●
●
●●●

●●●
●

●
●

●●

●●

●

●
●

●

●

●

●

●●●
●
●
●

●

●

●

●

●●

●
●
●

●

●
●

●

●
●

●

●

●

●

●

●●●
●

●

●

●
●

●
●

●
●●
●
●●

●
●

●

●

●

●●

●

●
●

●

●

●●

●
●
●●
●

●

●

●
●

●

●●

●
●●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●
●●
●

●

●●

●●
●

●

●

●

●

●●●

●

●
●
●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●
●●

●

●

●●

●

●

●●
●

●

●●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●
●
●
●

●

●

●

●

●●

●
●

●
●●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●●

●

●

●
●●
●

●
●

●

●

●

●
●

●●
●●
●
●
●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●●
●

●

●

●
●

●

●●
●●●

●

●
●
●●

●

●
●●

●

●

●

●

●●

●

●

●●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●
●

●
●
●

●●
●
●
●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●●●

●
●

●●

●
●
●

●●
●

●
●

●

●●●
●

●

●
●

●
●

●

●

●●
●
●●

●

●

●

●

●

●

●

●
●

●

●●

●●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●●●

●

●

●

●
●

●

●●
●

●

●
●
●

●●

●

●

●
●

●
●

●
●●

●●

●
●●
●

●

●

●
●

●
●

●●
●●
●
●
●

●
●

●

●
●
●

●●●●●

●

●
●
●
●

●

●

●

●

●●
●

●
●

●

●

●

●
●
●

●

●

●

●

●●●

●●●
●

●

●

●●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●
●
●

●

●

●

●

●

●
●

●
●

●
●
●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●●●

●

●

●

●
●

●

●

●

●●

●
●
●

●

●
●
●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●●

●●

●

●
●

●

●
●
●

●

●

●
●

●
●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●
●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●●●

●

●

●

●

●●

●

●
●

●●

●●

●

●●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●●

●

●●
●

●

●

●

●

●
●

●
●
●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●
●●

●●

●

●
●
●

●

●●●
●
●

●●

●

●
●●●

●

●

●●●●

●

●●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●
●
●
●

●
●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●
●●

● ●

●

●

●●

●
●

●
●

●●●

●

●

●●●

1e−08

1e−06

1e−04

1e−02

1e+00

0 24 48 72 96 120 144 168

Time (in hours)

D
is

co
ve

ry
 P

ro
b.

 E
st

im
at

e

●

●
●

●

●

●

●

●●●
●●

●

●
●
●

●

●

●

●

●●
●

●

●
●
●

●●
●

●

●
●●
●

●
●

●

●

●

●

●

●
●

●

●

●●

●●

●●

●
●

●

●
●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●
●
●

●
●
●
●

●

●
●●
●

●●

●

●

●
●

●
●

●●
●

●

●
●

●

●
●

●

●

●

●●
●●
●
●

●

●●
●

●

●

●

●

●●●
●●

●

●

●●

●
●
●
●

●
●●

●

●●

●

●
●
●

●

●

●●
●

●

●

●

●

●

●
●

●
●

●
●●
●
●
●●

●●
●
●●●

●

●
●

●

●

●
●
●

●

●

●

●●
●●
●
●

●
●

●

●●

●

●

●●

●

●●

●●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●
●●●●
●
●

●
●
●
●●
●

●
●

●

●●●●
●
●

●

●

●

●

●

●

●

●

●

●●●●
●

●
●
●
●
●

●

●
●

●

●

●

●

●

●●●
●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●
●

●
●

●

●
●●

●
●

●
●

●

●
●
●
●

●●

●●

●

●

●

●

●●●
●
●
●

●

●●●●

●

●●

●
●

●

●

●
●●●

●

●
●

●

●●

●
●
●
●
●

●

●
●

●●●

●●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●
●●
●

●
●

●

●
●

●●

●

●

●
●●

●●

●

●

●

●

●●

●

●
●

●

●●

●

●●

●

●

●●●

●
●

●

●
●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●
●
●
●●●

●●●
●

●
●

●●

●●

●

●
●

●

●

●

●

●●●
●
●
●

●

●

●

●

●●

●
●
●

●

●
●

●

●
●

●

●

●

●

●

●●●
●

●

●

●
●

●
●

●
●●
●
●●

●
●

●

●

●

●●

●

●
●

●

●

●●

●
●
●●
●

●

●

●
●

●

●●

●
●●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●
●●
●

●

●●

●●
●

●

●

●

●

●●●

●

●
●
●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●
●●

●

●

●●

●

●

●●
●

●

●●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●
●
●
●

●

●

●

●

●●

●
●

●
●●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●●

●

●

●
●●
●

●
●

●

●

●

●
●

●●
●●
●
●
●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●●
●

●

●

●
●

●

●●
●●●

●

●
●
●●

●

●
●●

●

●

●

●

●●

●

●

●●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●
●

●
●
●

●●
●
●
●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●●●

●
●

●●

●
●
●

●●
●

●
●

●

●●●
●

●

●
●

●
●

●

●

●●
●
●●

●

●

●

●

●

●

●

●
●

●

●●

●●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●●●

●

●

●

●
●

●

●●
●

●

●
●
●

●●

●

●

●
●

●
●

●
●●

●●

●
●●
●

●

●

●
●

●
●

●●
●●
●
●
●

●
●

●

●
●
●

●●●●●

●

●
●
●
●

●

●

●

●

●●
●

●
●

●

●

●

●
●
●

●

●

●

●

●●●

●●●
●

●

●

●●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●
●
●

●

●

●

●

●

●
●

●
●

●
●
●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●●●

●

●

●

●
●

●

●

●

●●

●
●
●

●

●
●
●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●●

●●

●

●
●

●

●
●
●

●

●

●
●

●
●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●
●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●●●

●

●

●

●

●●

●

●
●

●●

●●

●

●●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●●

●

●●
●

●

●

●

●

●
●

●
●
●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●
●●

●●

●

●
●
●

●

●●●
●
●

●●

●

●
●●●

●

●

●●●●

●

●●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●
●
●
●

●
●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●
●●

● ●

●

●

●●

●
●

●
●

●●●

●

●

●●●

1e−08

1e−06

1e−04

1e−02

1e+00

0 24 48 72 96 120 144 168

Time (in hours)

D
is

co
ve

ry
 P

ro
b.

 E
st

im
at

e

●

●
●

●

●

●

●

●●●
●●

●

●
●
●

●

●

●

●

●●
●

●

●
●
●

●●
●

●

●
●●
●

●
●

●

●

●

●

●

●
●

●

●

●●

●●

●●

●
●

●

●
●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●
●
●

●
●
●
●

●

●
●●
●

●●

●

●

●
●

●
●

●●
●

●

●
●

●

●
●

●

●

●

●●
●●
●
●

●

●●
●

●

●

●

●

●●●
●●

●

●

●●

●
●
●
●

●
●●

●

●●

●

●
●
●

●

●

●●
●

●

●

●

●

●

●
●

●
●

●
●●
●
●
●●

●●
●
●●●

●

●
●

●

●

●
●
●

●

●

●

●●
●●
●
●

●
●

●

●●

●

●

●●

●

●●

●●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●
●●●●
●
●

●
●
●
●●
●

●
●

●

●●●●
●
●

●

●

●

●

●

●

●

●

●

●●●●
●

●
●
●
●
●

●

●
●

●

●

●

●

●

●●●
●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●
●

●
●

●

●
●●

●
●

●
●

●

●
●
●
●

●●

●●

●

●

●

●

●●●
●
●
●

●

●●●●

●

●●

●
●

●

●

●
●●●

●

●
●

●

●●

●
●
●
●
●

●

●
●

●●●

●●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●
●●
●

●
●

●

●
●

●●

●

●

●
●●

●●

●

●

●

●

●●

●

●
●

●

●●

●

●●

●

●

●●●

●
●

●

●
●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●
●
●
●●●

●●●
●

●
●

●●

●●

●

●
●

●

●

●

●

●●●
●
●
●

●

●

●

●

●●

●
●
●

●

●
●

●

●
●

●

●

●

●

●

●●●
●

●

●

●
●

●
●

●
●●
●
●●

●
●

●

●

●

●●

●

●
●

●

●

●●

●
●
●●
●

●

●

●
●

●

●●

●
●●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●
●●
●

●

●●

●●
●

●

●

●

●

●●●

●

●
●
●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●
●●

●

●

●●

●

●

●●
●

●

●●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●
●
●
●

●

●

●

●

●●

●
●

●
●●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●●

●

●

●
●●
●

●
●

●

●

●

●
●

●●
●●
●
●
●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●●
●

●

●

●
●

●

●●
●●●

●

●
●
●●

●

●
●●

●

●

●

●

●●

●

●

●●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●
●

●
●
●

●●
●
●
●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●●●

●
●

●●

●
●
●

●●
●

●
●

●

●●●
●

●

●
●

●
●

●

●

●●
●
●●

●

●

●

●

●

●

●

●
●

●

●●

●●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●●●

●

●

●

●
●

●

●●
●

●

●
●
●

●●

●

●

●
●

●
●

●
●●

●●

●
●●
●

●

●

●
●

●
●

●●
●●
●
●
●

●
●

●

●
●
●

●●●●●

●

●
●
●
●

●

●

●

●

●●
●

●
●

●

●

●

●
●
●

●

●

●

●

●●●

●●●
●

●

●

●●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●
●
●

●

●

●

●

●

●
●

●
●

●
●
●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●●●

●

●

●

●
●

●

●

●

●●

●
●
●

●

●
●
●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●●

●●

●

●
●

●

●
●
●

●

●

●
●

●
●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●
●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●●●

●

●

●

●

●●

●

●
●

●●

●●

●

●●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●●

●

●●
●

●

●

●

●

●
●

●
●
●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●
●●

●●

●

●
●
●

●

●●●
●
●

●●

●

●
●●●

●

●

●●●●

●

●●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●
●
●
●

●
●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●
●●

● ●

●

●

●●

●
●

●
●

●●●

●

●

●●●

1e−08

1e−06

1e−04

1e−02

1e+00

0 24 48 72 96 120 144 168

Time (in hours)

D
is

co
ve

ry
 P

ro
b.

 E
st

im
at

e

Fig. 3. Estimating the current discovery probability, i.e., the probability that a generated input discovers a
previously undiscovered path over 24h (top) and 168h (bottom).

m of test inputs that have been generated in the time since the last discovery, we can compute the

empirical discovery probability as Ûemp = 1/m. However, the discovery probability thus estimated

changes by orders of magnitude in a matter of seconds.

In Figure 3, we can see several estimators of the current discovery probability in an ongoing

fuzzing campaign: a) the empirical probability (i.e., 1 − 1/m wherem is the number of test inputs

needed to discover the most recent path), b) the rolling median (i.e., the median empirical probability

for the discovery of theN = 11most recent paths), and c) the Good-Turing estimator that is available

in our STADS framework. Figure 3.a shows the empirical discovery probability Ûemp one day and

seven days into the fuzzing campaign, respectively. Unlike the sample coverage C = 1 −U , the

discovery probability U can be represented on a log-scale. For instance, t = 100 hours into the

fuzzing campaign we find the empirical probability at about 2 · 10−8. In other words, it took about

(2 · 10−8)−1 = 50 million test inputs to discover the next path. However, the empirical probability

changes quite substantially in a matter of seconds. Particularly in the first 24 hours, the change can

be over four orders of magnitude (Fig. 3.a, top).

In signal processing, quick but large swings are often addressed with a moving average, the

mean value of a set of N successive points. However, the moving average is susceptible to extreme

events. Instead, the moving median is more robust, i.e., the median value of a set of N successive

points. As we can see in Figure 3.b, the swings of the moving median Ûmm are still quite substantial,

between one and three orders of magnitude. The moving median is right-aligned, meaning that

the discovery probability estimate at time t is computed as the median of the N empirical values

just preceding t . Hence, the moving median also generally over-estimates the discovery probability.

9

Increasing N to smooth the swings would only increase the bias. Moreover, Ûmm is not consistent,
meaning that Ûmm is not guaranteed to approach the true discovery probability as sampling effort

increases. So, the median (and mean) of the last N empirical probabilities Ûmm is also an unreliable

estimator of the current discovery probability (Fig. 3.b; N = 11).

Main Hypothesis. Almost all information about number and relative abundance of species that
remain undiscovered is in the number and relative abundance of rare species that have been discovered.

The main hypothesis of the STADS framework applied to our motivating example is that the

number and “size” of paths that AFL has exercised only once or twice throughout the fuzzing

campaign contains almost all information about the paths that are yet to be explored. Specifically,

we denote as singletons those paths that are exercised by exactly one generated test input. Similarly,

we denote as doubletons those paths that are exercised by exactly two generated test inputs. In

Figure 2.d), we can see that one day into the fuzzing campaign after generating 125 million test

inputs, there are still 95 singletons and 42 doubletons (∼3% of discovered paths). This is one singleton

for every 1.3 million generated test inputs. Clearly, it would require at least as many new test

inputs to discover the next undiscovered path. In fact, this is the main insight of the Good-Turing

estimator of the discovery probability. The Good-Turing estimator [48] is computed as the number of

singletons divided by the number of samples (i.e., generated test inputs). The Good-Turing estimator

is used across many disciplines of science, including rare event estimation [78], cryptanalysis [47],

computational linguistics [42], and biology [23].

The main hypothesis of the STADS model holds for our motivating example. The proportion of

generated inputs that exercise singleton paths accurately predicts the current discovery probability.

In the bottom of Figure 3.c, we can see that the Good-Turing estimate Û is not subject to huge

swings like both empirical estimators. In fact, it was formally shown that i) the estimator’s accuracy

strictly increases as the sample size (i.e., number of generated test inputs) increases [93], ii) its

convergence to the true value is also reasonably fast [130], iii) its mean squared error is reasonably

low [87], and iv) its performance is close to the best natural estimator for any distribution [79].

Figure 2 shows the discovery probability estimate Û , just like a security researcher might see it

if she uses our AFL extension. Û is shown under residual risk because the discovery probability

provides an upper bound on the probability of discovering a vulnerability with the next input that

is generated. Even if no crashing path has been detected in a very long running fuzzing campaign,

there always exists a residual risk that an unexplored crashing path might be discovered in the

future when more resources are being invested.

Twelve hours into the fuzzing campaign the discovery probability is shown as Û = 7 · 10−6 (Fig.

2.c). The discovery probability is estimated as f1/n where f1 is number of singletons (f1 = 447) and

n is the number of total inputs (n = 63.6 · 106). Depending on the which residual risk is deemed

acceptable, the security researcher can use the discovery probability to decide whether to continue

or abort the fuzzing campaign. In fact, twelve hours later, one day into the fuzzing campaign, the

discovery probability has decreased by one order of magnitude (Û = 8 · 10−7; Fig. 2.d).

We can use the discovery probability to compute other descriptive statistics, which the security

researcher can use for her decision. For instance, the fuzzing effort has also increased by an order

of magnitude: While it took only 1.5 minutes to discover a new path 12 hours into the fuzzing

campaign, she can expect it takes 15 minutes to discover a new path 24 hours into the fuzzing

campaign.

10

2.2 Assessing the Completeness of the Fuzzing Campaign

“Currently, there is no sound basis to

extrapolate from tested to untested cases.”

Michael Whalen on the Future of V&V [97]

AFL shows the number of paths that have been discovered in the current sampling campaign

(Figure 2.a+b). However, without an estimate of the number of paths that remain undiscovered, a

security researcher cannot judge whether this is close or far from the discovery of all paths.
Within the STADS framework, we define species coverage G as the proportion of the asymptotic

total number of species that have been discovered. In our motivating example, the path coverage—
which is one kind of species coverage—gives the proportion of paths that have been discovered in

the current fuzzing campaign. Hence, path coverage is a measure of the progress of the current

fuzzing campaign towards completion. Unlike measures of code coverage, where the total number

of elements is (assumed to be) known a-priori, path coverage is more difficult to measure since the

total number of paths is unknown. Currently, a security researcher has no means to compute the

path coverage at any point in the fuzzing campaign.

asymptote @ 5408 paths

0k

1k

2k

3k

4k

5k

6k

0 24 48 72 96 120 144 168

Time (in hours)

#P
at

hs

Subject : libjpeg-turbo [110]

Test driver : djpeg

Fuzzer : AFL [98]

Dynamic analysis : ASAN [89]

Fuzzing time : 168 hours

Generated inputs : 973 · 106

Discovered paths : 5392 (99.7%)

Est. total paths : 5408

Unique crashes : 0

Fig. 4. Example fuzzing campaign. (a) Number of paths discovered over time. (b) Descriptive statistics.

Figure 4 shows the number of paths S (n) that AFL discovered in libjpeg-turbo as the number of

generated test inputs n increases.
6
We can see that the number of paths discovered approaches an

asymptote, which we estimate to be at Ŝ = 5408 paths (using the Chao1-estimator of species richness

[15]). The asymptote represents the total number of paths that the same fuzzer can discover for the

same program given unlimited time. Essentially, we estimate the y-intercept Ŝ of the asymptote

and yield Ĝ (n) = S (n)/Ŝ .
Figure 2 shows the path coverage estimate, just like a security researcher might see it if she

uses our AFL extension. 12 hours into the fuzzing campaign, AFL is estimated to have achieved

77.6% path coverage for the test driver of libjpeg-turbo (Fig. 2.c). This clearly indicates that the

researcher should continue the fuzzing campaign in order to explore a greater percentage of paths.

12 hours later, one day into the fuzzing campaign, the path coverage has increased to 97.7% (Fig.

2.d). At this point, she might decide to abort the fuzzing campaign if she feels that the time that

AFL would require to explore the remaining paths is too high. In fact, two days later (i.e., 3 days

into the fuzzing campaign) the path coverage has increased only to 99.1% and six days later (i.e.,

7 days into the fuzzing campaign) to 99.7%. Basically, spending six (6) times more hours fuzzing

libjpeg-turbo only increased the path coverage by two percentage points. Clearly, the security

6
For convenience, Figure 4.a actually shows S (n) over time.

11

(a) Coverage after (b) Extrapolated coverage (c) Empirical coverage

1 min of fuzzing over 10 min of fuzzing over 10 min of fuzzing

0%

20%

40%

60%

80%

0 2 4 6 8 10

Time (in minutes)

S
ta

te
m

en
t C

ov
er

ag
e

0%

20%

40%

60%

80%

0 2 4 6 8 10

Time (in minutes)

S
ta

te
m

en
t C

ov
er

ag
e

0%

20%

40%

60%

80%

0 2 4 6 8 10

Time (in minutes)

S
ta

te
m

en
t C

ov
er

ag
e

Fig. 5. Code coverage extrapolation: How much coverage is achieved if the fuzzer is run 2x, 5x, or 10x longer?
We choose this particular interval because it does not seem quite obvious how the coverage would develop.
Several hours into the fuzzing campaign, the general trend appears more predictable, which is why we can
increase the extrapolation intervals from minutes to hours in Table 1.

researcher benefits tremendously from a measure such as path coverage when judging the progress

of the fuzzing campaign towards completion.

We estimate the path coverage Ĝ after n test inputs were generated as follows

Ĝ (n) = S (n)

/ (
S (n) +

n − 1

n

f 2
1

2f2

)
where the denominator is the Chao1 estimator [15] of species richness (i.e., of the total number

of paths), S (n) is the current number of paths discovered, f1 is the number of singletons, f2 > 0

is the number of doubletons, and n is the number of test inputs generated. Path coverage can be

estimated very efficiently and scalably (i.e., independent of the size of the fuzzed program). In fact,

AFL only needs to maintain the number of singletons f1 and doubletons f2 (Figure 2). Empirically,

we find that the accuracy of the estimate increases as the number of generated inputs increases.

2.3 Extrapolating the Completeness of the Fuzzing Campaign
In automated software testing, we lack methodologies to predict how much more code coverage can

be achieved if the fuzzer is run only for so much longer. In other words, we lack estimators of return

on investment. For instance, Figure 5.a shows the statement coverage that AFL has achieved one

minute into the fuzzing campaign.
7
Even from the plot, the reader may find it difficult to estimate

whether the coverage will remain at 60% or continue to increase to 70% within the next minute

(i.e., at 2 minutes). In the following we show how estimators from ecology can be used within our

STADS framework to extrapolate statement coverage if more resources were invested.

So far, we have defined species based on the path that an input exercises, and whether it crashes

or not. In the following, we allow an input to belong to multiple species where the set of species

for an input t is given by the program statements that t covers. In our motivating example, the

code coverage tool gcov [105] forms the dynamic analysis that identifies the statements covered by

an input. Notice that statement coverage is just another kind of species coverage.

Figure 5.b shows the extrapolation of the statement coverage within the first ten minutes of the

fuzzing campaign. The statement coverage is forecasted to increase by nine (9) percentage points if

the security researcher invests nine times more minutes into the fuzzing campaign. Normally, Chao

and Jost [23] would suggest to extrapolate only within twice the sample size (i.e., up to twice the

length of the current fuzzing campaign). However, in this case the extrapolation is fairly accurate

7
We measured statement coverage with using gcov as a proportion of all executable statements.

12

Table 1. Extrapolating the statement coverage of libjpeg-turbo at various points T into the fuzzing campaign
for various times T ′ in the future. The bias of our estimate can be computed as the difference between the
extrapolated with the empirical value of the statement coverage at time T ′.

Statistical Extrapolation
Current Empirical Future Extrapolated Empirical
Time T Cov.@ T Time T ′ Cov.@ T ′ Cov.@ T ′

1 min 61.5% 2 min 62.7% 65.9%

1 min 61.5% 5 min 66.3% 67.1%

1 min 61.5% 10 min 71.5% 70.5%

10 min 70.5% 15 min 71.7% 83.3%

10 min 70.5% 30 min 75.1% 83.7%

1 hour 87.2% 90 min 87.4% 87.5%

1 hour 87.2% 2 hours 87.6% 87.6%

10 hours 96.6% 15 hours 96.7% 96.7%

10 hours 96.6% 20 hours 96.9% 97.1%

1 day 97.1% 1.5 days 97.2% 97.2%

1 day 97.1% 2 days 97.8% 98.6%

even within ten times the sample size as we can see by overlaying the empirical values in Figure 5.c.

Table 1 shows more estimates of the statement coverage in the future. Despite the extrapolation up

to 24 hours into the future, the coverage estimate is within ±1 percentage points of the empirical

value in eight out of eleven cases. Between 10 and 15 minutes, there is a sudden coverage increase

by 12 percentage points that is explained by the adaptive sampling of AFL. The extrapolation was

not able to forecast this sudden increase. Otherwise, our computed estimates are all fairly accurate.

Given that n test inputs have been generated and S (n) of S statements have been covered in the

fuzzing campaign, within the STADS framework we extrapolate the number of covered statements

S (n +m∗) whenm∗ more test inputs have been generated as follows [23]

Ŝ (n +m∗) = S (n) + Q̂0


1 −

(
1 −

Q1

nQ̂0 +Q1

)m∗
where Q̂0 = S − S (n) is the number of uncovered statements and Q1 is the number of statements

that are executed by exactly one generated test input. Since AFL only needs to maintain Q1 (in

addition to S , S (n), and n), code coverage can be extrapolated very efficiently and scalably (i.e.,

independent of the size of the fuzzed program). The accuracy decreases asm∗ increases. However,
a 95%-confidence interval that allows to assess the decrease of accuracy is available via statistical

bootstrapping [23].

Note that the STADS statistical framework also allows us to extrapolate other quantities such as

discovery probability and other kinds of species coverage.

3 AUTOMATED SOFTWARE TESTING AND ANALYSIS AS DISCOVERY OF SPECIES
In the following we present our statistical framework of automated software testing and analysis

as discovery of species (STADS). Let P be the program that we wish to fuzz. We call as P’s input
spaceDDD the set of all inputs that P can take. As inputs, we consider command line parameters, files,

event sequences, messages, data streams, data bases, but also other objects that impact program

behavior that are not normally considered inputs, such as environment variables, configuration,

values returned from system calls, thread schedules, and so on. Let F be a stochastic process that

samples inputs t ∈ DDD. We call F fuzzer and the sampling of inputs test input generation.

13

3.1 Search Space of the Fuzzer
Most fuzzers operate on a restricted search space DDD ′ ⊆ DDD such that F is effectively unable to

generate all inputs that P can take. For instance, a fuzzer might generate test inputs that are “valid”

w.r.t. a pre-specified input model [82]; yet, there might be programs that exhibit a vulnerability

only for an invalid input. A fuzzer might generate inputs only up to a certain maximum size; yet,

there might be programs that exhibit a vulnerability only for substantially larger test inputs. Hence,

the test inputs that are generated within a fuzzing campaign are necessarily random only within

the capabilities of the fuzzer. For instance, the search space for CSmith [129] is a subset of all C

programs (rather than a random sequence of UTF8-characters).

Hence, estimates that are derived from methodologies in the STADS framework hold only w.r.t.

the fuzzer’s search space and the tested program P. The search space is specified either explicitly by

the input model, grammar, or protocol that is used (and/or induced [59]) during fuzzing to reduce

the fuzzer’s search space [2, 45, 82], or implicitly by the fuzzer’s inherent limitations to generate

certain inputs. Most fuzzers do not also fuzz a program’s environment (OS, architecture, current

date, etc.), further restricting the behaviors that P can exhibit when fuzzed by F .

In ecology, the sampling might also operate on a restricted search space [67]. For instance, certain

areas may not be accessible. A net may not trap species smaller than its mesh. A light trap may not

lure light-insensitive species.

3.2 Species Identification
Suppose, the fuzzer’s search space DDD ′ can be subdivided into S individual subdomains {Di }

S
i=1,

called species. All inputs belong to at least one species and multiple inputs can belong to the same

species. Specifically, all inputs belong to the same species that share the same discrete property of

the program P. For instance, we could consider each input that covers the same program statement

to belong to the same species. Depending on the specific objective (e.g., “Cover all statements!”),

we can choose a suitable species identification, and devise a sampling strategy that can discover a

maximal number of species. The concrete fuzzing objective is thus encoded by the way the species

is identified for a certain input.

In our STADS framework, a dynamic analysis identifies the specific species to which a generated

test input belongs. For C programs, the gcov coverage-tool [105] identifies the statements and

branches an input covers; the AFL-instrumentation [98] identifies the specific path an input

exercises; or AddressSanitizer [89] identifies the type of vulnerability an input exposes. Notice,

some objectives require the dynamic analysis to identify a single species for each input (e.g., the

path an input exercises) while others require to identify multiple species for a single input (e.g., the

statements an input covers). Notice also, we require deterministic execution: The same input, executed

an arbitrary number of times, must always belong to the same species. However, conceptually we

can integrate non-deterministic programs by considering all potential non-deterministic actions as

part of the program’s input space. For instance, a test input for a concurrent program also specifies

a specific thread-interleaving. A test input for an interactive program (e.g., an Android app) also

specifies a state it must start from.

3.3 Fuzzing Campaigns
The fuzzer F generates n test inputs and is said to discover a speciesDi whenDi is sampled for the

first time. The general fuzzing objective is then to discover a maximal number of species. Let pi be
the probability with which F samples species Di for i : 1 ≤ i ≤ S at any point during the fuzzing

campaign. Note that the STADS framework fully accounts for arbitrary fuzzer heuristics, including
the sampling from the operational distribution [128], as long as the fuzzer does not change the

14

sampling strategy adaptively throughout the fuzzing campaign. For instance, if a fuzzer generates

more “typical” program inputs by sampling from the program’s operational distribution—because

the software engineer deems the detection of bugs that could also be found by a customer as more

important—then all statistical claims derived from the STADS framework strictly hold w.r.t. that

fuzzer within the stipulated confidence bounds. This fuzzer is simply more likely (greater pi) to
discover an “operational” bug Di than a fuzzer without that heuristic, for all fuzzing campaigns.

Within our statistical framework we must assume that the relative species abundances p = {pi }Si=1
does not substantially change during the fuzzing campaign. However, in practice this assumption

might not hold. We say that (feedback-directed) fuzzers where p changes during the fuzzing

campaign have an adaptive sampling bias. For instance, a coverage-directed fuzzer retains generated
test inputs that previously discovered a new species, and fuzzes those in addition to the initially

provided seeds [98]. This allows to sample a “neighboring” species Di with a greater probability

pi (thus also increasing the efficiency of the fuzzer [9]). Yet, the rate at which new species are

discovered is consistently decelerating throughout a fuzzing campaign. Hence, the rate at which

the probabilities pi change is also decelerating and the magnitude of the change decreases such

that the adaptive bias reduces as more test inputs are generated. We investigate the adaptive bias

empirically in Section 6 and provide an extended discussion in Section 9.5.

Within our STADS statistical framework, we do not assume that the fuzzer has any information

about the species identification. Specifically, the “location” and relative abundance pi of a specific
(undiscovered) species Di as well as the total number of inputs N and the total number of species

S are a-priori unknown. Within a single fuzzing campaign, the fuzzer generates n test inputs and

discovers S (n) species. A species Di is discovered when F generates the first test input t that
belongs to Di , i.e., t ∈ Di . During a fuzzing campaign, the fuzzer generates Xi test inputs that

belong to species Di ,
∑S

i=1Xi = n. Only species where Xi > 0 are marked as discovered.

There are two pertinent measures that characterize a program. The species richness S quantifies

the total number of species, such as the number of statements, paths, vulnerabilities, information

flows, et cetera, in the program. In contrast, the species evenness J quantifies how “even” the relative

abundances p are distributed. Formally, we compute species evenness J using Pielou’s evenness

index [83],

J =
H

Hmax

where H = −
S∑
i=1

pi lnpi is Shannon’s diversity index (1)

and Hmax = ln S is the max. possible value of H (2)

Note that 0 ≤ J ≤ 1. Shannon’s diversity index is also known as Shannon entropy. Both quantities

S and J can be illustrated by the following example. In Case#1, half of all inputs might exercise one

path while another half might exercise another. In Case#2, 90% of all inputs might exercise one path

and only 10% another. Both cases have the same total number of paths (S1 = S2 = 2) but feature a

very different evenness (J1 = 1, J2 = 0.47). The asymptotic total number of species S is important

to determine how many more species we can expect to discover in a fuzzing campaign. The species

evenness J is important to choose the right testing tool. If J is very low, symbolic execution-based

fuzzers [14, 30] might be more appropriate than random fuzzers [98, 117].
8

There are two pertinent measures that characterize a fuzzing campaign, species coverage and
discovery probability. We define as species coverage G the proportion of species that have been

discovered after generating n test inputs,

G (n) =
S (n)

S
(3)

8
For an extended discussion of blackbox versus whitebox testing efficiency, see Böhme and Paul [7].

15

Examples of species coverage are path coverage in our motivating example, where the total number

of species S is not known and must be estimated, and code coverage, where S is indeed known.

We define as discovery probability U the proportion of inputs that belong to species that remain

undiscovered after generating n test inputs,

U (n) = 1 −

∑S
i=1 pi I (Xi > 0)∑S

i=1 pi
=

∑S
i=1 pi I (Xi = 0)∑S

i=1 pi
(4)

where I (A) is the indicator function, i.e., I (A) = 1 if the event A occurs, and I (A) = 0 otherwise.

We define as sample coverage C the complement of the discovery probability. In ecology, the

sample coverage is the proportion of individuals in the assemblage whose species is represented in

the sample. In automated software testing, it essentially quantifies the proportion of (tested and
untested) program inputs that stress program behaviors that have already been tested before. In

Section 4.1 we show that the estimate Û of the discovery probability provides an upper bound

on the probability to expose a vulnerability, whence the sample coverage estimate measures the

confidence that a fuzzing campaign inspires in the correctness of the program. The sample coverage

that is achieved in a fuzzing campaign depends on the species evenness J and the number of test

inputs n that are generated. Intuitively, the lower the evenness, the more test inputs n a fuzzing

campaign must generate to expect a reasonably high sample coverage C .

3.4 Main Hypothesis
I hypothesize that within the STADS statistical framework the rare species which have been

discovered throughout a fuzzing campaign explain the species within the fuzzer’s search space

that remain undiscovered. Intuitively, it is the difficulty to discover a rare species, measured by the

total number of test inputs that needed to be generated before discovering the rare species, that

provides insights on the difficulty of discovering yet undetected (but detectable) species.

Main Hypothesis. Almost all information about number and relative abundance of undiscovered
species within the fuzzer’s search space is in the number and relative abundance of rare species that
have already been discovered.

A species Di is considered rare if 1 ≤ Xi ≤ κ, where κ is an arbitrary but very small constant. In

fact, almost all estimators and extrapolators presented in this article are functions of the number of

singleton and doubleton species (i.e., κ = 2).

The same hypothesis is underpinning the nonparametric biostatistics in ecology. Chao and Chui

argue that “[..] abundant species (which are certain to be detected in samples) contain almost no

information about the undetected species richness, whereas rare species (which are likely to be

either undetected or infrequently detected) contain almost all the information about the undetected

species richness” [17]. Therefore, most nonparametric estimators and extrapolators are based on

counts of rare species. In order to test the main hypothesis, we need to establish the accuracy of

these estimators and extrapolators within the STADS framework.

This hypothesis is the reason for the great scalability of the STADS framework. For most estimates,

the fuzzer needs to record only the number of rare species that have been discovered. Hence, the

computation of the estimates scales easily to very large programs in our experiments.

3.5 The Multinomial Model: One Input, Single Species
Some concrete fuzzing objectives require to identify a single species for each input. For instance, an

input can execute only one path [46], exercise only one method call sequence, compute only one

final output [85], crash only at one program location; a single input either exposes a vulnerability or

16

does not expose a vulnerability. In ecology, one individual can also belong only to a single species.

A researcher samples individuals from the assemblage at various random locations and records for

each detected species the number of occurrences. When individuals are sampled, ecologists call

the collected data as abundance data and utilize the multinomial model [33, 61]. In the multinomial

model, within STADS a generated test input is considered as individual.9

Define the abundance frequency count fk as the number of species that contain exactly k test

inputs which were generated throughout the current fuzzing campaign, 0 ≤ k ≤ n. More formally,

fk =
∑S

i=1 I (Xi = k), where I (A) is the indicator function, i.e., I (A) = 1 if event A occurs and

I (A) = 0 otherwise. Hence, n =
∑n

k=1 k fk and S (n) =
∑n

k=1 fk . The abundance frequency count f0
represents the number of undiscovered species. We call f1 the number of singleton species and f2 the
number of doubleton species. The input space contains S non-overlapping subdomains, where the

probability that the fuzzer generates a test input that belongs to species Di is pi for i : 1 ≤ i ≤ S .
Note that

∑S
i=1 pi = 1. The multinomial probability distribution has the probability mass function

P (X1 = x1, . . . ,XS = xS) =
n!

x1! . . . xS !
px1
1
px2
2
. . .pxSS (5)

From Equation 5, we can see that the number of generated test inputs Xi that belong to species

Di is a sufficient statistic, meaning that no other statistic which can be calculated from the same

sample provides any additional information as to the value of the (estimated) parameter. This

renders the abundance frequency counts fk , which are defined fromXi , suitable components for the

estimators and extrapolators of fuzzing progress. As Colwell et al. [33] point out, the multinomial

model assumes that the sampling procedure itself does not substantially alter the probabilities

(p1,p2, . . . ,pS). The authors provide more details about the multinomial model and its utility in the

ecologic context. The case where multiple species can be identified for a single input is explained

by the Bernoulli product model [20] and discussed in Section 7.

4 ESTIMATING RESIDUAL RISK AND CAMPAIGN COMPLETENESS
Our model of software testing and analysis as discovery of species (STADS) provides access to a rich

statistical framework in ecology. This unexpected connection between two otherwise unrelated

fields of research provisions software testing with methodologies to accurately estimate how much

we have seen and to extrapolate from the seen to the unseen. In this section, we focus on the

estimation of how much has been tested and how much more there is. We show that an estimate of

the probability to discover a new species can provide a statistical guarantee that no (detectable)

vulnerability exists that has not already been discovered. Moreover, we present novel methodologies

to assess campaign completeness (i.e., the progress of an ongoing campaign towards completion).

4.1 Discovery Probability and Sample Completeness
In the STADS framework, the discovery probabilityU (n)measures the current probability to discover

a new species with the n + 1th generated test input where n is the number of test inputs that have

been generated throughout the current fuzzing campaign (i.e.,U (0) = 1). If the dynamic analysis is

able to identify vulnerabilities, then the discovery probabilityU provides a statistical guarantee that
no detectable vulnerability exists if none has been discovered. In other words, security researchers

can use the STADS statistical framework for residual risk assessment.

The concept of discovery probability might seem to require advance knowledge of the true

relative species abundance {pi }
S
i=1 during a fuzzing campaign. However, the discovery probability

9
In Section 7, we extend the STADS framework to include the Bernoulli product model, where a generated test input is

considered as sampling unit. In the STADS framework, the Bernoulli model describes concrete fuzzing objectives that require

to identify one or more species for a single input.

17

can be very accurately and efficiently estimated using only information contained in the single,

uncompleted fuzzing campaign itself, as long as the number of generated test inputs is reasonably

large [48, 87]. Hence, the concept of discovery probability finds application across many fields

of science, such as rare event estimation [78], cryptanalysis [47], computational linguistics [42],

biology [23], actuarial science, and so on.

In the STADS framework, the sample coverage C (n) = 1 −U (n) measures the probability that the

n + 1th generated test input belongs to an already discovered species. In other words, we know

the species for C% of program inputs in the fuzzer’s search space. Sample coverage also directly

measures sample completeness, i.e., how complete the sample is w.r.t. the remaining undiscovered

species in the assemblage. Hence, in ecology sample coverage is routinely used to choose the most

accurate estimator [11] and to compare attributes of species across assemblages [23]. In software

testing, sample coverage can also be used to to assess the progress of the current fuzzing campaign

towards completion without the need to estimate Ŝ the total number of species. If the fuzzer has

exposed no vulnerabilities, the sample coverage quantifies the degree of confidence that the fuzzing
campaign inspires in the correctness of the program.

The inverse of the discovery probability 1/U (n) gives the number of test inputs that we can expect

to generate before discovering a previously undiscovered species. Given the number of test inputs

generated per unit time ∆, we can derive the expected time until discovery as 1/(∆ ·U (n)).
Estimation in STADS. In the multinomial model, the Good-Turing estimator estimates the

probability to generate a test input that belongs to an undiscovered species. Thus, using the

Good-Turing estimator [48], the estimate of the discovery probability Û (n) is obtained as

Û (n) =
f1
n

(6)

where f1 is the number of singletons and n is the total number of generated test inputs. According

to Good [47], the Good-Turing estimators were developed by Alan Turing during World War II

while breaking Enigma codes. Good and Turing showed that their estimator can be accurately and

efficiently computed only from the sample itself [48]. Moreover, the estimator is strongly consistent,
meaning that its accuracy strictly increases as the sample size (i.e., number of generated test inputs)

increases [93]. Zhang and Zhang [130] prove asymptotic normality of the Good-Turing estimator,

meaning that the convergence to the true value is also reasonably fast. Robbins [87] showed that

the mean squared error of the Good-Turing estimator is less than 1/n, which indicates that it is

quite accurate if n is large. In theory, it is assumed that the probability pi to sample a species Di
follows a binomial distribution. However, in practice the Good-Turing estimator seems to perform

close to the best natural estimator for any distribution [79].

Statistical Guarantee. We show that the Good-Turing estimate Û (n) of the discovery probability
provides an upper bound on the probability that an error in the fuzzer’s search space remains

undiscovered given that no error has been exposed after generating n test inputs.
10
Depending

on the dynamic analysis, the fuzzer’s search space is partitioned by the species identified for

each input. Inputs that belong to the same species share the same input subdomain. Suppose,

the progress-based dynamic analysis partitions the input space according to the concrete fuzzing
objective (e.g., based on the path or the statements that are exercised as in our motivating example).

There are S subdomains A = {Di }
S
i=1 in the fuzzer’s search space. Further suppose, an error-

based dynamic analysis partitions the same search space into T subdomains B = {Ej }
T
j=1. A

partitioning is error-based if all inputs that belong to the same species homogeneously either do

or do not expose an error [7]. One could imagine error-based partitioning as black and white

10
A vulnerability is just a special case of an error.

18

regions in the restricted input space of the program, where the black regions contain inputs that

expose an error. In practice, a dynamic analysis, such as ASAN [89], would identify some test
input executions that expose an error. Hence, the statistical guarantees hold modulo the dynamic

analyzer’s capability to identify a error-exposing input.
11

Let a combined dynamic analysis be
derived by intersecting the progress- and error-based partitioning. The joint partitioning yields

R species AB = {Di
⋂
Ej | Di ∈ A, Ej ∈ B}/∅, where ·/· is the difference operation to remove

“empty” species and R ≤ S +T . Notice that the number of singletons f1 and doubletons f2 for the
progress-based analysis A are also the number of singletons and doubletons for the combined

analysis AB. Assuming that no error has been exposed throughout the fuzzing campaign, all

error-exposing species inAB are clearly still among the undiscovered ones. Since the estimateU of

the discovery probability denotes the proportion of inputs that belong to undiscovered species for

AB (and A), it provides an upper bound on the proportion of inputs exposing an error. A similar

argument can be constructed trivially for the Bernoulli product model. ■
Quantifying Accuracy. In the STADS framework, approximate estimators of the variance and

the associated confidence interval can be derived with an asymptotic approach [25, 130]. We also

note that one must account for the resulting missing probability mass when estimating the relative

species abundance pi for each discovered species Di , e.g., to estimate species evenness J [83]. In
the multinomial model, the estimator p̂i = Xi/n would evidently over-estimate pi . This can be

remedied with an approach called smoothing [42, 48].

Scalability. In practice, the computation of the discovery probability estimate Û (n) is efficient

and easily scales with program size (i.e., with #species S). The fuzzer needs to store information only

about doubleton and singleton species in addition to the number of generated test inputs and the

number of discovered species. In the statistical programming language R, the goodTuring-function
of the edgeR-package [88] implements Good-Turing estimationwhile the goodTuringProportions-
function implements the Good-Turing smoothing procedure. The spadeR- and iNext-packages
[25, 60] for R compute the improved discovery probability estimator. The iNext-package also

provides 95%-confidence intervals.

4.2 Species Coverage
In ecology, species richness measures the number of species in the assemblage. In the STADS model,

we define species coverage as the proportion of species in the assemblage that have been discovered

throughout the fuzzing campaign. Hence, with an estimate of species richness Ŝ we can compute

the current species coverage Ĝ (n) = S (n)/Ŝ to assess the current progress of the fuzzing campaign

towards completion. At the basis of most estimators is the observation that the species discovery

curve decelerates over time as the number n of generated test input increases [7]. At the beginning

of the fuzzing campaign many species are discovered in a short time. Later, it takes more and more

time to discover the next undiscovered species. For our motivating example, this deceleration can

be observed in Figure 4. In fact, the discovery curve appears to approach an asymptote which is

estimated at 5408 paths (using the Chao1-estimator [15]). The asymptotic total number of species

is our estimation target. In the following, we review various estimators Ŝ . We refer to Colwell et al.

[33] for a more extensive review of available methodologies. An empirical and simulation-based

comparison of several estimators was conducted by Hortal et al. [58].

During their investigations of the species discovery curve in what we now call the STADS model,

Böhme and Paul [7] suggest fitting an exponential curve to extrapolate how many species we

11
Similarly, in software verification the formal guarantees are valid only modulo the provided specification. However, like a

dynamic analysis in software testing, a specification may be incomplete (i.e., does not allow to detect all vulnerabilities;
a.k.a. false negatives) or incorrect (i.e., reports vulnerabilities when there is none; a.k.a. false positives).

19

can expect to discover in a given time budget. Curve fitting would also allow us to determine the

asymptotic total number of species [34, 84]. However, curve fitting approaches are not based on

any statistical sampling model which prevents us from effectively evaluating the variance of the

resulting asymptote. Moreover, different functional forms may manifest the same goodness of

fit but yield vastly different estimates of the asymptote which calls into question the statistical

soundness of this approach.

Sampling-theory-based approaches build upon a statistical foundation and can be broadly dis-

tinguished into parametric and non-parametric frameworks [68]. In the parametric framework,

it is assumed that the relative species abundances {pi }
S
i=1 follow a statistical model with one or

two parameters (e.g., Poisson process [41]). However, parametric models usually require extensive

numerical procedures and work well only when the correct distribution is already known [31]. Yet,

in software testing and analysis, just like in ecology, the distribution is often unknown. The most

effective estimators of the total number of species are sampling-theory-based and non-parametric
[18]. Here, we can distinguish Jacknife, coverage-based, and Chao1/2-type estimators.

Jackknife estimators were developed to reduce the bias of a biased estimator and allow to compute

variance and confidence intervals for the estimate [13, 81, 95]. The current number of discovered

species S (n) is obviously a negatively biased estimator of the total number of species S . In the

multinomial model of the STADS framework, the first-order jackknife estimator Ŝ jk1 corrects this
bias by assuming that the number of undiscovered species equals the number of singletons f1

Ŝ jk1 = S (n) +
n − 1

n
f1 (7)

≈ S (n) + f1 (8)

In the multinomial model of the STADS framework, the second-order jackknife estimator Ŝ jk2 for
which the estimated number of unseen species is in terms of singletons and doubletons has the

form

Ŝ jk2 = S (n) +
2n − 3

n
f1 −

(n − 2)2

n(n − 1)
f2 (9)

≈ S (n) + 2f1 − f2 (10)

Burnham and Overton [13] provide higher orders of the jackknife estimators. All Jacknife estimators

can be expressed as linear combinations of frequencies and thus variances can be obtained.

Chao1-type estimators provide a lower bound for the total number of species rather than a

point estimate [15]. When there are a large number of undiscovered species, it will be statistically

impossible to obtain a good estimate of species richness. Hence, a good lower bound is often more

practical than an imprecise point estimate. Chao [15] derived such a lower bound called Chao1 for
the multinomial model:

ŜChao1 =



S (n) + n−1
n

f 2
1

2f2
if f2 > 0

S (n) + n−1
n f1 (f1 − 1)/2 if f2 = 0

(11)

≈



S (n) + f 2
1
/(2f2) if f2 > 0

S (n) + f1 (f1 − 1)/2 if f2 = 0

(12)

where in the current fuzzing campaign n is the total number of test inputs generated, S (n) is the
total number of species discovered, and f1 and f2 are the abundance frequency counts for singleton

and doubleton species, respectively.

Very recently, Chao et al. [19] showed that ŜChao1 is an unbiased point estimator as long as very

rare species (i.e., undetected and singleton species) have approximately equal relative abundance. If

20

very rare species are unevenly distributed and the sample size is not sufficiently large, the available

data do not contain sufficient information, and it is only reasonable to provide a good lower bound

estimate of species richness S .
An improved lower bound can be obtained from tripleton and quadrupleton species, respectively.

Chui et al. [31] derived the improved lower bound called iChao1 for the multinomial model:

ŜiChao1 = ŜChao1 +
n − 3

n

f3
4f4
×max

(
f1 −

n − 3

n − 1

f2 f3
2f4
, 0

)
(13)

≈ ŜChao1 +
f3
4f4
×max

(
f1 −

f2 f3
2f4
, 0

)
(14)

where f3 and f4 are the frequency counts for tripleton and quadrupleton species, respectively.

Coverage-based estimators utilize sample coverage, the proportion of inputs belonging to discov-

ered species, to estimate the total number of species [24, 31]. As we have seen earlier, sample cover-

age, as the complement of the discovery probability, can be very accurately and efficiently estimated

from the frequency counts alone, as long as the number of test inputs generated in the fuzzing cam-

paign is reasonably large [48]. As Chao and Chiu [18] point out, coverage-based estimators might

be appropriate when there are many rare species, i.e., where 0 ≪ |{pi | pi ≪
1

S , 1 ≤ i ≤ S }| ≲ S
and | · | gives the cardinality of the set. However, for the lack of space we are adjourning to future

work the discussion and evaluation of the ACE and ACE-1 estimators [24, 27].

Species coverage. In the STADS framework, we compute the estimate Ĝ of the species coverage

that has been achieved in the campaign by dividing the number of currently discovered species

S (n) by the estimated total number of species Ŝ . If S is known, then Ŝ = S . For instance, in our

motivating example path coverage is computed w.r.t. an estimated total number of species while

statement coverage is computed w.r.t. the known total number of statements. Both, statement

and path coverage are examples of species coverage, only that the same inputs are assigned to a

different kind of species.

Quantifying accuracy. The variance and 95%-confidence intervals for the estimators in the

STADS framework can be derived by the standard statistical approximation method [16] or using

bootstrapping [20]. Hortal et al. [58] find that estimator accuracy strongly depends on the species

evenness J and on the completeness C = 1 − U of the sample. Effectively, the accuracy of the

estimate improves as the discovery probabilityU decreases or species evenness J increases.
Scalability. In practice, the computation of all sampling-theoretic, non-parametric estimators of

species coverage is efficient and easily scales with program size (i.e., with #species S). In most cases,

the fuzzer needs to store information only about doubleton and singleton species in addition to the

number of generated test inputs and discovered species.In the statistical programming language R,
the ChaoSpecies-function of the SpadeR-package [25] implements several estimators of the total

number of species. The ChaoSpecies-function also reports 95%-confidence intervals.

5 EXTRAPOLATION OF SPECIES DISCOVERY
An extrapolation allows to assess the trade-off between investing more time and gaining more

insight. We discuss novel methodologies from ecology to quantify this return on investment.

Specifically, using extrapolation in the model of software testing and analysis as discovery of

species (STADS), the security researcher can answer the following questions.

(1) Given in the current fuzzing campaign n test inputs have been generated and the researcher

has time to generate onlym∗ more test inputs, how much species coverage Ĝ (n +m∗) and
residual risk Û (n +m∗) can she expect to achieve?

21

(2) Given in the current fuzzing campaign n test inputs have been generated and the security

researcher would like to achieve a specific species coverageG∗, how many more test inputs

mG∗ can she expect to generate before achieving G∗ (i.e.,mG∗ s.t. Ĝ (n +mG∗) = G
∗
)?

Using these extrapolators, a security researcher can make an informed decision whether to continue

or abort a fuzzing campaign. Suppose, the client requires a statistical guarantee (i.e., discovery

probability) of 10
−8

as upper bound of the probability that the fuzzer finds a vulnerability in the

program. The researcher can estimate the effort that is required to achieve that degree of confidence

in the correctness of the program.

5.1 Estimating Progress Towards Completion within a Given Time Budget
In our STADS statistical framework, there are several estimators of the expected number Ŝ (n +m∗)
of discovered species if the reference sample of size n was augmented bym∗ > 0 more individuals

(i.e., ifm∗ more test inputs were generated) [36, 49, 90, 91]. Chao and Jost [23] provide an overview.

In the multinomial model, Shen et al. [90] proposed the following sampling-theoretic extrapolator

based on the asymptotic total number of species:

Ŝ (n +m∗) = S (n) + ˆf0


1 − *

,
1 −

f1

n ˆf0 + f1

+
-

m∗
(15)

where for the current fuzzing campaign, n is the number of generated test inputs, S (n) is the number

of discovered species,
ˆf0 = Ŝ − S (n) is the expected number of undiscovered species, and f1 is the

number of singletons.

The rule of thumb is to keep the extrapolation within twice the sample size (i.e.,m∗ ≤ n) [33].
However, recently Orlitzki et al. (2016) [80] introduced the provable extrapolation of the discovered

species form∗ all the way up to n · [log(n) − 1] additional test inputs. This shows that the number

of discovered species can be estimated for a population log(n) times larger than that observed. The

authors go on to show that this is also the largest possible estimation range and that the estimators’

mean-square error is optimal up to constants for anym∗.
In the multinomial model of the STADS framework, we can derive the expected discovery

probability Û (n +m∗) ifm∗ more test inputs were generated by recognizing that the discovery

probability is only the difference in the number of discovered species between this and the next

generated test inputU (n) = S (n + 1) − S (n). Hence,

Û (n +m∗) = Ŝ (n +m∗ + 1) − Ŝ (n +m∗) (16)

=
f1
n
*
,

n ˆf0

n ˆf0 + f1

+
-

m∗+1

(17)

where
ˆf0 = Ŝ − S (n) is the expected number of undiscovered species, f1 is the number of singleton

species, and f2 is the number of doubleton species.

Quantifying accuracy. In the STADS model, confidence intervals for the estimators Ŝ (n +m∗)
and Û (n+m∗) can be derived using the bootstrap method [23, 33]. In ecology, the rule of thumb is to

keep the extrapolation within twice the sample size (i.e.,m∗ ≤ n) [33]. The reason can be illustrated

with the following example. Intuitively, the accuracy of Ŝ (n + 10) is better when n = 1000 than

it is when n = 1. Firstly, the extrapolator performs better at n = 1000 because more information

is available. Secondly, the margin of error is also reduced because the species discovery curve

decelerates substantially (cf. Figure 4.a).

22

Scalability. In practice, the extrapolation of species coverage Ĝ = Ŝ (n + m∗)/Ŝ and of the

discovery probability Û (n +m∗) is efficient and easily scales with program size (i.e., with #species

S). The fuzzer needs to store information only about doubleton and singleton species in addition to

the number of generated test inputs n and the number of discovered species S (n). In the statistical

programming languageR, the iNext-package [60, 107] computes the extrapolation and also provides

95%-confidence intervals.

5.2 Estimating Number of Inputs Needed to Discover a Given Proportion of Species
Chao et al. [21] developed a non-parametric method for estimating the number of further test inputs

that would need to be generated in order to achieve an arbitrary species coverage G∗. Formally, to

reach a fractionG∗ of estimated total number of species Ŝ where Ĝ (n) < G∗ < 1, in the multinomial

model of the STADS framework the required numbermG∗ of further test inputs is estimated as

mG∗ ≈
nf1
2f2

log



ˆf0

(1 −G∗)Ŝ


(18)

where in the current fuzzing campaign n is the number of generated test inputs, S (n) is the number

of discovered species,
ˆf0 = Ŝ − S (n) is an estimate of the number of undiscovered species, and f1

and f2 are the abundance frequency counts for singleton and doubleton species, respectively.

Accuracy. In the STADS model, confidence intervals for the estimators can be derived using

the bootstrap method [21]. Given the estimate Ĝ (n) of current species coverage, we suggest that

Ĝ (n) ≤ G∗ ≤ 0.5+ Ĝ (n)
2

to keep the accuracy within a reasonable range. This suggestion is a variant

of the rule of thumb stated in Section 5.1 thatmG∗ ≤ n [33].

Scalability. In practice, computing mG∗ is efficient and easily scales with program size (i.e.,

with #species S). The fuzzer needs to store information only about doubletons and singletons

in addition to the number of generated test inputs and discovered species. The logarithm of a

32bit-floating point number in Equation 32 can be computed efficiently with a typecast, a bit shift,

and a subtraction operation [122]. All other basic mathematical operations require one CPU step

each. In the statistical programming language R, the number of test inputs required to discover

a certain proportion of all species can be estimated with the num.samples.required-function in

the sprex-package [119].

6 EMPIRICAL EVALUATION
6.1 Research Objectives
The main objectives of this preliminary empirical evaluation are

(1) to test my main hypothesis that within the model of automated software testing and analysis as

discovery of species (STADS) the rare species which have been discovered throughout a fuzzing

campaign explain the species within the fuzzer’s search space that remain undiscovered.

(2) to evaluate ecologic estimators and predictors for the multinomial model in STADS. Specifically,

we evaluate the Chao1 estimator Ŝ of species richness [15], the predictor Ŝ (n +m∗) by Shen,

Chao, and Feng [90] of the number of species that would be discovered ifm∗ more test inputs

were generated, and the Good-Turing estimator Û (n) [48] of the discovery probability.

(3) to investigate the impact of the adaptive sampling bias of a feedback-directed fuzzer. An

underlying assumption of most methodologies in the STADS framework is that the probability

pi to generate a test input that belongs to species Di does not change substantially during the

fuzzing campaign. However, it does for feedback-directed fuzzers, such as AFL.

23

We use path coverage as one kind of species coverage (i) because path coverage is the main measure

of progress for our extension of AFL [98] (see Section 2), the fuzzer used for our experiments,

and (ii) because path coverage satisfies the conditions of the multinomial model (one species per

input). We employ the Chao1-estimator [15] to estimate the asymptotic total number of paths

Ŝ and the Good-Turing-estimator [48] to estimate the discovery probability. We estimate path

coverage as Ĝ (n) = S (n)/Ŝ . To extrapolate the number of paths discovered in the subsequent

fixed-time interval, we compute the average number of tests generated per unit time and leverage

the sampling-theoretic estimator Ŝ (n +m∗) proposed by Shen et al. [90]. For our evaluation, we use

established measures of estimator accuracy. The bias of an estimator measures the mean difference

of the estimate to the true value of the estimation target while the precision measures the variance

of the estimates. Specifically, we ask the following research questions:

RQ.1 Can path coverage Ĝ (n) be used to effectively estimate the progress of a fuzzing campaign

towards completion? Do different programs achieve the same path coverage, say 6 or 48

hours into the fuzzing campaign?

RQ.2 Can discovery probability Û (n) be used to effectively estimate the residual risk of leaving

detectable vulnerabilities undetected? Is the estimate representative for different fuzzing

campaigns of similar length?

RQ.3 How biased is the Chao1-estimator Ŝ of the total number of paths? Is Ŝ systematically

positively or negatively biased? What is the bias’ magnitude and how can it be corrected?

RQ.4 How precise is the Chao1-estimator Ŝ of the total number of paths? How can the precision of

Ŝ be increased?

RQ.5 How biased is the extrapolation of the number of discovered paths Ŝ (n +m∗) ifm∗ more

inputs were generated, wherem∗ is the number of test inputs that we can expect to generate

in 30 minutes, 1 hour, 2 hours, or 4 hours? Is Ŝ (n+m∗) systematically positively or negatively

biased? What is the magnitude of the bias and how can it be corrected? Does the rule of

thumb [33] to keep the extrapolation within twice the sampling effort apply to automated

software testing and analysis?

RQ.6 How precise is the extrapolation of the number of discovered paths Ŝ (n +m∗) ifm∗ more

inputs were generated, wherem∗ is the number of test inputs that we can expect to generate

in 30 minutes, 1 hour, 2 hours, or 4 hours? How can the precision of Ŝ (n +m∗) be increased?

We present a summary of our results w.r.t. our main objectives in Section 6.5.

6.2 Setup and Infrastructure
Implementation.We implemented the pertinent estimators and extrapolators into American Fuzzy

Lop (AFL) [98]; we call our tool Pythia. Pythia uses lightweight instrumentation to determine,

with negligible performance overhead, a unique identifier for the path that is exercised by an input.

New inputs are generated by mutating a seed input using bit flips, boundary values, and block

deletion and insertion strategies. If the new input exercises a new branch, or exercises a previously

exercised branch exponentially more (or less often), it is added to the fuzzer’s queue. Pythia stores

for each seed in the queue the path-id and the number of generated test inputs that yield the same

path-id. About every five (5) seconds, Pythia writes to a file the pertinent fuzzer data, including

the current unix time, the number of generated test inputs n, the number of discovered paths S (n),
and the number of singletons f1 and doubletons f2 (i.e., #paths exercised once or twice).

24

Table 2. Subjects: Four security-critical open-source C projects of different program sizes.

Program Size Test Driver Description
json [108] 44 kLOC parse_msgpack JSON parser

libjpeg-turbo [110] 91 kLOC libjpeg_turbo_fuzzer JPEG image library

openssl [115] 472 kLOC server cryptography and SSL/TLS library

libxml2 [111] 500 kLOC xmlint -d XML parser

ffmpeg [104] 1071 kLOC AV_CODEC_ID_MPEG4_fuzzer audio and video streaming library

wireshark [121] 3522 kLOC fuzzshark_media_type-json network protocol analyzer

Subjects. We chose six subject programs from Google’s OSSFuzz fuzzing infrastructure [116].

The infrastructure fully automates the fuzzing of the 50+ integrated open-source C projects. OSS-

Fuzz automatically downloads the most recent version of the subject, builds the subject, compiles

the test drivers, and provides the initial seed corpus. We integrated Pythia as fuzzer into the

fuzzing infrastructure. The list of subject programs used for our experiments is shown in Table 2.

We chose these subjects because they are all security-critical, well-fuzzed, and of different sizes.

Setup. For each subject we ran ten (10) fuzzing campaigns for 100 hours. The ten-fold repetition

of the fuzzing campaign allows us to discuss bias and precision of the estimators. The fuzzer was

started with the same set of seeds and targeted the same test driver (Col. 3 in Table 2). In total, we

spent a cumulative 6000 hours ≈ 8.2 months fuzzing these six subjects.

Estimator performance. Bias and precision are standard performance measures for estimators

and extrapolators in biostatistics and ecology [11, 94]. Bias quantifies the difference between the

estimate and the true value of the estimation target. A systematically positively or negatively biased

estimator consistently over- or under-estimates, respectively, the true value of the estimation target.

Precision quantifies the statistical variance of the estimator (i.e., how close repeated estimates of the

same quantity are to each other). An estimator with a low variance has a high precision, and vice

versa. Unlike bias, the magnitude of precision is only dependent on the estimated values and is

hence completely independent of the true value. Bias and precision are scaled w.r.t. the true value

of the estimation target. For instance, an estimator with a bias of zero (0) provides exactly the true

value of the estimation target, an estimator with a bias of negative one (-1) provides zero (0) as

estimate, and an estimator with a bias of one (1) provides exactly twice the true value.

6.3 Estimator Evaluation
We compute the mean bias of the estimator Ŝ of the total number of paths S as the average bias

over N = 10 runs and the imprecision of Ŝ as the standard deviation of the bias [11]:

mean bias =
N∑
i=1

Ŝi − Si
NS

(19)

imprecision =

√√√√√√√√√√ N∑
i=1

*.
,

Ŝi − Si
Si

−

[∑N
j=1 Ŝ j − S j

]

NS
+/
-

2

N − 1
(20)

where Si is the estimated total number of paths for the ith run at 100 hours of fuzzing. Even at 100

hours, the empirical value may still substantially underestimate the true species richness. A low

imprecision means that all estimates are similarly (un)biased.

25

Table 3. Average number of discovered paths Sobs and estimated path coverage Ĝ over ten runs at six,
forty-eight, and one-hundred hours into the fuzzing campaign, respectively.

S
obs

(Ĝ) S
obs

(Ĝ) S
obs

(Ĝ)
Subject @ 6hrs @ 48hrs @ 100hrs

json 2612 (98.7%) 2657 (99.9%) 2665 (99.9%)

libjpeg-turbo 2224 (95.2%) 2547 (99.4%) 2623 (99.6%)

openssl 1041 (86.3%) 1356 (93.3%) 1444 (88.6%)

libxml2 5071 (57.3%) 6672 (67.3%) 7656 (66.0%)

ffmpeg 2420 (71.8%) 2554 (99.3%) 2568 (99.6%)

wireshark 427 (98.0%) 454 (99.1%) 456 (99.3%)

< 95% The campaign is considered incomplete.

< 98% Decide based on other factors.

≥ 98% The campaign is considered nearly complete.

RQ.1 Completeness Ĝ (n). Path coverage provides a useful indicator of the progress of a fuzzing
campaign towards completion. Some programs require more time than others to achieve the same path
coverage. Table 3 shows the estimated path coverage Ĝ (n) at 6, 48, and 100 hours into the fuzzing

campaign as an average over ten runs. Six hours into the fuzzing campaign, we see Ĝ = 99% for

json, meaning Pythia has discovered almost all paths that it could potentially explore. In fact,

after spending seven times more time (i.e., after 48 hours), Pythia has discovered only 45 more

paths. For all practical purposes the average fuzzing campaign for both json and wireshark might

be considered completed shortly after the six hour mark.

Clearly, openssl, libxml2, and ffmpeg do not appear to be completed at the six hour mark with a

path coverage well below 90%. In fact, more than 300, 1600, and 100 paths are still being discovered,

respectively, until the 48 hour mark. At the 48 hour mark, the average fuzzing campaign for ffmpeg

might be considered completed. In fact only 12 more paths are found until the 100 hour mark.

However, the average fuzzing campaign for libxml2, and openssl remains incomplete even at the 48

hour mark. Indeed, about 1k , and 100 more paths are being discovered, respectively, until the 100

hour mark. For libxml2, about 3200 new paths are found until the 800 hour mark, on average (33

days; 10846 avg. #paths). We explain the decrease in coverage from the 48 to the 100 hour mark for

libxml2 and openssl with the lack of a discernible horizontal asymptote (2nd row in tables 4 and 5;

RQ.3). We also note that AFL’s existing stopping rule
12
would have (incorrectly) aborted openssl

already at the 6 hour mark while ffmpeg would (incorrectly) continue even after the 48 hour mark.

RQ.2 Residual Risk Û (n). The current discovery probability provides a useful indicator of the current
residual risk that a discoverable vulnerability exists but remains undiscovered in the ongoing fuzzing
campaign. The discovery probability measured for one fuzzing campaign is fairly representative for
other fuzzing campaigns of similar length, particularly later in the fuzzing campaign. The bottom
row in tables 4 and 5 shows the discovery probability estimate Û (n) over time. Notice the log-scale

on the y-axis. The first observation that we can make is that fuzzing campaigns of the same length

yield different degrees of residual risk for different subjects. For instance, at the 96 hour mark the

discovery probability estimate across subjects ranges over four orders of magnitude (e.g., libxml2

vs. json). The second observation that we can make is that for the same subject, the variance of the

estimate across fuzzing campaigns is rather small, indicating a certain degree of representativeness.

12
If the environment variable AFL_EXIT_WHEN_DONE is set, AFL automatically aborts the current fuzzing campaign at

the end of a cycle in which no new path was discovered, starting from the 100th cycle.

26

Table 4. Average of the path coverage estimates Ĝ (n) = S (n)/Ŝ , the number of discovered paths S (n), the
bias and precision of Ŝ over time, and the discovery probability estimate Û (n) within the first 96 hours (4
days). The colored curves in the second and last row represent one fuzzing campaign each.

json openssl wireshark

0 12 24 36 48 60 72 84 96 0 12 24 36 48 60 72 84 96 0 12 24 36 48 60 72 84 96
50%

60%

70%

80%

90%

100%

A
vg

. P
at

h
C

ov
er

ag
e

Ĝ
(n

)

0 12 24 36 48 60 72 84 96 0 12 24 36 48 60 72 84 96 0 12 24 36 48 60 72 84 96
0

1000

2000

#P
at

hs
 D

is
co

ve
re

d
S

(n
)

0 12 24 36 48 60 72 84 96 0 12 24 36 48 60 72 84 96 0 12 24 36 48 60 72 84 96

−0.4

−0.2

0.0

0.2

0.4

B
ia

s
of

 Ŝ

0 12 24 36 48 60 72 84 96 0 12 24 36 48 60 72 84 96 0 12 24 36 48 60 72 84 96

0.0

0.2

0.4

0.6

0.8

Im
pr

ec
is

io
n

of
 Ŝ

0 12 24 36 48 60 72 84 96 0 12 24 36 48 60 72 84 96 0 12 24 36 48 60 72 84 96

10−0

10−2

10−4

10−6

10−8

10−10

Time (in hours)

D
is

co
ve

ry
 P

ro
ba

bi
lit

y
Û

27

Table 5. Average of the path coverage estimates Ĝ (n) = S (n)/Ŝ , the number of discovered paths S (n), the
bias and precision of Ŝ over time, and the discovery probability estimate Û (n) within the first 96 hours (4
days). The colored curves in the second and last row represent one fuzzing campaign each.

ffmpeg libjpeg−turbo libxml2

0 12 24 36 48 60 72 84 96 0 12 24 36 48 60 72 84 96 0 12 24 36 48 60 72 84 96
50%

60%

70%

80%

90%

100%

A
vg

. P
at

h
C

ov
er

ag
e

Ĝ
(n

)

0 12 24 36 48 60 72 84 96 0 12 24 36 48 60 72 84 96 0 12 24 36 48 60 72 84 96

0

2000

4000

6000

8000

#P
at

hs
 D

is
co

ve
re

d
S

(n
)

0 12 24 36 48 60 72 84 96 0 12 24 36 48 60 72 84 96 0 12 24 36 48 60 72 84 96

−0.4

−0.2

0.0

0.2

0.4

B
ia

s
of

 Ŝ

0 12 24 36 48 60 72 84 96 0 12 24 36 48 60 72 84 96 0 12 24 36 48 60 72 84 96

0.0

0.2

0.4

0.6

0.8

Im
pr

ec
is

io
n

of
 Ŝ

0 12 24 36 48 60 72 84 96 0 12 24 36 48 60 72 84 96 0 12 24 36 48 60 72 84 96

10−0

10−2

10−4

10−6

10−8

10−10

Time (in hours)

D
is

co
ve

ry
 P

ro
ba

bi
lit

y
Û

28

The third observation is a general deceleration where each discovery probability seems to almost

approach a horizontal asymptote: As the campaign continues it takes more and more test inputs

to achieve the same decrease in discovery probability (and hence the same decrease of residual

risk). Our fourth observation is that fuzzing campaigns with a relatively high discovery probability

(libxml2, openssl) also achieve a relatively low path coverage estimate (1st row) with a relatively

high estimator bias (3rd row). This provides opportunities to devise suitable adaptive bias correction

strategies based on the discovery probability.

RQ.3 Bias of Ŝ . For four of six subjects, the bias reduces to within ±10% of the true species richness
S within the first 12 hours. For the other two (libxml2 and openssl), it takes 48 hours. In some cases
the mean bias is systematic and negative, in other cases it is systematic and positive. The magnitude
of the positive bias can be substantial in the first few hours (>5.0 for ffmpeg). Notice, a substantial
over-estimation of species richness S results in a (conservative) under-estimation of the path coverage
G (n). However, in all cases the mean bias tends to zero (0) as the number of generated test inputs
increases over time. There are several sources of bias in estimating S .
Campaign Ramp-up. In the beginning of a fuzzing campaign, there is often substantial bias,

both positive and negative. At one minute, the total number of paths S for json, openssl, and libjpeg-

turbo is substantially over-estimated with a positive mean bias of 6.2, 1.6, and 1.4, respectively. At

one minute, the total number of paths S for ffmpeg, libxml2, and wireshark are under-estimated
with a considerable negative mean bias of -0.9, -0.7, and -0.2, respectively. Firstly, there is simply

not sufficient data to extrapolate well [19], i.e. there is no discernible asymptote that can be used

for a good estimate of S . Secondly, when Pythia goes through the circular queue (i.e., the seed

corpus) for the first time, the quality of the seeds varies. Meaning, the number of paths discovered

by fuzzing one seed does generally not represent the number of paths discovered by fuzzing another

seed. So, the estimate Ŝ is biased. Seed quality has less impact as more queue cycles are completed.

Thirdly, Pythia is a coverage-based fuzzer and thus adaptively biased. Test inputs that increase

coverage are added to the seed corpus. So, the fuzzer’s capability to discover paths effectively

improves over time [9]. Hence, early estimates of S , particularly until the 12 hour mark, are often

substantially biased. Note that an over-estimate of S yields an under-estimate of path coverage G.
Adaptive bias. Pythia (AFL) is a coverage-based fuzzer which means that the relative species

abundance changes during the fuzzing campaign (see Section 9.5). New seeds may be added to the

corpus that enable the discovery of path that might otherwise be difficult to discover [9]. Sudden

increases in the number of discovered paths can cause the current asymptote Ŝ to systematically

under-estimate S . This happens for instance when an interesting test input was generated that

contains the correct value for a “magic number” [99]. As we can see for libjpeg-turbo and libxml2

in the second row of Table 5, the magnitude of the increase can be quite substantial. The estimator

Ŝ is negatively biased because of a “false” asymptote for the first 18 hours (libjpeg-turbo, 3rd row).

This results in sudden drops in path coverage Ĝ when many new paths are discovered in short

intervals (libjpeg-turbo, 1st row).

Lower bound. The Chao1-estimator Ŝ of species richness is designed (and proved) to provide

a practical lower bound rather than an imprecise point estimate [15]. In fact, Chao1 is an unbi-

ased point estimator if rare species (undetected and singleton species) have approximately equal

abundance [19]. If very rare species are unevenly distributed, the available data simply does not

contain sufficient information. So the estimator Ŝ might be negatively biased (i.e., systematically

under-estimate the true number of species S). We can see this negative bias clearly for libxml2 and

openssl (3rd row in tables 4 and 5). For openssl, this results in a path coverage that remains appar-

ently constant between 85% and 95% (1st row) despite more paths being discovered (2nd row). The

29

estimate for openssl is negatively biased because there is no discernible horizontal asymptote that

could function as a less biased estimate Ŝ (2nd row). For libxml2, there is no discernible asymptote,

either. We continued the libxml2 experiments past the 96-hour for a total of 800 hours (i.e., 33 days)

to see whether the low path coverage value is warranted. Indeed, the number of paths discovered

increased from an average 7.6k to an average 10.8k paths. It is interesting to note that the discovery

probability (bottom row) for libxml2 and openssl is up to four order of magnitutes higher than for

the other four subjects. Hence, we attribute the negative bias for these two subjects to the large

number of rare species that are unequally distributed. We expect the negative mean bias in Ŝ to be

smaller if the improved estimator iChao1 [31] is used.
However, independent of the source, the bias always tends to zero (0) as the number of generated

test inputs n increases. In the case of libjpeg-turbo, the mean bias seems to remain negative from

18 hours onwards (row 3); the mean bias actually goes to about zero after about 65 hours due

to a sudden increase from 2k to 2.5k discovered paths for one fuzzing campaign (yellow line for

libjpeg-turbo in 2nd row). The tendency of the mean bias towards zero as the number of generated

test inputs n increases is empirical evidence of the statistical consistency of the estimator Ŝ despite

the adaptive sampling bias of Pythia and despite Chao1 being a biased estimator. We expect the

positive and negative bias in Ŝ to be smaller if a coverage-based estimator, such as ACE [24] is used.

RQ.4 Precision of Ŝ . For all subjects, the imprecision reduces to at most 10% of S within the first 12
hours and to at most 1% of S within the first 100 hours. The imprecision is high particularly in the
beginning while the number of discovered paths increases significantly within a relatively small time
interval. However, in all cases the imprecision tends to zero (0) as the number of generated test inputs
increases over time. The precision of an estimator quantifies the variance of the provided estimates.

A high precision means that the estimates are very similar across different fuzzing campaigns. The

fourth row in tables 4 and 5 shows the imprecision of the estimators for our subjects. When the

estimator’s imprecision is high, its precision is low, and vice versa.

As we can see for all subjects the imprecision is high when the slope of the number of paths

discovered over time is steep (2nd row). This is the case in the first few hours of the fuzzing

campaign when most paths are discovered (e.g., ffmpeg), and later when there are sudden increases

(e.g., libjpeg-turbo). The single outlier run for libjpeg-turbo (2nd row, yellow line) illustrates an

important challenge when computing species coverage for coverage-based greybox fuzzers, such

as Pythia. The Chao1-estimator essentially estimates the y-intercept of the horizontal asymptote

of the curve describing the number of paths discovered over time (2nd row). The number of paths

discovered might seem to approach a clear (but “false”) asymptote when actually there is a sudden

increase several hours later. As we can see, path coverage is bias-corrected once the sudden increase

has happened (1st to 4th row in libjpeg-turbo between 12 and 18 hours). Until then, the security

researcher might incorrectly presume that the fuzzing campaign has exceeded a path coverage

threshold that is required to mark the campaign as completed. However, we can also see in the

second row that some programs are more prone to such sudden increases than others, and those

are mostly constrained within the first few hours.

In all cases the imprecision tends towards zero (0) as the number of generated test inputs n
increases. After 100 hours the imprecision is generally less than 0.01, indicating small variance and

high precision. Again, in the case of libjpeg-turbo, the imprecision remaining just below 0.1 from

18 hours onwards (row 3) can be explained with the outlier campaign that converges only after

65 hours. The tendency of the imprecision towards zero as the number of generated test inputs n
increases is empirical evidence of the representativeness of the estimation computed for one fuzzing

campaign for other fuzzing campaigns of the same length.

30

6.4 Extrapolator Evaluation
Let t be the time that the fuzzer has spent generatingn test inputs within the fuzzing campaign. Since

the time to generate a test input is fairly constant across all our fuzzing campaigns, we estimate the

numberm∗ of test inputs generated in the interval from t to t+t∗ where t∗ ∈ {30min, 1hr , 2hrs, 4hrs}
asm∗ = nt∗/t . At time t , we compute the mean bias for the estimate Ŝ (n +m∗) of the number of

discovered paths S (n +m∗) ifm∗ more test inputs were generated as the average bias over N = 10

runs. At time t , we compute the imprecision of Ŝ (n +m∗) as the standard deviation of the bias:

mean bias =
N∑
i=1

Ŝi (n +m
∗) − Si (n +m

∗)

NSi (n +m∗)
(21)

imprecision =

√√√√√√√√√√ N∑
i=1

*.
,

Ŝi (n +m
∗) − Si (n +m

∗)

Si (n +m∗)
−

N∑
j=1

Ŝ j (n +m
∗) − S j (n +m

∗)

NS j (n +m∗)
+/
-

2

N − 1
(22)

where S (n +m∗) is empirically determined at time t + t∗ and thus provides the true value of the

estimation target.

RQ.5 Bias Ŝ (n +m∗). The number of paths discovered and thus path coverage can be effectively
extrapolated with low bias. The magnitude of the bias increases with the extrapolation interval and
decreases as more test inputs n are generated. Table 6 shows the mean bias within the first 48 hours

(top) and the first 12 hours (bottom) of the fuzzing campaign. We chose these two intervals because

of the difference in the magnitude of the bias in the first few hours. In fact, the bottom four rows

feature a large range of the bias between -20% and 50% of the true, empirical S (n +m∗) while the
top four rows feature a much smaller range between -8% and 8% of S (n +m∗).
As we can see in Table 6, Ŝ (n +m∗) might substantially over-estimate the number of paths

discovered in the first few hours. We explain this strong positive bias of Ŝ (n +m∗) with the strong

positive bias of the estimate Ŝ of the total number of paths which forms an important component in

the extrapolation methodology proposed by Shen et al. [90] (see Table 4-3rd row). After the initial

over-estimation, Ŝ (n +m∗) is generally slightly (but systematically) under-estimated. Effectively,

the estimator begins to provide a conservative estimate of the increase in path coverage. We explain

this small negative bias with Pythia being a coverage-based greybox fuzzer. Indeed, we expect a

blackbox fuzzer (without adaptive sampling bias) to detect less paths per unit time. Another source

of negative bias is a sudden increase in the number of paths discovered that would be difficult to

anticipate (e.g., for libjpeg-turbo compare Table 6-top and Table 5-2nd row). We also notice that the

magnitude of the bias increases with the extrapolation interval. The reason is fairly obvious: The

quality of the extrapolation will be worse the further we want to look into the future. However,

the rule of thumb in ecology [33] to limit the extrapolation to within twice the current sampling

effort does not find very strong empirical support for our six subjects in the domain of automated

software testing and analysis.

For all six subjects and all four extrapolation intervals, the bias remains within ±2% of the

empirical value S (n +m∗) from 18 hours onwards. The tendency of the bias towards zero (0) as the

number n of generated test inputs increases might be explained with an expected deceleration of

the number of paths S (n) discovered over time approaching an asymptotic total number of paths S
(see 2nd row in tables Table 4 and Table 5).

RQ.6 Precision Ŝ (n +m∗). The number of paths discovered and thus path coverage can be effectively
extrapolated with high precision. The magnitude of the imprecision increases with the extrapolation

31

Table 6. Bias and imprecision for 6 subjects at 4 extrapolation intervals for ≤ 48hrs (top) and ≤ 12hrs (bottom).

ffmpeg json libjpeg−turbo libxml2 openssl wireshark

30 m
in

1 hour
2 hrs

4 hrs

0 12 24 36 48 0 12 24 36 48 0 12 24 36 48 0 12 24 36 48 0 12 24 36 48 0 12 24 36 48

−0.05

0.00

0.05

−0.05

0.00

0.05

−0.05

0.00

0.05

−0.05

0.00

0.05

Time (in hours)

B
ia

s
/ I

m
pr

ec
is

io
n

bias imprecision

ffmpeg json libjpeg−turbo libxml2 openssl wireshark

30 m
in

1 hour
2 hrs

4 hrs

0 2 4 6 8 10 12 0 2 4 6 8 10 12 0 2 4 6 8 10 12 0 2 4 6 8 10 12 0 2 4 6 8 10 12 0 2 4 6 8 10 12

−0.2

0.0

0.2

0.4

−0.2

0.0

0.2

0.4

−0.2

0.0

0.2

0.4

−0.2

0.0

0.2

0.4

Time (in hours)

B
ia

s
/ I

m
pr

ec
is

io
n

bias imprecision

32

interval and decreases as more test inputs n are generated. The imprecision does not seem to be

affected as substantially as the bias by the initial surge of path discoveries (see ffmpeg and openssl,

bottom rows). However, the magnitude of the imprecision generally mirrors that of the bias,

suggesting that bias and imprecision have the same sources. Like the bias, the imprecision tends

towards zero (0) as the number n of generated test inputs increases.

6.5 Result Summary
The objectives of this empirical evaluation were (1) to test my main hypothesis within the STADS

framework, (2) to evaluate several methodologies from ecology within the STADS framework, and

(3) to investigate the impact of the adaptive sampling bias.

6.5.1 Main Hypothesis. I hypothesize that within the STADS framework rare, discovered species

contain almost all information about the detectable species that remain undiscovered. Rare species

are those to which only a small number of generated test inputs belong. In our experiments, all

methodologies used to extrapolate from the discovered to undiscovered species (i.e., from tested

to untested program behaviors) are based on the number of singletons or doubleton species. The

experimental results show good estimator performance for these methodologies and thus support
my main hypothesis.

6.5.2 Estimator Evaluation. We find that discovery probability provides a useful indicator of

the residual risk that a discoverable vulnerability exists but remains undiscovered in the ongoing

fuzzing campaign. The discovery probability estimate measured for one fuzzing campaign is fairly

representative for other fuzzing campaigns of similar length.
13
While the estimates for 10 runs

range over three orders of magnitude across subjects, they all range within the same order of

magnitude for the same subject. The similarity between estimates of different runs for the same

subject (i.e., the precision) increases as the number n of generated inputs increases.

We find that path coverage provides a useful indicator of the progress of a fuzzing campaign

towards completion that can be used to decide effectively whether to abort or continue a fuzzing

campaign. The path coverage estimate can be positively and negatively biased. The bias is most

substantial during campaign ramp-up, within the first 12 hours, when many paths are discovered.

Another source of substantial bias is the existence of many rare species (see discussion in Section 9.1),

and the sudden discovery of many paths at once (see discussion in Section 9.5). However, for all

subjects the magnitude of the bias reduces as the number n of generated test inputs increases.

Similarly, the precision is low in the first few hours while the number of discovered paths increases

significantly within a relatively small time interval. However, in all cases precision increases as n
increases.

We find that path coverage can be extrapolated with low bias and high precision. Like the path

coverage estimate, the extrapolation can be positively and negatively biased. Sudden surges in the

number of discovered paths are not anticipated resulting in negative bias and some imprecision. A

substantial over-estimation of the total number of paths in the first few hours might result in a

substantial positive bias and some imprecision. The magnitude of bias and imprecision increases

with the extrapolation interval and decreases as more test inputs n are generated. We do not find

very strong evidence that the rule of thumb in ecology [33] to keep the extrapolation within twice

the sampling effort applies to automated software testing and analysis. Other sources of bias and

imprecision seem to have a stronger impact.

13
More specifically, discovery probability is fairly representative for other fuzzing campaigns where the same program is

fuzzed for the same time using the same fuzzer and seed corpus (if any).

33

6.5.3 Impact of Adaptive Sampling Bias. An underlying assumption of most methodologies in

the STADS framework is that the probability pi to generate a test input that belongs to species Di
does not change substantially during the fuzzing campaign. However, it does for feedback-directed

fuzzers, such as Pythia (which is based on AFL). A feedback-directed fuzzer continuously adapts the
strategy to generate new test input based on feedback for previous test inputs. For instance, Pythia

augments the existing seed corpus with generated test inputs that increased branch coverage. New

test inputs are generated by random mutations of the seed inputs that are continuously selected

from a circular queue that represents the (extended) seed corpus. As the seed corpus grows, the

relative species abundance {pi }
S
i=1 changes as well. This is called an adaptive sampling bias, because

the sampling strategy changes adaptively during the sampling itself.

We find that in the beginning of a fuzzing campaign the adaptive sampling bias has a large impact

on estimator performance. In the first few hours, the total number of species Ŝ is often substantially

under-estimated which is explained by the improving capability of Pythia to discover new species

as new seeds are added to the seed corpus. In the beginning, a large number of new seeds are added

as new species are discovered.

We find that as more test inputs are generated the impact reduces. For Pythia, the species

discovery curve is strictly correlated with the adaptive sampling bias. For every new species that is

discovered, a seed is added to the seed corpus. Hence, as species discovery decelerates over time,

the adaptive bias reduces just as well. For some subjects, the number of discovered species seems to

approach a false asymptote, leading to a negatively biased estimate of species richness Ŝ (and thus a

positively biased estimate of species coverage Ĝ) when suddenly many more species are discovered,

e.g., because a magic number discovered [99]. This is also explained by the adaptive sampling bias,

and its impact reduces over time. A more general discussion on the impact of adaptive sampling

bias follows in Section 9.5.

7 BERNOULLI PRODUCT MODEL: ONE INPUT, MULTIPLE SPECIES

Fig. 6. Quadrats positioned at random locations
in the assemblage. Present species are recorded
for each quadrat. Image credit: NPS Sonoran
Desert Network (Licence: CC-BY-2.0).

So far, we have discussed the multinomial model
14

in the STADS framework, where each input belongs
to exactly one species, e.g., an input can exercise only

exactly one path. However, there are many other con-

crete testing objectives where each input belongs to
one or more species. For instance, a single input can ex-
ercise multiple coverage-goals, such as program state-

ments, branches, or methods; a single input can kill

multiple mutants [64], witness multiple information

flows [71], violate multiple assertions, expose mul-

tiple bugs, and traverse multiple program states. In

ecology, it is a sampling unit that can contain multiple

species. A sampling unit is usually a physical trap, net,

quadrat, or plot. These sampling units are distributed

in the assemblage and studied exhaustively—in lieu

of the assemblage itself. When only the presence (or

absence) of species can be determined in a sampling

unit, ecologist call the data as incidence data and utilize the Bernoulli product model [20]. In the

Bernoulli product model, within STADS a generated test input is considered as sampling unit.

14
The multinomial model is introduced in Section 3.5. Specific estimators and extrapolators for the multinomial model are

discussed in sections 4 and 5, respectively. Several of those are evaluated in Section 6.

34

https://creativecommons.org/licenses/by/2.0/

In the following, we extend our STADS statistical framework to account for testing objectives

that yield multiple species identified for a single input. Let n be the number of inputs that have

been generated throughout the current fuzzing campaign, S (n) be the number of species that have

been discovered, and S be the total number of species. Define {Wi j | i = 1, 2, . . . , S ∧ j = 1, 2, . . . ,n}
as the incidence matrix whereWi j = 1 if the jth generated test input belongs to species Di , and

Wi j = 0 otherwise. Let Yi be the number of generated test inputs that belong to species Di for

i : 1 ≤ i ≤ S , then Yi =
∑n

j=1Wi j . For species that exist but remain undiscovered in the current

fuzzing campaign, we have Y = 0. Define the incidence frequency count Qk for k : 0 ≤ k ≤ n, as the
number of species to which exactly k test inputs belong that have been generated throughout the

current fuzzing campaign. More formally, Qk =
∑S

i=1 I (Yi = k). Hence, n ≤
∑n

k=1 kQk =
∑S

i=1 Yi
and S (n) =

∑n
k=1Qk . The incidence frequency count Qk is analogous to the abundance frequency

count fk for the multinomial model. The unobservable zero frequency countQ0 denotes the number

of species that remain undiscovered in the current fuzzing campaign. We call Q1 the number of

singleton species and Q2 the number of doubleton species.
The probability that the fuzzer generates a test input that belongs to species Di is pi for i :

1 ≤ i ≤ S . Note that
∑S

i=1 pi ≥ 1. We assume that eachWi j is a Bernoulli random variable with
probability pi thatWi j = 1 (and analogously with probability 1 − pi thatWi j = 0). Thus, the

probability distribution for the incidence matrix is

P (Wi j = wi j ; i = 1, 2, . . . , S ; j = 1, 2, . . . ,n) =
n∏
j=1

S∏
i=1

p
wi j
i (1 − pi)

1−wi j
(23)

=

S∏
i=1

p
yi
i (1 − pi)

n−yi
where yi =

n∑
j=1

wi j (24)

From Equation 24, we can see that the row sums (Y1,Y2, . . . ,YS) are sufficient statistics. This
renders the incidence frequency counts Qk suitable components for the estimators of species

richness. The number of generated test inputs Yi that belong to species Di follows a binomial

distribution

P (Yi = yi) =

(
n

yi

)
p
yi
i (1 − pi)

n−yi
where i = 1, 2, . . . , S (25)

Chao and Colwell [20] provide more details about the Bernoulli product model and its utility in

the ecologic context.

7.1 Estimation in the Bernoulli Product Model
Estimating S . In the Bernoulli product model of the STADS framework, the estimation of species

richness S (i.e., the asymptotic total number of species) can be done using the Chao2 and iChao2-
estimators, which were derived by Chao [16] and Chui et al. [31].

ŜChao2 ≈



S (n) +Q2

1
/(2Q2) if Q2 > 0

S (n) +Q1 (Q1 − 1)/2 if Q2 = 0

(26)

ŜiChao2 ≈ ŜChao2 +
Q3

4Q4

×max

(
Q1 −

Q2Q3

2Q4

, 0

)
(27)

Chao [16] showed that the Chao2 estimator ŜChao2 provides a nonparametric lower bound on the

total number of species S in an assemblage. Very recently, Chao and colleagues showed that the

Chao2 estimator is an unbiased point estimator as long as very rare species (specifically, undetected

and singleton species) have approximately equal detection probability [19].

35

Alternative estimators of species richness S in the Bernoulli product model include Jacknife

estimators [13, 81, 95] and coverage-based estimators, such as ICE [65] and ICE-1 [51], that a

particularly suitable when species diversity is high (i.e., when species evenness J is low).
Estimating U . For inputs that can belong to one or more species, the estimate Û (n) of the

discovery probability requires information not only about singleton and doubleton species but

also about all discovered species [20]. In the Bernoulli product model of the STADS framework, the

discovery probability is estimated as

Û (n) =
Q1

V

[
nQ̂0

nQ̂0 +Q1

]
(28)

≈
Q1

V
(29)

where in the current fuzzing campaignV =
∑n

k=1 kQk =
∑S

i=1
∑n

j=1Wi j denotes the sum of all entries

in the incidence matrixWi j , n is the number of test inputs generated, the number of undetected

species can be estimated as Q̂0 = Ŝ − S (n), and Q1 and Q2 are the incidence frequency counts of

singletons and doubletons, respectively. Note that the sum of all entries V in the incidence matrix

does not require storing the complete incidence matrixWi j . Instead, V can be aggregated during

the fuzzing campaign. Also notice the similarity of the approximation to the Good-Turing estimator

for the multinomial model [48].

7.2 Extrapolation in the Bernoulli Product Model
Extrapolating S (n). In the Bernoulli product model of the STADS framework, to estimate the

expected number of discovered species Ŝ (n +m∗) when n test inputs have already been generated

and ifm∗ more test inputs were to be generated, we have

Ŝ (n +m∗) = S (n) + Q̂0


1 −

(
1 −

Q1

nQ̂0 +Q1

)m∗ (30)

where for the current fuzzing campaign n is the number of generated test inputs, S (n) is the number

of discovered species, Q̂0 = Ŝ − S (n) is the expected number of undiscovered species, and Q1 is the

number of singletons.

ExtrapolatingU (n). In the Bernoulli product model of the STADS framework, the estimate of

the expected discovery probability Û (n +m∗) ifm∗ more test inputs were generated is computed as

Û (n +m∗) =
Q1

V

[
nQ̂0

nQ̂0 +Q1

]m∗+1
(31)

where for the current fuzzing campaign V =
∑n

k=1 kQk =
∑S

i=1
∑n

j=1Wi j denotes the sum of all

entries in the incidence matrixWi j , n is the number of generated test inputs, S (n) is the number of

discovered species, Q̂0 = Ŝ − S (n) is the expected number of undiscovered species, and Q1 is the

number of singletons.

EstimatingmG∗ when G∗ = S (n +mG∗)/Ŝ is given. To reach a fraction G∗ of estimated total

number of species Ŝ where Ĝ (n) < G∗ ≤ 1, in the Bernoulli product model of the STADS framework

36

the required numbermG∗ of further test inputs is estimated as [21]

mG∗ ≈

log


1 −

n

(n − 1)

2Q2

Q2

1

(G∗Ŝ − S (n))


log


1 −

2Q2

(n − 1)Q1 + 2Q2



(32)

where in the current fuzzing campaignn is the number of generated test inputs, S (n) is the number of

discovered species, and Q1 and Q2 are the incidence frequency counts for singleton and doubleton

species, respectively. The expected fuzzing time can be computed by multiplying the expected

number of test inputs with the average time the fuzzer takes to generate a test input.

8 RELATEDWORK
To the best of our knowledge, in the domain of software testing and analysis, there exists no previous
work on estimating the asymptotic total number of species, or on extrapolating the number of species
discovered over time for any definition of species. In fact, Whalen [97] says about the future of

verification and validation that one of the biggest problems today is that there is no sound basis to
extrapolate from tested to untested cases. We strongly believe that the STADS framework provides a

statistically well-grounded basis to extrapolate from tested to untested program behaviors.

8.1 Residual Risk Assessment
Finding no vulnerabilities in a (long-running) fuzzing campaign does not mean that none exists. In

the STADS framework, the discovery probability U (n) measures the probability to discover a new

species with the n + 1th generated test input where n is the number of test inputs that have been

generated throughout the fuzzing campaign. If the dynamic analysis is able to identify vulnerabilities,

then an accurate estimate of the discovery probability provides a statistical guarantee that no
detectable vulnerability exists if none has been discovered. In other words, security researchers

can use the STADS statistical framework for residual risk assessment.
There exist several systematic approaches to quantify the reliability of a program. However, Filieri

et al. [40] recently noted that most existing approaches work on the design- and architectural

level rather than on the program itself. The authors present a program-level reliability estimation

technique that uses probabilistic symbolic execution [44] to compute the probability of satisfying

any of the path conditions corresponding to non-error-exposing paths. In other words, the ap-

proach computes the proportion of inputs which exercise paths that do not expose an error. Since

probabilistic symbolic execution leverages model counting to determine the proportion of inputs

exercising a path, the approach works only for very small input spaces. In contrast, we propose a

lightweight statistical technique to estimate the confidence that a fuzzing campaign inspires in the

correctness of a program, and that scales to programs of arbitrary size.

There exist several statistical approaches to quantify the reliability of a program. For instance, the

problem of estimating the probability P (n) to discover an error with the n + 1th test input, given

that no errors have been found after generating n test inputs can be cast as a variant of the sunrise
problem15

which is classically solved with Laplace’s rule of succession [63]: P (n) = 1/(n+2). Suppose,
s of n generated inputs expose an error, then the probability to generate another error-exposing

input follows a beta-distribution Beta(s + 1,n − s + 1) the postorior of which has the expected value

(s + 1)/(n + 2).

15
Given that we have seen the sun rise for n consecutive days, what is the probability that the sun will rise tomorrow?

37

Miller et al. [76] recognized the utility of the beta-distribution to quantify the probability of

failure in the absence of failures and furthermore discuss the case where the test distribution does

not overlap with the operational distribution (i.e., the fuzzer might not generate “typical” inputs,

but we are interested in the program’s reliability for typical inputs). Littlewood andWright [66] also

utilize the beta-distribution but discuss how to update the previous estimate of the probability of

failure after a bug was found and fixed. In contrast to these existing works, the STADS framework

leverages information on the problem structure by identifying the species for an input. Hence,

we can provide more accurate estimates of the residual risk that a detectable vulnerability has

remained undetected and of the confidence that a fuzzing campaign inspires in the correctness of

the program. Moreover, the STADS framework is more general and also provides methodologies to

estimate the total number of species and to extrapolate the number of species discovered at some

future point in time.

It is interesting to note that only 25 years ago, the execution of one hundred million (n = 10
8
)

test inputs was utterly unthinkable [56]. Hamlet and Voas conjecture that “[..] direct reliability

assessment by random testing of software is impractical. The levels we would like to achieve, on

the order of 10
6
–10

8
executions without failure, cannot be established in a reasonable time. Some

limitations of reliability testing can be overcome, but the “ultrareliable” region above 10
8
failure-free

executions is likely to remain forever untestable” [56]. Today, Google’s continuous fuzzing platform

OSS-Fuzz generates 10 trillion (10
10
) test inputs per day [116].

When test inputs are generated manually, a general suggestion is to increase the code coverage.

The most popular measures are code coverage metrics, such as statement, branch, or MC/DC

coverage, and fault coverage metrics, such as relative mutation adequacy [64]. The hope is that the

fault revelation of a set of test inputs increases as its coverage increases. In other words, maximal

coverage should inspire maximal confidence. However, many recent empirical studies found that

such coverage metrics are in fact poor indicators of test suite effectiveness in the context of automated
software test generation [28, 43, 62]. The empirical results may be explained by early theoretical

investigations of testing effectiveness [38, 55, 127]. Böhme and Paul [7] similar to Hamlet and

Taylor [55] argue that a set of successful test inputs (i.e., no input exposes an error) that achieves

100% branch coverage, 100% MC/DC coverage, and even 100% relative mutation adequacy does not

inspire any degree of confidence in the correctness of the tested program. Indeed, vulnerabilities

may still exist. In contrast, STADS provides a statistically well-grounded framework to assess the

residual risk that a detectable vulnerability exists even if none has been found.

8.2 Partition Testing
In partition testing, the program’s input domain is partitioned into overlapping or non-overlapping

subdomains [127]. The task of a tester is to select one or more elements from each subdomain. In

the STADS framework, we would say that each and only input in the same subdomain belongs to

the same species. However, unlike in the STADS framework each input subdomain in partition

testing is associated with a probability θi that an input in this subdomain reveals an error [38].

Partition testing is a probabilistic model of software testing which allows to investigate the tester’s

ability to detect faults.

Analyzing the effectiveness of random testing, Duran an Ntfos [38] used the partition testing

model to show that the expected number of errors д(n) discovered after n test inputs have been

sampled uniformly at random, for the case of non-overlapping subdomains, is given as

д(n) = S −
S∑
i=1

(1 − piθi)
n

38

where S is the total number of subdomains, and pi is the probability that the randomly sampled

input lies in subdomain Di . Duran and Ntfos observed experimentally that a tester who samples

one or more inputs from each subdomain performs only slightly better than simple random testing.

Varying several parameters, the Hamlet and Taylor [55] repeated the experiments of Duran and

Ntafos and confirm: The number of errors found by random and partition testing is very similar. In

fact, the authors conclude that “partition testing does not inspire confidence”. Weyuker and Jeng

[127] found that the effectiveness of partition testing varies depending on the fault rate θi for each
subdomain. Subsequently, several authors discussed conditions under which partition testing is

generally more effective than random testing (e.g., [29, 52]). Empirical investigations [28, 43, 62] of

the effectiveness of partition testing have since confirmed Hamlet and Taylor’s conclusion [55].

In our previous work [7] we leverage the partition testing model to conduct the first probabilistic

analysis of the efficiency of automated software testing. We identify bounds on the time the

most effective systematic testing technique can take per test input to remain more efficient than
random testing. We develop a hypothetical hybrid testing technique that is more efficient than both,

random and systematic testing. We also suggest a primitive curve fitting method to extrapolate the

partitions discovered over time. However, in the present article we introduce more sophisticated

sampling-theoretic extrapolation methodologies.

While the partition testing model allows probabilistic analyses, the STADS framework allows

statistical analyses, including estimation and extrapolation. Probabilistic and statistical analysis are

inverse to each other. In a probabilistic analysis we consider some underlying random process where

the randomness is modelled by random variables, and we resolve what happens. In a statistical
analysis we observe something that has happened, and try to resolve what underlying process

would explain those observations. In contrast to existing work, we present practical estimation and

extrapolation methodologies. The STADS framework is the first work in automated software testing

that allows to extrapolate from tested to untested program behavior with quantifiable accuracy.

9 CHALLENGES AND OPPORTUNITIES
9.1 Programs as Megadiverse Assemblages
The STADS framework exhibits some peculiar features that make the application of existing ecologic

methodologies more challenging: specifically, one has to deal with extremely large populations

containing a huge number of species (e.g., millions of program branches or exponentially more

distinct paths). Specifically, compared to common assemblages in ecology, we expect species

richness S to be very high and species evenness J to be very low in the STADS model. In other

words, there are a huge number of very rare species and only a few extremely abundant species.

9.1.1 Megadiversity. In ecology, we call an assemblage with high richness and low evenness as

megadiverse assemblage. For instance, arthropods (i.e., bugs, millipedes, spiders, etc.) in a tropical

forest would be considered a megadiverse assemblage. [4]. There are an estimated 6.1 million
tropical arthropod species, most of which are rare [53, 54]. Such assemblages are subject to several

statistical challenges during estimation and extrapolation, particularly due to the relatively small

sample size [34, 69]. However, compared to species inventories common in ecology, the sample size

n in the STADS framework can be very large, which should render our data precious for ecologic

biostatisticians. For instance, it took 102 ecology researchers 66 person-years to sample 129,494

arthropods representing 6144 species from 0.48 ha of tropical rain forest [4]. In stark contrast, a

fuzzer can take a million samples in only a few minutes.

9.1.2 Scarcity. The main objective of fuzzing is to discover vulnerabilities in a program. Vul-

nerabilities are arguably very rare species in the STADS framework. Similarly, a primary objective

39

of many ecological surveys is to identify species that are so rare that they are close to extinction.

Once identified, the necessary conservation policies are proposed and implemented to counter the

diminishing biodiversity.

For the STADS framework, we should identify, develop and employ estimators that are better

suitable if many rare species are present. Colwell et al. [33] suggest to employ coverage-based

estimators of species richness [24, 27, 51, 65] if one expects many rare species. Mao and Collwell [69]

propose a mixture model to compute, with confidence intervals, a lower bound on species richness

when there are many rare species. In amixture model, species abundance or occurrence distributions
are modelled as a weighted mixture of statistical distributions. Ohannessian [78] observes that the

Good-Turing estimator of discovery probability performs well even in the presence of many rare

species. Chao et al. [22] generalize the Good-Turing estimator to develop the Good-Turing sample

coverage theory. In future, coverage-based and mixture-model-based as well as other rare event

estimators [10, 78] and their performance within the STADS framework can be studied. Other

suitable estimators for megadiverse assemblages with many rare species can be developed that

would benefit tremendously both fields of research.

9.1.3 Endemism. Another challenge in fuzzing is the random generation of “magic numbers”,

such as file identifiers [99]. Only if the magic number is correct will the generated test input exercise

interesting program behaviors. Only if the magic number is correct will many new species be

discovered. A similar challenge exists in ecology. Endemism is the ecological state of a species being

unique to a defined geographic location. For instance, the rain forest of Madagascar hosts a large

number of (endemic) species that can only be found in Madagascar [50]. A global survey of the

biodiversity in rain forests would miss many species if the “magic island” of Madagascar remains

uninvestigated. A survey of the biodiversity in the Sahara desert would miss many species if oases

remain uninvestigated [39]. Hence, it is sensible only to provide an improved lower bound of the

total number of species S [15, 16].

9.1.4 Opportunities. Strategies could be established that allow to chose the best estimator at

any time during the fuzzing campaign based on estimates of species evenness J and discovery

probability U (e.g., [11]). Several estimators of the same quantity may be used to derive a “best

estimate” [4]. In the STADS framework, the program’s source code and program binary provide an

additional source of information that can be used to improve estimator performance. In future, the

dependence of estimator bias and precision on the sample completeness C can be investigated to

develop better bias-correction mechanisms.

9.2 Species Identification and Oracle Problem
In the STADS framework, the species for an input t is identified using a combination of dynamic

analyzers which record during execution of t the observed program properties of interest. For

instance, to detect bugs in C programs, the compiler can be asked to inject so-called sanitizers
[89, 92], assertions that crash the program when a bug is detected. There are different sanitizers

[101, 106], e.g.,

• to detect memory related errors, such as overflows and use-after-free (AddressSanitizer),

• to detect race conditions and deadlocks (ThreadSanitizer),

• to detect undefined behaviors (UndefinedBehaviorSanitizer),

• to detect memory leaks (LeakSanitizer), or

• to check control-flow integrity (CFISanitizer).

Whether a bug constitutes an exploitable vulnerability can be determined with excellent precision

and good recall using another dynamic analysis, e.g., the CERT Triage Tools [100].

40

9.2.1 Misidentification and Guarantees. The correct identification of the species for an input

is an important challenge in both disciplines. For instance, in ecology Austen et al. [1] observed

that even taxonomic experts were correct in only 60% of cases when asked whether two images

showed the same or different species of bumblebees. Similarly, in the STADS framework a dynamic

analysis may misidentify the species for an input. For instance, misidentification in software testing

may lead to input incorrectly classified as not exposing a vulnerability (when it actually does).

Hence, the statistical guarantees provided by the STADS model holdmodulo the dynamic analyzer’s

capability to identify the correct species for an input. This motivates further research on advanced

dynamic analysis techniques that are more effective at vulnerability detection.

It is interesting to note that misidentification is also an important challenge for automated

verification. The formal guarantees provided by the verifier are valid only modulo the provided
specification which may be incomplete. For instance, the specification may allow to check whether

a race conditions exists (a classic model checking problem)—but not whether a buffer overflow

exists (the number-one root cause of arbitrary code execution attacks).

9.2.2 Morphospecies and Oracle Problem. In ecology, some individuals cannot be assigned to

named species. A morphospecies is different from previously discovered species (in its morphology)

but not to a sufficient degree that it could be assigned its own species. A similar challenge is known

in the software testing domain as oracle problem. Weyuker [126] conjectures that, in general, there

exists no mechanism that can accurately decide whether or not the program behavior for an input

is correct—whether an observed behavior is a bug or a feature of the program. Barr et al. [3] provide

an excellent survey of recent advances in tackling the oracle problem.

9.3 Integrating Other Models Into STADS
The STADS framework provides opportunities to explore other topics, models, and related method-

ologies in ecology. For instance, a typical problem in ecology is the extrapolation of the number of

species in an enlarged area of sizeA+a∗, given only a sample of a smaller area of sizeA [26]. This is

modelled as continuous Poisson model [32]. In the Poisson model, the reference sample is not defined

by sample size n but by the area A that is sampled. The ith species occurs at a species-specific mean

rate Aλi , so that the probability distribution is

P (X1 = x1, . . . ,XS = xs) =
S∏
i=1

(Aλi)
xi exp(−Aλi)

xi !
(33)

In fuzzing, we often restrict the size of the generated test inputs because larger inputs might take

longer to execute, and species appear to be distributed more densely in the space of small inputs.

Within the STADS framework, we can leverage the Poisson model to estimate the total number

of species for large inputs, given a fuzzing campaign that restricted the fuzzing to only smaller

inputs. For instance, in Google’s continuous fuzzing platform OSS-Fuzz [116], the main fuzzer

LibFuzzer [109] is often configured with a maximum test input size. The Poisson model would

allow to extrapolate the confidence such “restricted” fuzzing campaigns inspire in the absence of

vulnerabilities from the small generated test inputs to larger “normal-sized” inputs.

In future, mixture models [69] can be developed that synthesize better estimates from those

provided by the multinomial and the Poisson model. In order to integrate the Poisson and Bernoulli

product models successfully into the STADS framework, an empirical evaluation of estimator

performance is left for future work.

41

9.4 Non-Adaptive Sampling Bias
The STADS framework fully accounts for arbitrary fuzzer heuristics, including the sampling from

the operational distribution, as long as the fuzzer does not change the sampling strategy adaptively

throughout the fuzzing campaign. For instance, if a compiler fuzzer generates more programs with

loops than programs without—because historically programs with loops have always found more

compiler bugs—then all statistical claims derived from the STADS framework strictly hold w.r.t. that

fuzzer and for that program within the stipulated confidence bounds. The main assumption upon

which the (multinomial and Bernoulli product) models of the STADS framework rely is that the

relative species abundance {pi }
S
i=1 does not change substantially during the fuzzing campaign. The

compiler fuzzer is simply more likely (greater pi) to discover a loop-based bug Di than a compiler

fuzzer without that heuristic, for all fuzzing campaigns.
While there may be some bias in the test input generation, there is no adaptive bias for blackbox

fuzzers. A blackbox fuzzer does not leverage feedback from previous test executions to adapt the

test generation strategy during the fuzzing campaign. A generational blackbox fuzzer generates
test inputs either by random sampling [75] or by instantiating elements from an input model,

grammar, or protocol [117]. Amutation-based blackbox fuzzer generates new test inputs by random

perturbations of inputs in the so-called seed corpus. The probability pi to generate a test input that

belong to species Di does not change at all during the fuzzing campaign.

In ecology, the sampling is usually subject to certain biases, as well. A light trap may lure certain

species more than others [57]. An ecologist may prefer to sample certain locations in an assemblage

over others [86]. An ecologist may be more likely to sample species that are larger in body size (or

perhaps prefer to sample only the smaller species in the case of the arachnida class) [72].

9.5 Adaptive Sampling Bias of Feedback-directed Fuzzers
The main assumption in the STADS framework upon which the multinomial, Bernoulli product,

and Poisson models rely is that the relative species abundance {pi }
S
i=1 does not change substantially

during the fuzzing campaign. However, feedback-directed fuzzers are based on an adaptive sampling

strategy. A feedback-directed fuzzer leverages program feedback from previous test inputs to learn

and adaptively generate “better” test inputs. The probability pi to sample an input that belongs to

an undiscovered species Di may increase.

9.5.1 Search-based Software Testing. Fuzzers developed in the field of search-based software
testing (SBST) are feedback-directed. A fitness function evaluates how close a test input or set of

test inputs is towards satisfying the concrete fuzzing objective while a meta-heuristic steers the

test generation adaptively towards new test inputs with improved fitness. For instance, a directed
greybox fuzzer [8] evaluates the “distance” of an input to a set of target locations in the program (e.g.,

potential buffer overflow sites) and uses simulated annealing-based power schedules to generate

new test inputs that are “closer” to those target locations. McMinn provides an excellent survey of

SBST existing techniques [73] and identifies future challenges [74].

To establish the impact of the adaptive bias, we strongly suggest to evaluate estimator perfor-

mance for each SBST technique. In future, customized bias-corrected estimators can be developed

that allow accurate estimation and extrapolation for SBST techniques.

9.5.2 Coverage-based Greybox Fuzzing. Feedback-directed are also coverage-based greybox

fuzzers [9, 98, 109, 120]. A coverage-based greybox fuzzer is typically mutation-based and hence

starts with a seed corpus. If the fuzzer generates a test input t that belongs to a previously undis-

covered species (e.g., by random perturbations of inputs in the corpus), then t is added to the seed

corpus. Otherwise, t is discarded. At the time when t is added to the seed corpus, the probability

42

(a) Estimated path coverage over time (b) Number of paths discovered over time

77.6%

97.9%

0%

25%

50%

75%

100%

0 6 12 18 24 30 36 42 48

Time (in hours)

S
pe

ci
es

 C
ov

er
ag

e

asymptote @ 5408 paths

0k

1k

2k

3k

4k

5k

6k

0 6 12 18 24 30 36 42 48

Time (in hours)

#P
at

hs
Fig. 7. Bias in the path coverage estimate for the AFL-fuzzing campaign in our motivating example.

pi to discover any “neighboring” species Di slightly increases, compared to before t was added.
Hence, at first a coverage-based greybox fuzzer might discover more species per unit time than

a mutation-based blackbox fuzzer (which is not feedback-directed). However, in the limit every
coverage-based greybox fuzzer degenerates to a mutation-based blackbox fuzzer. Over time more

and more test inputs need to be generated to discover the next species: The fuzzer cycles several

times through the same set of seeds without any discoveries for hours, later for days. Hence, in
the limit the adaptive bias is non-existent. Thus, if an estimator is consistent for a fuzzer that is

not feedback-directed, it is also consistent for a coverage-based greybox fuzzer. The accuracy of a

consistent estimator increases as sampling effort (i.e., the number generated test inputs) increases.

The adaptive bias is obvious in Figure 7.a which shows the development of the path coverage

estimate over the first 48 hours of the fuzzing campaign in our motivating example (Section 2).

Between five and seven hours, we see a steep drop in the path coverage estimate. The reason

becomes obvious in Figure 7.b which shows the number of paths discovered for the same fuzzing

campaign. Just before the six-hour mark, the number of discovered paths seems to approach

a different asymptote at about 3k paths when suddenly many more paths are discovered. This

sudden increase is not very uncommon for AFL, particularly in the first few hours when still

many new paths are discovered. However, such surges get more uncommon and their magnitude

smaller as sample coverage increases. This can be explained within the Markov chain model of

directed greybox fuzzing [9]. The path coverage estimate quickly recovers over the next 12 hours.

In Figure 7.b, we can see that 24 hours into the fuzzing campaign a large percentage of paths has

been discovered (w.r.t. the improved estimate of the asymptote). At this time, our path coverage

estimate quite accurately puts the coverage at about 98%. In future, we plan to investigate the

correlation between the discovery probability estimate Û of the sample and the bias/precision of

the species coverage estimate S (n)/Ŝ .
In our preliminary empirical study, we used the coverage-based greybox fuzzer AFL [98] to

investigate the performance of the proposed estimators and extrapolators for the state-of-the-art
vulnerability detection tool. The results are promising (see Section 6.5). For AFL, the magnitude

of the estimator bias was substantial right before and during short intervals when the number

of discovered path-species increased suddenly and significantly. The extrapolation would not

anticipate such sudden surges. However, the bias from adaptive sampling reduced over time. Close

to the asymptotic species richness, the impact appeared negligible.

43

In future work, several correctionmethodologies for the adaptive sampling bias may be developed.

In software testing, we can analyze the program, e.g., to quantify the likelihood of sudden increases

in species coverage. Advanced program analyses may allow for static bias-correction strategies.
For coverage-based greybox fuzzers, as species discovery decelerates, the impact of the adaptive

bias reduces, as well. Estimates of sample completeness C or species richness S may be used as

predictors of the adaptive bias which allow for dynamic bias-correction strategies. Moreover, we

anticipate empirical studies of estimator performance for other greybox fuzzers.

9.5.3 Symbolic Execution. Systematic (often symbolic execution-based) whitebox fuzzers are

designed to discover previously undiscovered species with every test input that is generated. Hence,

the STADS framework explicitly does not apply as such fuzzers violate the underlying assumptions

of our statistical framework. For instance, a symbolic execution-based whitebox fuzzer is designed

to systematically enumerate every (interesting) path in the program [14]. Every generated test input

exercises a different path. Once a species Di has been discovered, the probability pi of generating
another input t ∈ Di is pi = 0. This is a substantial change from before the discovery.

However, we note that security researchers can use a blackbox or greybox fuzzer to establish the

species evenness J for that program, and based on its value decide whether to choose that fuzzer or

the symbolic execution-based whitebox fuzzer for the actual fuzzing. As symbolic execution-based

fuzzers are better suited to discover rare species, there should be a certain minimal value of J below
which the symbolic execution-based whitebox fuzzer performs better than the blackbox or greybox

fuzzer. In future, this value can be empirically investigated.

9.6 Adaptive Bias Correction
Unlike sampling strategies in ecology, the STADS frameworks allows continuous estimation and

extrapolation during the fuzzing campaign itself. This provides opportunities for continuous adaptive
bias correction. We can continuously assess the bias of our extrapolation by first predicting the

value of our estimation target and later comparing it to its empirical value. The difference between

predicted and empirical value describes the estimator bias. A continuous monitoring of the bias

may allow to gradually control for and correct the observed bias.

Monitoring the fuzzing campaign also enables on-the-fly fuzzer selection. In earlier work [7], we

found that even the most effective systematic fuzzer would be less efficient than a random fuzzer

if generating a test input takes relatively too long. For short fuzzing campaigns, a random fuzzer

would always outperform a systematic fuzzer. However, at a certain time, it would be more efficient

to switch to systematic fuzzing. Using the proposed extrapolators, we can make an informed

decision when to switch, e.g,. from the “biased” random fuzzer AFL [98] to the systematic fuzzer,

KLEE [14].

10 CONCLUSION
In this article, I introduced the foundations of a general, statistical framework that models software

testing and analysis as discovery of species (STADS) to address a fundamental challenge in software

testing: the statistically well-grounded extrapolation from program behaviors observed during

testing. The STADS framework draws from over three decades of research in ecological biostatistics,

where the challenge is to extrapolate from properties of the species observed in a sample to

properties of the species in the complete assemblage.

Based on the STADS framework, researchers can, for the first time, formally discuss, estimate

and assess a fuzzer’s effectiveness and efficiency, a campaign’s completeness, cost-effectiveness,

and residual risk, and a program’s fuzzability. For the first time, test engineers have gained the

ability to make informed decisions about whether to abort or continue a fuzzing campaign; and to

44

Table 7. A summary of the pertinent estimators and extrapolators for the STADS model that were discussed
and/or evaluated in this article.

M
ul
ti
no

m
ia
lM

od
el

B
er
no

ul
li
Pr

od
uc

tM
od

el
(O

ne
In
pu

t,
O
ne

Sp
ec
ie
s)

(O
ne

In
pu

t,
M
ul
ti
pl
e
Sp

ec
ie
s)

Es
tim

at
in
g
an

d
ex
tr
ap
ol
at
in
g
pr
og
re
ss
ba
se
d
on

th
e
to
ta
ln

um
be
r
of

sp
ec
ie
sŜ

[
3
3
]

T
o
t
a
l
#
s
p
e
c
i
e
s

Ŝ
≈
    S

(n
)
+
f
2

1
/(
2
f 2
)

i
f
f 2
>
0

S
(n
)
+
f 1
(f

1
−
1
)/
2

i
f
f 2
=
0

Ŝ
≈
    S

(n
)
+
Q

2 1
/(
2
Q
2
)

i
f
Q
2
>
0

S
(n
)
+
Q
1
(Q

1
−
1
)/
2

i
f
Q
2
=
0

(
C
ha

o1
/2
es
tim

at
or
s)

Ŝ
=
S

i
f
S
i
s
k
n
o
w
n

Ŝ
=
S

i
f
S
i
s
k
n
o
w
n

Ŝ
=
S
(n
)
+

ˆ f 0
→

ˆ f 0
=
Ŝ
−
S
(n
)

Ŝ
=
S
(n
)
+
Q̂
0

→
Q̂
0
=
Ŝ
−
S
(n
)

H
ow

m
an

y
m
or
e

Ŝ
(n
+
m
∗
)
=
S
(n
)
+

ˆ f 0

[1
−

(1
−

f 1
n
ˆ f 0
+
f 1

) m∗]
Ŝ
(n
+
m
∗
)
=
S
(n
)
+
Q̂
0

[1
−

(1
−

Q
1

n
Q̂

0
+
Q

1

) m∗]
sp
ec
ie
s
ar
e

di
sc
ov
er
ed

w
ith

m
or
e
in
pu

ts
?

H
ow

m
an

y
m
or
e

m
G
∗
≈
n
f 1

2
f 2

l
o
g

     

ˆ f 0

(1
−
G
∗
)Ŝ

     
m

G
∗
≈

l
o
g

     1
−

n

(n
−
1
)2
Q
2

Q
2 1

(G
∗
Ŝ
−
S
(n
))
     

l
o
g

     1
−

2
Q
2

(n
−
1
)Q

1
+
2
Q
2

     

in
pu

ts
ar
e
ne
ed
ed

to
di
sc
ov
er
G
∗
·
Ŝ

sp
ec
ie
s
w
he
re

G
(n
)
<
G
∗
<
1
?

Es
tim

at
in
g
an

d
ex
tr
ap
ol
at
in
g
pr
og
re
ss
ba
se
d
on

di
sc
ov
er
y
pr
ob
ab
ili
ty

Ĉ
[
2
3
,
4
8
]

D
i
s
c
o
v
e
r
y
p
r
o
b
a
b
i
l
i
t
y

Û
(n
)
=

f 1 n
Û
(n
)
=
Q
1

V

[
n
Q̂
0

n
Q̂
0
+
Q
1

]
≈
Q
1

V

H
ow

m
uc
h
m
or
e

Û
(n
+
m
∗
)
=

f 1 n
* ,

n
ˆ f 0

n
ˆ f 0
+
f 1

+ -m
∗
+
1

Û
(n
+
m
∗
)
=
Q
1

V

[
n
Q̂
0

n
Q̂
0
+
Q
1

] m
∗
+
1

sa
m
pl
e
co
ve
ra
ge

is
ac
hi
ev
ed

w
ith

m
or
e
in
pu

ts
?

N
ot
at
io
n:

In
th
e
cu
rr
en
tf
uz
zi
ng

ca
m
pa
ig
n
n
is
th
e
nu

m
be
ro

fg
en
er
at
ed

te
st
in
pu

ts
,S
(n
)
is
th
e
nu

m
be
ro

fd
is
co
ve
re
d
sp
ec
ie
s,
f 1

an
d
Q
1
ar
e
th
e
nu

m
be
ro

fs
in
gl
et
on

sp
ec
ie
s(
i.e
.,
th
os
e
to

w
hi
ch

on
ly

on
e
ge
ne
ra
te
d
in
pu

tb
el
on
gs
),
f 2

an
d
Q
2
ar
e
th
e
nu

m
be
ro

f
do
ub
le
to
n
sp
ec
ie
s(
i.e
.,
th
os
e
to
w
hi
ch

on
ly

tw
o
ge
ne
ra
te
d
in
pu

ts
be
lo
ng
),

ˆ f 0
an

d
Q̂
0
ar
e
es
tim

at
es
of

th
e
nu

m
be
ro

fu
nd

is
co
ve
re
d

sp
ec
ie
s,
an

d
V

de
no
te
s
th
e
su
m

to
ta
lo
ft
he

nu
m
be
r
of

sp
ec
ie
s
th
at

ea
ch

ge
ne
ra
te
d
te
st
in
pu

tb
el
on
gs

to
.N

ot
e
th
at

V
>
n
if

m
ul
tip

le
sp
ec
ie
s
ca
n
be

id
en
tifi

ed
fo
r
a
si
ng
le
in
pu

t.

45

quantify what has been learned about the program at any point throughout the fuzzing campaign.

Beyond this initial work, I pointed to a large number of opportunities for researchers to improve

and tailor the ecologic methodologies to the automated testing and analysis process.

The first empirical evidence was provided that the main hypothesis that is underpinning the

STADS framework (and thus allows the usage of existing ecological methodologies in the context

of automated software testing and analysis) actually holds. The multinomial model, where each
input belongs to exactly one species, was integrated and successfully evaluated. The evaluated

estimators from ecology showed good performance, e.g., during estimation and extrapolation of

path coverage. Thereupon, the STADS framework was extended with the Bernoulli product model,
where each input can belong to one or more species. We show that the estimators can be efficiently

computed even for large programs, and are guaranteed to approach the true value as the fuzzing

effort increases. An overview of the pertinent estimators for both models can be found in Table 7.

The presented predictive program analysis scales to programs of arbitrary size and is general

enough to work with arbitrary finite and discrete program properties. For instance, the STADS

framework allows to estimate the asymptotic total number of paths, information flows, reachable

target locations, unique program crashes, or the number of statements that are actually executable

by the fuzzer. It allows to extrapolate code coverage, as well as mutation-adequacy efficiently and

with improving accuracy. Species coverage can be used effectively to judge whether the fuzzing

campaign is almost completed.

Many estimators and extrapolators are readily available as statistical analyses to try out online

[107, 118] or as packages in the R programming language [25, 60]. Our integration Pythia with

the popular vulnerability detection tool AFL can be downloaded from Github at:

https://github.com/mboehme/pythia

The STADS framework provides a large number of opportunities for future work. For instance,

software can be understood as megadiverse assemblage which features a large number of very rare

species. Novel estimators can be identified or developed that address the peculiarities of automated

software testing as species discovery. Feedback-directed fuzzers introduce an adaptive bias that can

result in sudden surges in species discovered. Adaptive bias correction strategies can be developed

that leverage program analysis to anticipate and account for such surges to correct the adaptive

bias dynamically.

ACKNOWLEDGEMENTS
I would like to thank Anne Chao from the Institute of Statistics at National Tsing Hua University

for her interesting comments about our model of software testing and analysis as discovery of

species (i.e., the STADS model) and her suggestion to view testing objectives where each input

can be assigned to multiple species as producing incidence rather than abundance data. I would

also like to thank David Clark from the University College London and the attendents of the 41st

CREST Open Workshop on “Software Engineering And Computer Science Using Information” for

the interesting discussions about the role of entropy in automated software testing. In this article,

the Shannon-entropy quantifies a program’s difficulty to being automatically tested by a fuzzer.

Finally, I am grateful for the permission to publish a picture taken from an exhibit at the Lee Kong

Chian Natural History Museum in Singapore (Figure 1).

This research was partialy supported by a grant from the National Research Foundation, Prime

Minister’s Office, Singapore under its National Cybersecurity R&D Program (TSUNAMi project,

No. NRF2014NCR-NCR001-21) and administered by the National Cybersecurity R&D Directorate.

46

https://github.com/mboehme/pythia

REFERENCES
[1] G. E. Austen, M. Bindemann, R. A. Griffiths, and D. L. Roberts. 2016. Species identification by experts and non-experts:

comparing images from field guides. Nature - Scientific Reports 6 (09 2016).
[2] Greg Banks, Marco Cova, Viktoria Felmetsger, Kevin Almeroth, Richard Kemmerer, and Giovanni Vigna. 2006. SNOOZE:

Toward a Stateful Network Protocol fuzZEr. In Proceedings of the 9th International Conference on Information Security
(ISC’06). 343–358.

[3] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo. 2015. The Oracle Problem in Software Testing: A Survey.

IEEE Transactions on Software Engineering 41, 5 (May 2015), 507–525.

[4] Yves Basset, Lukas Cizek, Philippe Cuénoud, Raphael K. Didham, François Guilhaumon, Olivier Missa, Vojtech Novotny,

Frode Ødegaard, Tomas Roslin, Jürgen Schmidl, Alexey K. Tishechkin, Neville N. Winchester, David W. Roubik, Henri-

Pierre Aberlenc, Johannes Bail, Héctor Barrios, Jon R. Bridle, Gabriela Castaño-Meneses, Bruno Corbara, Gianfranco

Curletti, Wesley Duarte da Rocha, Domir De Bakker, Jacques H. C. Delabie, Alain Dejean, Laura L. Fagan, Andreas

Floren, Roger L. Kitching, Enrique Medianero, Scott E. Miller, Evandro Gama de Oliveira, Jérôme Orivel, Marc Pollet,

Mathieu Rapp, Sérvio P. Ribeiro, Yves Roisin, Jesper B. Schmidt, Line Sørensen, and Maurice Leponce. 2012. Arthropod

Diversity in a Tropical Forest. Science 338, 6113 (2012), 1481–1484.
[5] Marcel Böhme, Bruno C. d. S. Oliveira, and Abhik Roychoudhury. 2013. Partition-based Regression Verification. In

Proceedings of the 2013 International Conference on Software Engineering (ICSE ’13). 302–311.
[6] Marcel Böhme, Bruno C. d. S. Oliveira, and Abhik Roychoudhury. 2013. Regression Tests to Expose Change Interaction

Errors. In Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering (ESEC/FSE 2013). 334–344.
[7] Marcel Böhme and Soumya Paul. 2016. A Probabilistic Analysis of the Efficiency of Automated Software Testing. IEEE

Transactions on Software Engineering 42, 4 (April 2016), 345–360.

[8] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik Roychoudhury. 2017. Directed Greybox Fuzzing.

In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security (CCS ’17). 2329–2344.
[9] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. 2016. Coverage-based Greybox Fuzzing As Markov Chain.

In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (CCS ’16). 1032–1043.
[10] Zdravko I. Botev and Dirk P. Kroese. 2008. An Efficient Algorithm for Rare-event Probability Estimation, Combinatorial

Optimization, and Counting. Methodology and Computing in Applied Probability 10, 4 (01 Dec 2008), 471–505.

[11] Ulrich Brose, Neo D. Martinez, and Richard J. Williams. 2003. Estimating Species Richness: Sensitivity to Sample

Coverage and Insensitivity to Spatial Patterns. Ecology 84, 9 (2003), 2364–2377.

[12] J. Bunge and M. Fitzpatrick. 1993. Estimating the Number of Species: A Review. J. Amer. Statist. Assoc. 88, 421 (1993),
364–373.

[13] K. P. Burnham andW. S. Overton. 1979. Robust Estimation of Population Size When Capture Probabilities Vary Among

Animals. Ecology 60, 5 (1979), 927–936.

[14] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted and Automatic Generation of High-

coverage Tests for Complex Systems Programs. In Proceedings of the 8th USENIX Conference on Operating Systems
Design and Implementation (OSDI’08). 209–224.

[15] Anne Chao. 1984. Nonparametric Estimation of the Number of Classes in a Population. Scandinavian Journal of
Statistics 11, 4 (1984), 265–270.

[16] Anne Chao. 1987. Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43,
4 (1987), 783–791.

[17] Anne Chao and Chun-Huo Chiu. 2014. Species Richness: Estimation and Comparison. John Wiley & Sons, Ltd.

[18] Anne Chao and Chun-Huo Chiu. 2016. Nonparametric estimation and comparison of species richness. Encyclopedia of
Life Sciences (eLS) (May 2016).

[19] Anne Chao, Chun-Huo Chiu, Robert K. Colwell, Luiz Fernando S. Magnago, Robin L. Chazdon, and Nicholas J. Gotelli.

2017. Deciphering the enigma of undetected species, phylogenetic, and functional diversity based on Good-Turing

theory. Ecology 98, 11 (2017), 2914–2929.

[20] Anne Chao and Robert K. Colwell. 2017. Thirty years of progeny from Chao’s inequality: Estimating and comparing

richness with incidence data and incomplete sampling. Statistics and Operations Research Transactions 41, 1 (2017),
3–54.

[21] Anne Chao, Robert K. Colwell, Chih-Wei Lin, and Nicholas J. Gotelli. 2009. Sufficient sampling for asymptotic minimum

species richness estimators. Ecology 90, 4 (2009), 1125–1133.

[22] Anne Chao, T. C. Hsieh, Robin L. Chazdon, Robert K. Colwell, and Nicholas J. Gotelli. 2015. Unveiling the species-rank

abundance distribution by generalizing the Good-Turing sample coverage theory. Ecology 96, 5 (2015), 1189–1201.

[23] Anne Chao and Lou Jost. 2012. Coverage-based rarefaction and extrapolation: standardizing samples by completeness

rather than size. Ecology 93, 12 (2012), 2533–2547.

47

[24] Anne Chao and Shen-Ming Lee. 1992. Estimating the Number of Classes via Sample Coverage. J. Amer. Statist. Assoc.
87, 417 (1992), 210–217.

[25] A. Chao, K. H. Ma, T. C. Hsieh, and C. H. Chiu. 2015. Online Program SpadeR (Species-richness Prediction And Diversity

Estimation in R). Program and User’s Guide published at http://chao.stat.nthu.edu.tw/wordpress/software_download.

(2015).

[26] Anne Chao and Tsung-Jen Shen. 2004. Nonparametric Prediction in Species Sampling. Journal of Agricultural,
Biological, and Environmental Statistics 9, 3 (2004), 253–269.

[27] R.L. Chazdon, R.K. Colwell, J.S. Denslow, and M.R. Guariguata. 1998. Forest biodiversity research, monitoring and
modeling: conceptual background and old world case studies. Vol. 20. Man and the Biosphere Series, Chapter Statistical

methods for estimating species richness of woody regeneration in primary and secondary rain forests of Northeastern

Costa Rica, 285–309.

[28] Thierry Titcheu Chekam, Mike Papadakis, Yves Le Traon, and Mark Harman. 2017. An Empirical Study on Mutation,

Statement and Branch Coverage Fault Revelation That Avoids the Unreliable Clean ProgramAssumption. In Proceedings
of the 39th International Conference on Software Engineering (ICSE ’17). 597–608.

[29] Tsong Yueh Chen and Yuen-Tak Yu. 1996. On the Expected Number of Failures Detected by Subdomain Testing and

Random Testing. IEEE Transactions on Software Engineering 22, 2 (1996), 109–119.

[30] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. 2011. S2E: A Platform for In-vivo Multi-path Analysis

of Software Systems. In ASPLOS XVI. 265–278.
[31] C.H. Chiu, Y.T. Wang, B.A. Walther, and A. Chao. 2014. An improved nonparametric lower bound of species richness

via a modified good-turing frequency formula. Biometrics 70, 3 (2014), 671–682.
[32] Bernard D. Coleman. 1981. On random placement and species-area relations. Mathematical Biosciences 54, 3 (1981),

191 – 215.

[33] Robert K. Colwell, Anne Chao, Nicholas J. Gotelli, Shang-Yi Lin, Chang Xuan Mao, Robin L. Chazdon, and John T.

Longino. 2012. Models and estimators linking individual-based and sample-based rarefaction, extrapolation and

comparison of assemblages. Journal of Plant Ecology 5, 1 (2012), 3.

[34] Robert K. Colwell and Jonathan A. Coddington. 1994. Estimating Terrestrial Biodiversity through Extrapolation.

Philosophical Transactions of the Royal Society of London B: Biological Sciences 345, 1311 (1994), 101–118.
[35] Robert K. Colwell and Johanna E. Elsensohn. 2014. EstimateS turns 20: statistical estimation of species richness and

shared species from samples, with non-parametric extrapolation. Ecography 37, 6 (2014), 609–613.

[36] Robert K. Colwell, Chang Xuan Mao, and Jing Chang. 2004. Interpolating, Extrapolating, and Comparing Incidence-

based Species Accumulation Curves. Ecology 85, 10 (2004), 2717–2727.

[37] Edsger W. Dijkstra. 1970. Notes on Structured Programming. (1970).

[38] Joe W. Duran and Simeon C. Ntafos. 1984. An Evaluation of Random Testing. IEEE Transactions on Software Engineering
10, 4 (July 1984), 438–444.

[39] S. M. Durant, T. Wacher, S. Bashir, R. Woodroffe, P. De Ornellas, C. Ransom, J. Newby, T. AbÃąigar, M. Abdelgadir, H.

El Alqamy, J. Baillie, M. Beddiaf, F. Belbachir, A. Belbachir-Bazi, A. A. Berbash, N. E. Bemadjim, R. Beudels-Jamar, L.

Boitani, C. Breitenmoser, M. Cano, P. Chardonnet, B. Collen, W. A. Cornforth, F. Cuzin, P. Gerngross, B. Haddane,

M. Hadjeloum, A. Jacobson, A. Jebali, F. Lamarque, D. Mallon, K. Minkowski, S. Monfort, B. Ndoassal, B. Niagate,

G. Purchase, S. SamaÃŕla, A. K. Samna, C. Sillero-Zubiri, A. E. Soultan, M. R. Stanley Price, and N. Pettorelli. 2014.

Fiddling in biodiversity hotspots while deserts burn? Collapse of the Sahara’s megafauna. Diversity and Distributions
20, 1 (2014), 114–122.

[40] Antonio Filieri, Corina S. Păsăreanu, andWillem Visser. 2013. Reliability Analysis in Symbolic Pathfinder. In Proceedings
of the 2013 International Conference on Software Engineering (ICSE ’13). 622–631.

[41] R. A. Fisher, A. S. Corbet, and C. B. Williams. 1943. The relation between the number of species and the number of

individuals in a random sample of an animal population. Journal of Animal Ecology 12 (1943), 42–58.

[42] William A. Gale and Geoffrey Sampson. 1995. Good-Turing smoothing without tears. Journal of Quantitative Linguistics
2 (1995), 217–237.

[43] G. Gay, M. Staats, M. Whalen, and M. P. E. Heimdahl. 2015. The Risks of Coverage-Directed Test Case Generation.

IEEE Transactions on Software Engineering 41, 8 (Aug 2015), 803–819.

[44] Jaco Geldenhuys, Matthew B. Dwyer, and Willem Visser. 2012. Probabilistic Symbolic Execution. In Proceedings of the
2012 International Symposium on Software Testing and Analysis (ISSTA 2012). 166–176.

[45] Patrice Godefroid, Adam Kiezun, and Michael Y. Levin. 2008. Grammar-based Whitebox Fuzzing. In Proceedings of the
29th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’08). 206–215.

[46] Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Directed Automated Random Testing. In Proceedings
of the 2005 ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’05). 213–223.

48

http://chao.stat.nthu.edu.tw/wordpress/software_download

[47] I.J. Good. 2000. Turing’s anticipation of empirical bayes in connection with the cryptanalysis of the naval enigma.

Journal of Statistical Computation and Simulation 66, 2 (2000), 101–111.

[48] Irving John Good. 1953. The population frequencies of species and the estimation of population parameters. Biometrika
40 (1953), 237–264.

[49] I. J. Good and G. H. Toulmin. 1956. The Number of New Species, and the Increase in Population Coverage, when a

Sample is Increased. Biometrika 43, 1/2 (1956), 45–63.
[50] Steven M. Goodman and Jonathan P. Benstead. 2005. Updated estimates of biotic diversity and endemism for

Madagascar. Oryx 39, 1 (2005), 73âĂŞ77.

[51] Nicholas J. Gotelli and Anne Chao. 2013. Encyclopedia of Biodiversity (2 ed.). Vol. 5. Academic Press, Chapter Measuring

and Estimating Species Richness, Species Diversity, and Biotic Similarity from Sampling Data, 195–211.

[52] Walter J. Gutjahr. 1999. Partition Testing vs. Random Testing: The Influence of Uncertainty. IEEE Transactions on
Software Engineering 25, 5 (Sept. 1999), 661–674.

[53] Andrew J Hamilton, Yves Basset, Kurt K Benke, Peter S Grimbacher, Scott EMiller, Vojtech Novotnỳ, G Allan Samuelson,

Nigel E Stork, George D Weiblen, and Jian DL Yen. 2010. Quantifying uncertainty in estimation of tropical arthropod

species richness. The American Naturalist 176, 1 (2010), 90–95.
[54] Andrew J. Hamilton, Yves Basset, Kurt K. Benke, Peter S. Grimbacher, Scott E. Miller, Vojtech NovotnÃČÅŞ, G. Allan

Samuelson, Nigel E. Stork, George D. Weiblen, and Jian D. L. Yen. 2011. Correction. The American Naturalist 177, 4
(2011), 544–545.

[55] D. Hamlet and R. Taylor. 1990. Partition testing does not inspire confidence [program testing]. IEEE Transactions on
Software Engineering 16, 12 (Dec 1990), 1402–1411.

[56] Dick Hamlet and Jeff Voas. 1993. Faults on Its Sleeve: Amplifying Software Reliability Testing. In Proceedings of the
1993 ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA ’93). 89–98.

[57] Frank J. Hernandez and David G. Lindquist. 1999. A comparison of two light-trap designs for sampling larval and

presettlement juvenile fish above a reef in Onslow Bay, North Carolina. Bulletin of Marine Science 64, 1 (1999), 173–184.
[58] Joaquin Hortal, Paulo A. V. Borges, and Clara Gaspar. 2006. Evaluating the performance of species richness estimators:

sensitivity to sample grain size. Journal of Animal Ecology 75, 1 (2006), 274–287.

[59] Matthias Höschele and Andreas Zeller. 2016. Mining Input Grammars from Dynamic Taints. In Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineering (ASE 2016). 720–725.

[60] T. C. Hsieh, K. H. Ma, and Anne Chao. 2016. iNEXT: an R package for rarefaction and extrapolation of species diversity

(Hill numbers). Methods in Ecology and Evolution 7, 12 (2016), 1451–1456. https://doi.org/10.1111/2041-210X.12613

[61] Stuart H. Hurlbert. 1971. The Nonconcept of Species Diversity: A Critique and Alternative Parameters. Ecology 52, 4

(1971), 577–586.

[62] Laura Inozemtseva and Reid Holmes. 2014. Coverage is Not Strongly Correlated with Test Suite Effectiveness. In

Proceedings of the 36th International Conference on Software Engineering (ICSE 2014). 435–445.
[63] E. T. Jaynes. 2003. Probability Theory: The Logic of Science. Cambridge University Press.

[64] Y. Jia and M. Harman. 2011. An Analysis and Survey of the Development of Mutation Testing. IEEE Transactions on
Software Engineering 37, 5 (Sept 2011), 649–678.

[65] Shen-Ming Lee and Anne Chao. 1994. Estimating Population Size Via Sample Coverage for Closed Capture-Recapture

Models. Biometrics 50, 1 (1994), 88–97.
[66] B. Littlewood and D. Wright. 1997. Some conservative stopping rules for the operational testing of safety critical

software. IEEE Transactions on Software Engineering 23, 11 (Nov 1997), 673–683.

[67] John T. Longino and Robert K. Colwell. 1997. Biodiversity assessment using structured inventory: Capturing the ant

fauna of a tropical rain forest. Ecological Applications 7, 4 (1997), 1263–1277.
[68] Anne E. Magurran and Brian J. McGill. 2011. Biological diversity: frontiers in measurement and assessment. Oxford

University Press.

[69] Chang Xuan Mao and Robert K. Colwell. 2005. Estimation of Species Richness: Mixture Models, the Role of Rare

Species, and Inferential Challenges. Ecology 86, 5 (2005), 1143–1153.

[70] Ke Mao, Mark Harman, and Yue Jia. 2016. Sapienz: Multi-objective Automated Testing for Android Applications. In

Proceedings of the 25th International Symposium on Software Testing and Analysis (ISSTA 2016). 94–105.
[71] Björn Matthis, Vitalii Avdiienko, Ezekiel Soremekun, Marcel Böhme, and Andreas Zeller. 2017. Detecting Information

Flow by Mutating Input Data. In Proceedings of the 32nd IEEE/ACM International Conference on Automated Software
Engineering (ASE ’17). 1–11.

[72] Brian A. Maurer, James H. Brown, and Renee D. Rusler. 1992. The Micro and Macro in Body Size Evolution. Evolution
46, 4 (1992), 939–953.

[73] Phil McMinn. 2004. Search-based Software Test Data Generation: A Survey: Research Articles. Journal of Software
Testing, Verification and Reliability 14, 2 (June 2004), 105–156.

49

https://doi.org/10.1111/2041-210X.12613

[74] P. McMinn. 2011. Search-Based Software Testing: Past, Present and Future. In Proceedings of the 4th IEEE International
Conference on Software Testing, Verification and Validation Workshops (ICSTW ’11). 153–163.

[75] Barton P. Miller, Louis Fredriksen, and Bryan So. 1990. An Empirical Study of the Reliability of UNIX Utilities. Commun.
ACM 33, 12 (Dec. 1990), 32–44.

[76] K. W. Miller, L. J. Morell, R. E. Noonan, S. K. Park, D. M. Nicol, B. W. Murrill, and M. Voas. 1992. Estimating the

probability of failure when testing reveals no failures. IEEE Transactions on Software Engineering 18, 1 (Jan 1992),

33–43.

[77] Camilo Mora, Derek P. Tittensor, Sina Adl, Alastair G. B. Simpson, and Boris Worm. 2011. How Many Species Are

There on Earth and in the Ocean? PLOS Biology 9, 8 (08 2011), 1–8.

[78] Mesrob I. Ohannessian. 2012. On Inference about Rare Events. PhD dissertation. Massachusetts Institute of Technology.

[79] Alon Orlitsky and Ananda Theertha Suresh. 2015. Competitive Distribution Estimation: Why is Good-Turing Good. In

Proceedings of the 28th International Conference on Neural Information Processing Systems (NIPS’15). 2143–2151.
[80] Alon Orlitsky, Ananda Theertha Suresh, and Yihong Wu. 2016. Optimal prediction of the number of unseen species.

Proceedings of the National Academy of Sciences 113, 47 (2016), 13283–13288.
[81] Michael W. Palmer. 1991. Estimating Species Richness: The Second-Order Jackknife Reconsidered. Ecology 72, 4 (1991),

1512–1513.

[82] Van-Thuan Pham, Marcel Böhme, and Abhik Roychoudhury. 2016. Model-based whitebox fuzzing for program

binaries. In Proceedings of the 2016 31st IEEE/ACM International Conference on Automated Software Engineering (ASE
’16). 543–553.

[83] E.C. Pielou. 1966. Species-diversity and pattern-diversity in the study of ecological succession. Journal of Theoretical
Biology 10, 2 (1966), 370 – 383.

[84] F. W. Preston. 1948. The Commonness, And Rarity, of Species. Ecology 29, 3 (1948), 254–283.

[85] Dawei Qi, Hoang D. T. Nguyen, and Abhik Roychoudhury. 2013. Path Exploration Based on Symbolic Output. ACM
Transactions on Software Engineering and Methodology 22, 4 (Oct. 2013), 32:1–32:41.

[86] Sushma Reddy and Liliana M. DÃąvalos. 2003. Geographical sampling bias and its implications for conservation

priorities in Africa. Journal of Biogeography 30, 11 (2003), 1719–1727.

[87] Herbert E. Robbins. 1968. Estimating the Total Probability of the Unobserved Outcomes of an Experiment. The Annals
of Mathematical Statistics 39, 1 (02 1968), 256–257.

[88] Mark D. Robinson, Davis J. McCarthy, and Gordon K. Smyth. 2010. edgeR: a Bioconductor package for differential

expression analysis of digital gene expression data. Bioinformatics 26, 1 (2010), 139–140.
[89] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitry Vyukov. 2012. AddressSanitizer: A Fast

Address Sanity Checker. In Proceedings of the 2012 USENIX Conference on Annual Technical Conference (USENIX ATC’12).
28–28.

[90] Tsung-Jen Shen, Anne Chao, and Chih-Feng Lin. 2003. Predicting the Number of New Species in Further Taxonomic

Sampling. Ecology 84, 3 (2003), 798–804.

[91] Andrew R. Solow and Stephen Polasky. 1999. A Quick Estimator for Taxonomic Surveys. Ecology 80, 8 (1999),

2799–2803.

[92] Evgeniy Stepanov and Konstantin Serebryany. 2015. MemorySanitizer: fast detector of uninitialized memory use in

C++. In Proceedings of the 2015 IEEE/ACM International Symposium on Code Generation and Optimization (CGO’15).
46–55.

[93] A. B. Wagner, P. Viswanath, and S. R. Kulkarni. 2006. Strong Consistency of the Good-Turing Estimator. In Proceedings
of the 2006 IEEE International Symposium on Information Theory. 2526–2530.

[94] Bruno A. Walther and Joslin L. Moore. 2005. The concepts of bias, precision and accuracy, and their use in testing the

performance of species richness estimators, with a literature review of estimator performance. Ecography 28, 6 (12

2005), 815–829.

[95] Bruno A. Walther and Joslin L. Moore. 2005. The concepts of bias, precision and accuracy, and their use in testing the

performance of species richness estimators, with a literature review of estimator performance. Ecography 28, 6 (2005),

815–829.

[96] Website. 2017 Ponemon Cost of Cyber Crime Study. https://www.accenture.com/us-en/

insight-cost-of-cybercrime-2017. (????). Accessed: 2017-11-13.

[97] Website. 2013. Lockheed Martin Webinar Series: Michael Whalen on the Future of Verification and Validation.

https://www.computer.org/cms/Computer.org/webinars/lmco/012413Slides-Whalen.pdf. (Jan. 2013). Accessed: 2017-

05-13.

[98] Website. 2017. AFL: American Fuzzy Lop Fuzzer. http://lcamtuf.coredump.cx/afl/technical_details.txt. (2017). Accessed:

2017-05-13.

50

https://www.accenture.com/us-en/insight-cost-of-cybercrime-2017
https://www.accenture.com/us-en/insight-cost-of-cybercrime-2017
https://www.computer.org/cms/Computer.org/webinars/lmco/012413Slides-Whalen.pdf
http://lcamtuf.coredump.cx/afl/technical_details.txt

[99] Website. 2017. AFL: Pulling Jpegs out of Thin Air, Michael Zalewski. https://lcamtuf.blogspot.com/2014/11/

pulling-jpegs-out-of-thin-air.html. (2017). Accessed: 2017-05-13.

[100] Website. 2017. CERT Triage Tools. https://www.cert.org/vulnerability-analysis/tools/triage.cfm?. (2017). Accessed:

2017-05-13.

[101] Website. 2017. Clang compiler documentation. https://clang.llvm.org/docs/index.html. (2017). Accessed: 2017-05-13.

[102] Website. 2017. DARPA Cyber Grand Challenge. http://www.darpa.mil/news-events/2016-08-04. (2017). Accessed:

2017-05-13.

[103] Website. 2017. Facebook: Mark Harman on software engineering at Facebook scale. https://research.fb.com/

mark-harmon-on-software-engineering-at-facebook-scale/. (2017). Accessed: 2017-05-13.

[104] Website. 2017. FFMPEG: A complete, cross-platform solution to record, convert and stream audio and video.

https://www.ffmpeg.org/. (2017). Accessed: 2017-05-13.

[105] Website. 2017. GCov: coverage testing tool. https://linux.die.net/man/1/gcov. (2017). Accessed: 2017-11-13.

[106] Website. 2017. GNU GCC sanitizer options. https://gcc.gnu.org/onlinedocs/gcc-6.3.0/gcc/Instrumentation-Options.

html#index-fsanitize_003daddress-947. (2017). Accessed: 2017-05-13.

[107] Website. 2017. iNext Online: Species iNterpolation and EXTrapolation. https://chao.shinyapps.io/iNEXTOnline/.

(2017). Accessed: 2017-05-13.

[108] Website. 2017. JSON for Modern C++. https://github.com/nlohmann/json. (2017). Accessed: 2017-11-13.

[109] Website. 2017. LibFuzzer: A library for coverage-guided fuzz testing. http://llvm.org/docs/LibFuzzer.html. (2017).

Accessed: 2017-05-13.

[110] Website. 2017. libjpeg-turbo is a JPEG image codec to accelerate baseline JPEG compression and decompression.

http://libjpeg-turbo.virtualgl.org/. (2017). Accessed: 2017-05-13.

[111] Website. 2017. LibXML2: The XML C parser and toolkit of Gnome. http://xmlsoft.org/. (2017). Accessed: 2017-11-13.

[112] Website. 2017. Microsoft: Project Springfield. https://www.microsoft.com/Springfield/. (2017). Accessed: 2017-05-13.

[113] Website. 2017. Monkey: Android Random Testing. http://developer.android.com/tools/help/monkey.html. (2017).

Accessed: 2017-05-13.

[114] Website. 2017. Mozilla: Fuzzing Firefox with Peach. https://wiki.mozilla.org/Security/Fuzzing/Peach. (2017). Accessed:

2017-05-13.

[115] Website. 2017. OpenSSL: A toolkit for the Transport Layer Security (TLS) and Secure Sockets Layer (SSL) protocols.

https://www.openssl.org/. (2017). Accessed: 2017-05-13.

[116] Website. 2017. OSS-Fuzz: Five Months Later. https://testing.googleblog.com/2017/05/oss-fuzz-five-months-later-and.

html. (2017). Accessed: 2017-05-13.

[117] Website. 2017. Peach Fuzzer Platform. http://www.peachfuzzer.com/products/peach-platform/. (2017). Accessed:

2017-05-13.

[118] Website. 2017. SpadeR Online: Species-richness Prediction And Diversity Estimation in R. https://chao.shinyapps.io/

SpadeR/. (2017). Accessed: 2017-05-13.

[119] Website. 2017. sprex: Calculate Species Richness and Extrapolation Metrics. https://cran.r-project.org/web/packages/

sprex/. (2017). Accessed: 2017-05-13.

[120] Website. 2017. Syzkaller: Coverage-guided kernel fuzzing. https://github.com/google/syzkaller. (2017). Accessed:

2017-05-13.

[121] Website. 2017. Wireshark is the world’s foremost and widely-used network protocol analyzer. https://www.wireshark.

org/. (2017). Accessed: 2017-05-13.

[122] Website . 2017. Bithacks: Implementing logarithm efficiently. https://graphics.stanford.edu/~seander/bithacks.

html#IntegerLogFloat. (2017). Accessed: 2017-11-13.

[123] Website . 2017. Incident report on memory leak caused by Cloudflare parser bug. https://blog.cloudflare.com/

incident-report-on-memory-leak-caused-by-cloudflare-parser-bug/. (2017). Accessed: 2017-11-13.

[124] Website . 2017. Medium: A hacker stole USD 31M of Ether. https://medium.freecodecamp.org/

a-hacker-stole-31m-of-ether-how-it-happened-and-what-it-means-for-ethereum-9e5dc29e33ce. (2017). Accessed:

2017-05-13.

[125] Website . 2017. NHS seeks to recover from global cyber-attack as security concerns resurface. https://www.

theguardian.com/society/2017/may/12/hospitals-across-england-hit-by-large-scale-cyber-attack. (2017). Accessed:

2017-11-13.

[126] Elaine J. Weyuker. 1982. On Testing Non-Testable Programs. Comput. J. 25, 4 (1982), 465–470.
[127] E. J. Weyuker and B. Jeng. 1991. Analyzing partition testing strategies. IEEE Transactions on Software Engineering 17,

7 (Jul 1991), 703–711.

[128] B. Yang and M. Xie. 2000. A study of operational and testing reliability in software reliability analysis. Reliability
Engineering & System Safety 70, 3 (2000), 323 – 329.

51

https://lcamtuf.blogspot.com/2014/11/pulling-jpegs-out-of-thin-air.html
https://lcamtuf.blogspot.com/2014/11/pulling-jpegs-out-of-thin-air.html
https://www.cert.org/vulnerability-analysis/tools/triage.cfm?
https://clang.llvm.org/docs/index.html
http://www.darpa.mil/news-events/2016-08-04
https://research.fb.com/mark-harmon-on-software-engineering-at-facebook-scale/
https://research.fb.com/mark-harmon-on-software-engineering-at-facebook-scale/
https://www.ffmpeg.org/
https://linux.die.net/man/1/gcov
https://gcc.gnu.org/onlinedocs/gcc-6.3.0/gcc/Instrumentation-Options.html#index-fsanitize_003daddress-947
https://gcc.gnu.org/onlinedocs/gcc-6.3.0/gcc/Instrumentation-Options.html#index-fsanitize_003daddress-947
https://chao.shinyapps.io/iNEXTOnline/
https://github.com/nlohmann/json
http://llvm.org/docs/LibFuzzer.html
http://libjpeg-turbo.virtualgl.org/
http://xmlsoft.org/
https://www.microsoft.com/Springfield/
http://developer.android.com/tools/help/monkey.html
https://wiki.mozilla.org/Security/Fuzzing/Peach
https://www.openssl.org/
https://testing.googleblog.com/2017/05/oss-fuzz-five-months-later-and.html
https://testing.googleblog.com/2017/05/oss-fuzz-five-months-later-and.html
http://www.peachfuzzer.com/products/peach-platform/
https://chao.shinyapps.io/SpadeR/
https://chao.shinyapps.io/SpadeR/
https://cran.r-project.org/web/packages/sprex/
https://cran.r-project.org/web/packages/sprex/
https://github.com/google/syzkaller
https://www.wireshark.org/
https://www.wireshark.org/
https://graphics.stanford.edu/~seander/bithacks.html#IntegerLogFloat
https://graphics.stanford.edu/~seander/bithacks.html#IntegerLogFloat
https://blog.cloudflare.com/incident-report-on-memory-leak-caused-by-cloudflare-parser-bug/
https://blog.cloudflare.com/incident-report-on-memory-leak-caused-by-cloudflare-parser-bug/
https://medium.freecodecamp.org/a-hacker-stole-31m-of-ether-how-it-happened-and-what-it-means-for-ethereum-9e5dc29e33ce
https://medium.freecodecamp.org/a-hacker-stole-31m-of-ether-how-it-happened-and-what-it-means-for-ethereum-9e5dc29e33ce
https://www.theguardian.com/society/2017/may/12/hospitals-across-england-hit-by-large-scale-cyber-attack
https://www.theguardian.com/society/2017/may/12/hospitals-across-england-hit-by-large-scale-cyber-attack

[129] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and Understanding Bugs in C Compilers. In

Proceedings of the 32Nd ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’11).
283–294.

[130] Cun-Hui Zhang and Zhiyi Zhang. 2009. Asymptotic normality of a nonparametric estimator of sample coverage. The
Annals of Statistics 37, 5A (10 2009), 2582–2595.

Received August 08, 2017; revised January 08, 2017; accepted (Under Review)

52

	Abstract
	1 Introduction
	1.1 Extrapolation: A Fundamental Challenge of Automated Testing
	1.2 An Unexpected Connection With Ecology
	1.3 Contributions
	1.4 Outline

	2 Motivating Example
	2.1 Assessing Residual Risk Using the Discovery Probability
	2.2 Assessing the Completeness of the Fuzzing Campaign
	2.3 Extrapolating the Completeness of the Fuzzing Campaign

	3 Automated Software Testing and Analysis as Discovery of Species
	3.1 Search Space of the Fuzzer
	3.2 Species Identification
	3.3 Fuzzing Campaigns
	3.4 Main Hypothesis
	3.5 The Multinomial Model: One Input, Single Species

	4 Estimating Residual Risk and Campaign Completeness
	4.1 Discovery Probability and Sample Completeness
	4.2 Species Coverage

	5 Extrapolation of Species Discovery
	5.1 Estimating Progress Towards Completion within a Given Time Budget
	5.2 Estimating Number of Inputs Needed to Discover a Given Proportion of Species

	6 Empirical Evaluation
	6.1 Research Objectives
	6.2 Setup and Infrastructure
	6.3 Estimator Evaluation
	6.4 Extrapolator Evaluation
	6.5 Result Summary

	7 Bernoulli Product Model: One Input, Multiple Species
	7.1 Estimation in the Bernoulli Product Model
	7.2 Extrapolation in the Bernoulli Product Model

	8 Related Work
	8.1 Residual Risk Assessment
	8.2 Partition Testing

	9 Challenges and Opportunities
	9.1 Programs as Megadiverse Assemblages
	9.2 Species Identification and Oracle Problem
	9.3 Integrating Other Models Into STADS
	9.4 Non-Adaptive Sampling Bias
	9.5 Adaptive Sampling Bias of Feedback-directed Fuzzers
	9.6 Adaptive Bias Correction

	10 Conclusion
	References

