
1

Scrutinizing Implementations of Smart Home
Integrations

Kulani Mahadewa, Kailong Wang, Guangdong Bai, Ling Shi, Yan Liu, Jin Song Dong and Zhenkai Liang

Abstract—A key feature of the booming smart home is the integration of a wide assortment of technologies, including various
standards, proprietary communication protocols and heterogeneous platforms. Due to customization, unsatisfied assumptions and
incompatibility in the integration, critical security vulnerabilities are likely to be introduced by the integration. Hence, this work addresses
the security problems in smart home systems from an integration perspective, as a complement to numerous studies that focus on the
analysis of individual techniques. We propose HOMESCAN, an approach that examines the security of the implementations of smart
home systems. It extracts the abstract specification of application-layer protocols and internal behaviors of entities, so that it is able to
conduct an end-to-end security analysis against various attack models. Applying HOMESCAN on three extensively-used smart home
systems, we have found twelve non-trivial security issues, which may lead to unauthorized remote control and credential leakage.

F

1 INTRODUCTION

Enabled by various intelligent Internet of Things (IoT)
techniques, the smart home paradigm has been signifi-
cantly changing the lifestyle of its users. New convenient
facilities, such as smart TVs, smart lighting and security
alarm systems, are becoming ubiquitous. Along with its
booming growth, security incidents have been continu-
ally observed [2, 3]. Researchers have made efforts to
address security issues in smart home systems [4–10],
with focus on several aspects ranging from radio commu-
nications, networking, operating systems, middleware,
and protocols, to backend cloud.

In this work, we investigate security of smart home
systems from an integration perspective. Our motivation
is out of such a key observation—to realize a “smart”
automated home, it is essential that multiple subsystems
are integrated. The controls are typically initiated from
the handheld devices such as smart phones, transmitted
over wireless channels such as Bluetooth, ZigBee and Wi-
Fi, forwarded by intermediate relays such as gateways,
and web-based service portals, and finally executed by
the end devices such as bulbs and locks. Due to the
involvement of such a wide assortment of technologies
and devices (usually from diverse manufacturers), to
coordinate them in a secure way is challenging. The
challenge may be attributed to the following two factors.

• K. Mahadewa, K. Wang, L. Shi, J.S. Dong and Z. Liang are with Na-
tional University of Singapore, Singapore. J.S. Dong is also with Griffith
University, Australia.

• G. Bai, the corresponding author, is with the University of Queensland,
Australia. E-mail: g.bai@uq.edu.au.

• Y. Liu is with Ant Financial.

This article extends the preliminary results presented in [1]. It includes a more
detailed description on the protocol extraction algorithms, a detailed description
and additional data on the experiment and evaluation.

• Incompatibility. Since diverse standards are en-
forced, there may be incompatibilities among the
subsystems. For example, in the Philips Hue sys-
tem that we have analyzed, the authentication be-
tween the bulb and the hub is through the Touch-
link Commissioning (TLC) over ZigBee, while that
between the hub and the control app is through a
customized authentication over Wi-Fi. Once these
three are integrated, due to the incompatibility
between the two mechanisms, there is no way
for the bulb to authenticate the control app. This
allows a malicious app which has infected the
mobile phone that the control app is installed on
to acquire control over the bulb.

• Invalidated Assumptions. A developer or man-
ufacturer may make assumptions (e.g., trust rela-
tion, message format and correct sequence of API
calls) when using the interfaces provided by other
parties. If any assumption is invalid, the way to
use the interfaces may be insecure. For example,
in the same system above, the manufacturer of the
hub actually assumes the LAN is secure, whereas
this assumption may not be true if a malicious app
has been installed on the user’s mobile phone.

We present an approach named HOMESCAN, which
scrutinizes security of the implementations of smart
home systems. It extracts the application-layer protocols
and security-relevant internal behaviors of each subsys-
tem (or protocol) from the implementations. Through
this, it can derive a unified abstraction of the end-to-end
system to flatten the difference of the protocols employed
by each entity. The challenges yet stem from the partial
availability of the implementations. First, the source code
is seldom visible, although the executable of the control
app (from the app market), the firmware extracted from
devices, and SDKs provided by vendors, are available

2

for analysis. Second, the cryptographic protocols are
used among the entities, so that the communication is
blurred to us, even though we are able to capture the
exchanged traffic. To alleviate these challenges, HOME-
SCAN uses a hybrid analysis including dynamic testing,
whitebox analysis and trace analysis. The dynamic testing
executes test cases, and captures communication traffic
and execution traces; the whitebox analysis identifies
semantics by analyzing the program that is available; the
trace analysis infers the association relation between a
value of unknown semantics and an entity, a session or a
value whose semantics has been identified.

HOMESCAN uses labeled transition sys-
tems (LTSs) [11], which have been extensively used
to model and reason various systems, to represent the
extracted specification. An LTS describes the execution of
a particular entity, including its internal behaviors (e.g.,
generating a nonce and validating a digital signature)
and communication behaviors (e.g., sending and
receiving a message). At this abstract level, the security
reasoning can ignore the heterogeneity of underlying
protocols, but focus on the logic that is implemented by
the system. Using this abstraction, reasoning security
properties of the whole integration becomes effective,
and we show that most of the properties specific to the
smart home can be analyzed via reachability checking.

It is obvious that obtaining the complete or sound
specification is almost infeasible. HOMESCAN focuses on
extracting as precise specification as possible, whereby it
can identify security issues. We prototype HOMESCAN
and apply it to three extensively-used smart home sys-
tems, including Philips Hue, LIFX, and Chromecast. It
manages to identify twelve security vulnerabilities.

This work makes the following main contributions.

• Specification Extraction Techniques. We propose
hybrid techniques to extract specifications from
the implementations of the smart home systems.
Our evaluation of real-world systems demon-
strates that the extracted specification is precise
enough to identify significant security issues.

• Vulnerability Identification Techniques. We have
modeled a set of practical attacks to facilitate the
vulnerability identification based on LTS represen-
tations. We reduce the vulnerability identification
to traditional reachability analysis on LTS.

• Practical Results. We apply HOMESCAN to real-
world systems and successfully identify twelve
non-trivial security vulnerabilities from them. The
supporting materials are published online for fu-
ture research [12].

2 PRELIMINARIES

In this section, we present our running example, and
define a generic specification model of smart home sys-
tems from the integration perspective. We also provide an
overview on the security properties and attack models in
the vulnerability identification of smart home systems.

ZigBee

Smart Device (SD)Control Point (CP) Hub

HTTP
Server

(HS)

ZigBee
RF Front-End

(ZFE)

3

2

1

5 6

S1:

Discovery

S2:

Authentication

S3:

Control

(S1- Discovery Stage, S2- Authentication Stage, S3- Control Stage, - Broadcasting, -self-recursive branch)

Wi-Fi

4

Fig. 1: A Running Example: A Smart Home System Containing
a CP, Hub and a SD (Note that the discovery and authentication
between Hub and SD are omitted for simplification.)

Sponsored: Segment Send data to any tool without having to implement a new API every time. Get started

Java
For Multiple Files, Custom Library and File Read/Write, use our new - Advanced Java IDE

CommandLine Arguments

Stdin Inputs

Result

 Execute Mode, Version, Inputs & Arguments

public class A {
public static void main(String[] args) {

String ec = a(“light_ON", this.s);
 }

public static String a(String a, String b) {
try {

byte[] k = b.getBytes("UTF-8");
byte[] bk = Arrays.copyOf(k, 16);
SecretKeySpec kspec = new SecretKeySpec(bk, "AES");
Cipher c = Cipher.getInstance("AES/ECB/PKCS5Padding");
c.init(Cipher.ENCRYPT_MODE, kspec);
byte[] m = c.doFinal(a.getBytes("UTF-8"));
return Base64.getEncoder().encodeToString(m);

 } catch (Exception e) {}
return null;

 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

This website uses cookies to ensure you get the best experience on our website.

Got it!

Online Java Compiler - Online Java Editor - Java Code Online - Online ... https://www.jdoodle.com/online-java-compiler/

2 of 2 27/08/2019, 20:21

(a)

MsgNo, StartTime, Channel, Layer, DataSize, SourceAdd, DestAddress
1353, 21/1/19 0:50:23.307, 25, NWL, 39, 001788FFFE2D5D98, 00178801102AA2FB
1354, 21/1/19 0:50:23.337, 25, NWL, 44, 001788FFFE2D5D98, 00178801102AA2FB
1355, 21/1/19 0:50:23.427, 25, NWL, 42, 00178801102AA2FB, 001788FFFE2D5D98
1356, 21/1/19 0:50:23.858, 25, NWL, 43, 001788FFFE2D5D98, 00178801102AA2FB

ZigBee Trace

6

s3

"No.", "Time", "Source", "Destination", "Protocol", "Length", "Info"
"61","23.418749","192.168.1.236","239.255.255.250","SSDP","132","M-SEARCH * HTTP/1.1 "
"62","23.959659","192.168.1.182","192.168.1.236","SSDP","339","HTTP/1.1 200 OK “

HTTP/1.1 200 OK\r\n
LOCATION: http://192.168.1.182:80/description.xml\r\n
SERVER: Linux/3.14.0 UPnP/1.0 IpBridge/1.32.0\r\n
hue-bridgeid: 001788FFFE2D5D98\r\n

"63","24.008536","192.168.1.182","192.168.1.236","SSDP"," 339 ","HTTP/1.1 200 OK "
"67","25.062956","192.168.1.182","192.168.1.236","SSDP"," 339 ","HTTP/1.1 200 OK "
"78","31.451885","192.168.1.236","192.168.1.182","HTTP",“154",“POST /api HTTP/1.1 “

deviceID= 001788FFFE2D5D98, password=pass123
“85","31.912202","192.168.1.182","192.168.1.236","HTTP","60","HTTP/1.1 200 OK

{auth_token=“7B8249C219669C7946D5FBD8C5B178B6FE3299CC”
secret_key=“hue-secret-key-meethue345”}

“105","34.415012"," 192.168.1.236 "," 192.168.1.182 ","HTTP",“58","HTTP/1.1 200 OK
{auth_token=“7B8249C219669C7946D5FBD8C5B178B6FE3299CC”
command=“x95b9ZMtRmDWZ8uRizm4iKsq-/oZkfzDPZXQWZgZ7Fzw=”}

s1

1

2

3

4

Wireshark Trace

s2

repeatNo.62-67

>>

>>

>>

heartbeat

5
>> s3

(b)

Fig. 2: (a) Part of CP Source Code (Code Snippet “A” in Fig.1);
(b) Part of CP and HS Communication Trace Captured using
Wireshark, and Part of ZFE and SD Communication Trace
Captured using Perytons. (Values highlighted in blue are extracted
from the traces. The three lines covered by the blue bracket are the
heartbeat packets over ZigBee channel. The transactions repeated are
shown with the red bracket. They are identified as a sequence-recursion
and a self-recursion respectively.)

2.1 A Generic Model of Smart Home and the Run-
ning Example

In order to facilitate the model extraction, we resort to
a manual study to abstract a generic system architecture
from several smart home systems popular on the mar-
ket, such as SmartThings [13] and HomeGenie [14]. In
our abstraction, a smart home system consists of three
subsystems, i.e., a control point (denoted by CP) which
interacts with the end users and issues controls, several
smart devices (denoted by SD) which are operable elec-
tronic devices, and several relays (denoted by hub) which
bridge the communications. Covering from configuration
to control, the end-to-end working procedure of smart
home systems is divided into three stages, i.e., discovery,
authentication and control, which are introduced shortly.

In the remaining of this paper, we use a running

3TABLE 1: Intermediate Outcomes and Corresponding HOMESCAN Approach for the Running Example
Column 2: the id represents the identity of a transaction. Each id corresponds to the circled index in Fig. 1.
Column 3: represents broadcast. Column 4: The Values are extracted from the traces shown in Fig. 2-b.
Column 5: The msg includes the inferred message components; if more than one communication paths available they are specified by the id in branch set; if there is
communication between sub components of single device (e.g. hub has HS and ZFE), then specify the communication partner by local communication; if there are local
actions done by a entity, they are specified in local action set. Further, the extracted values which has the same identity are inferred as the same message component.
Column 6: The techniques used to infer each message component in column 5.

id Sender, Receiver,
Channel

Extracted Values (Value, Primary Type, Value ID) Inferred Specification Approach Used

S1 1 CP, *, wifi (M-SEARCH * HTTP/1.1, String, v1) msg=(UpnpMsearchRequest) v1-Protocol Knowledge
2 HS, CP, wifi (192.168.1.182, String, v2), (001788...2D5D98, String, v3) msg=(HubIP, HubID), branch={2} v2,v3-Protocol Knowledge

S2 3 CP, HS, wifi (001788FFFE2D5D98, String, v3), (pass123, String, v4) msg=(HubID, Password) v4-Initial Knowledge
4 HS, CP, wifi (7B8249C219669C7946D5FBD8C5B178B6FE3299CC,

String, v5), (hue-secret-key-meethue345, String, v6)
msg=(hash(Password,HubID),SecretKey) v5-Exhaustive Search,

v6-Whitbox Analysis

S3 5 CP, HS, wifi (7B8249C219669C7946D5FBD8C5B178B6FE3299CC,
String, v5),(x95b9ZMtRmDWZ8uRizm4iKsq/oZkfzDP-
ZXQWZgZ7Fzw=, String, v7)

msg=(hash(Password,HubID),
senc(SecretCommand,SecretKey)),
local communication={ZFE}

v7-Whitbox Analysis

6 ZFE, SD, zigbee (Encrypted Zigbee data (43 bytes), String, v8) msg=(assoc(SecretCommand)),
local action ={(SD, executeCom-
mand,{msg})}, branch={5}

v8-Differential Analysis

example demonstrated in Fig. 1 and Fig. 2 to explain
our work.This example is designed to include the typical
features of on-stock smart home systems. The CP in it
is an Android app which supports HTTP protocol over
Wi-Fi. To be representative, the SD only supports a near
field communication protocol, the ZigBee. Therefore, the
hub has to include an HTTP server (denoted by HS)
and a ZigBee front end (denoted by ZFE) to bridge the
communication between the HTTP-based CP and ZigBee-
based SD. In a nutshell, the system works as follows.

• Discovery Stage (S1 in Fig. 1 and in Fig. 2-b).
The CP searches for the hub and pairs with the
HS (steps ¬ &).

• Authentication Stage (S2). The CP authenticates
itself with the HS at the hub (steps ® & ¯)

• Control Stage (S3). The CP controls the SD which
has been connected to the hub by sending control
commands to the HS (step °). Once receiving a
command, the hub converts it to a ZigBee packet
and sends it to the SD (step ±).

By analyzing the communication traces in these stages
and the available code (Fig. 2), HOMESCAN aims to
extract the specification listed in Table 1.

2.2 Security Properties and Attack Models

Security Properties. Our approach analyzes the security
properties including data security (i.e., data confidential-
ity and integrity) and access security (i.e., authentication
and authorization), given that various works have shown
the importance of these security properties to IoT [15–17].

• Data Security. The property ensures that the data
transmitted in a smart home system should be
delivered to the intended entities without being re-
vealed or altered by the attacker. More specifically,
we consider the confidentiality of the security
analysts annotated credentials such as passwords
and access token, and the integrity of control com-
mands from the CP to the SD via hub.

• Access Security. The property ensures that all en-
tities in a smart home system can verify the iden-
tities of their communicating entities, and only the
authenticated and authorized entities are granted

TABLE 2: Attack Models and Capabilities
Attack
Model

Attack Capability Description

Malicious
Entities

Malicious CPs aim to send unauthorized commands to
manipulate victim SDs over the same local network or
Internet, compromising access security of the SDs.
Malicious hubs aim to send unauthorized commands to
manipulate the victim SDs in the vicinity, compromising
access security of the SDs.
Malicious SDs aim to capture the sensitive information
(e.g., identity, address and credentials of the hub), which
could compromise the victim SDs in the vicinity. This
attack model violates the access security of the SDs.

Network
Attacker

Eavesdropping. The attacker aims to obtain crucial in-
formation (e.g., session keys and the identity of the hub)
by eavesdropping, compromising data confidentiality.
Intercepting and Modifying Commands. The attacker
aims to manipulate the system behavior by replaying/-
modifying control commands (such as ON/OFF of SDs,
casting a video and changing light color) and admin-
istrative commands (such as device authentication/re-
moval/reset, possibly causing functionality disruption
like Denial of Service). This attack model violates the
data integrity of the command messages sent from the
user and the access security of the SDs.

access to services and information. In particular,
this security property guarantees that the SD is
only under control of the intended CP and hub, i.e.,
the SD only executes commands from the intended
CP and hub.

Attack Models. The common threats to a smart home
system are unauthorized access and manipulation by
malicious entities [18, 19], and vulnerable settings of
wireless communications [20]. Hence, we consider two
types of attackers in this work, i.e., malicious entities
and network attackers, whose capabilities are described
in Table 2 in a nutshell.

• A malicious entity refers to any device/subsystem
that is under attacker’s control. We conservatively
assume that the attacker is able to control extra
devices and establish extra connections with the
protocol entities (e.g., in multicast scenarios). The
security of a system is trivial if all entities are un-
der attacker’s control. Therefore, we remark that
when analyzing the extracted protocol, only one
single entity is considered compromised each time.

• A network attacker is able to eavesdrop, intercept
and modify messages within the local network
(e.g., Wi-Fi and ZigBee) in which the attacker

4

resides or over the Internet. We assume the system
entities, including the hub, CP and SD, are honest
while analyzing system security properties against
the network attacker.

3 HOMESCAN OVERVIEW AND PREREQUISITES

3.1 HOMESCAN Overview
HOMESCAN uses a set of techniques for specification
extraction and vulnerability identification. It takes the
following inputs.

• Implementation of the System under Analysis.
A runnable setup of the smart home system and
a set of programs (PS), including available source
code, libraries, and binaries of entities are input to
HOMESCAN.

• Test Cases. A set of test cases (TC) is required to
trigger the functionality of the system under anal-
ysis. There must be at least one test case (which we
call initial test case) which can drive the system to
walk through all its three stages (i.e., discovery,
authentication and control). which allows HOME-
SCAN to generate a base for mutation. Each test
case corresponds to a configuration of the system.
Configurations refer to the entities (e.g., CP, SD
and hub) of the system and the different users (e.g.,
admin, general user and guest).

• Initial Knowledge. Initial knowledge (IK) is rep-
resented as a pair (P,CH), where P is the set of
entities of the input system , and CH is the set of
channels used for communication among entities.

As shown in Fig. 3, HOMESCAN includes three major
components including trace capturing & pre-processing,
specification extraction and flaw identification.

HTTP

Dynamic Analysis Tools
 & Sniffing HardwareImplementation

Initial Knowledge
Test Cases (TC)

ZigBee

Wi-Fi

BLE

Other

Arrange
Traces

Extract Values

Input

Trace Capturing & Pre-processing

Traces

TRSet
 & EL

Exhaustive Search

Whitebox Analysis

Diff Analysis

PI List

LTS
List

Security
Properties

Attack
Models

Specification Extraction

Vulnerabilites

Flaw Identification

Output

Security
 Analyst

updateTRSet TC.next 1

2

1

3

1

mutation

Fig. 3: Overview of HOMESCAN

Trace Capturing. The first step of HOMESCAN is to
capture the trace of the system under analysis by exe-
cuting the initial test case. It captures two types of traces,
i.e., traffic traces and execution logs. HOMESCAN uses
existing sniffers to capture the traffic traces, and records
the execution of the entities whenever instrumentation
can be done (The execution logs generated from execut-
ing the initial test case is referred as ÊL.). In addition,

HOMESCAN generates new traces by mutating the val-
ues (e.g., HTTP header values or HTTP parameters) from
the captured traces, after executing each test case.
Pre-Processing. Pre-processing takes the set of captured
traces as input and aims to generate a set of transac-
tions (defined soon). A captured trace is a sequence of
messages, containing the exchanged data between two
or more entities. HOMESCAN first merges the traces in
chronological order and then extracts the values from
the traces. For traces whose underlying protocols can
be recognized, it extracts data referring to their standard
message formats. For other traces, the extraction is done
using keyword (e.g.,“host” in an HTTP request) search-
ing, pattern matching (e.g., IP addresses) and string split-
ting with delimiters (e.g.,“&”).
Specification Extraction. The objective of this step is to
generate local LTS representation of the system, given the
transactions generated from the pre-processing compo-
nent. We propose a hybrid extraction technique including
whitebox analysis and trace analysis for the specification
extraction. The extracted specification is represented by
LTS. In Section 4, we detail the specification extraction
component.
Flaw Identification. In this step, we propose a verifi-
cation algorithm to check IoT-specific security proper-
ties of the LTS representation against predefined attack
models. Essentially, the verification algorithm is a reach-
ability analysis. It can apply any of classic searching
algorithms (e.g., DFS and BFS) on the generated LTS
to search the reachability of a bad state wherein the
security property is violated. In Section 5, we detail our
verification algorithm.

3.2 Prerequisites

In order to bridge the semantic gap between the low-
level traces and the high-level LTS, we introduce several
intermediate data structures to maintain the information
required to generate an LTS. In this section, we present
their definitions.
Transactions. A protocol consists of several (typically
sequential) rounds of information exchange. We represent
the abstraction of a single round as a transaction (TR). We
define it as a 5-tuple (id, se,R,EVSet,BR), where id is the
transaction ID, se ∈ P is the sender, R ⊂ P \ se is the
set of receivers (In multicast communication, there can
be multiple receivers), and EVSet = {EV1, EV2, ...,EVVid}
is the set of values (total number Vid) extracted from
the message exchanged in the TR. Each EVi is a 3-
tuple (v, t, id) where v is the value, t is its type, and
id is the value ID. The transaction also includes branch
information (BR), which is defined soon.

To represent the output of the pre-processing compo-
nent, we propose a transaction set denoted by TRSet =
{TR1, TR2, ...,TRT } where T is the total number of trans-
actions (rounds).
Branch Information. Each transaction TR includes a
branch set (denoted by BR), which is a set of transaction
IDs that represent the transactions branching from the

5

current transaction. There are three types of branches,
i.e., options, self-recursions and sequence-recursions. An
option branch is either labeled as an option in the
test case, resulted from test case mutation or configu-
ration changes. HOMESCAN identifies self-recursions or
sequence-recursions when data of a single transaction
or data of a sequence of transactions are repeated in
the trace respectively. Self-recursion is a repetition of the
same action (defined soon) which is represented as a self-
loop, and sequence-recursion is a repetition of a sequence
of actions.
Types. For each extracted value EV ∈

⋃
EVSeti (1 ≤

i ≤ T), HOMESCAN attempts to identify a type (t)
during the specification extraction. HOMESCAN defines
two categories of types, i.e., primitive and domain-specific.
The primitive type can be an integer, boolean, or
string. The domain-specific type can be any of net-
work address (used in ZigBee-like protocols), IP address,
MAC address, username, password, encryption key, hash
value, ciphertext, etc. During pre-processing, HOMES-
CAN assigns a primitive type to each value and updates
it to a domain-specific type (which is more precise) when
more information is inferred.

The domain-specific types are formalized as terms
(denoted by T). Terms are categorized into three subsets,
i.e., constants (denoted by C), functions (denoted by F),
and variables (denoted by V), such that T = C ∪ F ∪ V.
Ground terms are terms that only contain constants and
functions. Variables are terms that are not ground. Table 3
lists the function terms used by HOMESCAN.

TABLE 3: Function Terms
Function
Term (F)

Definitions Meaning

senc(message, k) message message ∈ T;
symmetric key k ∈ T

ciphertext created by symmet-
ric encryption

sdec(encmsg, k) ciphertext encmsg ∈ T;
symmetric key k ∈ T

extracted message by sym-
metric decryption

aenc(message, pk) message message ∈ T;
public key pk ∈ T

ciphertext created by asym-
metric encryption

adec(encmsg, sk) ciphertext encmsg ∈ T;
private key sk ∈ T

extracted message by asym-
metric decryption

hash(message) message message ∈ T hash value generated by hash
function

sign(message, sk) message message ∈ T;
private key sk ∈ T

signature generated by by sig-
nature function

checksign(sign, pk) signature sign ∈ T;
public key pk ∈ T

result of signature verification

assoc(t) existing term t ∈ T new term generated by associ-
ation

(a, · · · , b) a, · · · , b ∈ T concatination of terms
{m, · · · , n} m, · · · , n ∈ T set construction of terms

Actions. A label of an LTS is an action which can be either
a communication action or a local action. The actions which
exchange (send and receive) messages with other entities
are communication actions, and the actions that execute
local behaviors of each entity are local actions. Table 4
lists the action labels used by HOMESCAN.
Protocol Information. We use Protocol Information (de-
noted by PI) to indicate the information obtained
during the specification extraction. A PI is a 5-tuple
(msg, ÂCSeq, ch, lc,BR), where msg is a concatenation of
terms representing the messages transmitted by the cor-
responding TR, and ÂCSeq = 〈AC1,AC2, ...,ACA〉 is a
sequence of action information where A is the total

number of actions. An action information ACi is a 3-tuple
(u, a,X) where u(∈ P) is the entity which performed the
action, a is the name of action and X is a set of terms taken
as parameters to a. PI.ch is the communication channel.
Further, if the message PI.msg needs to be transmitted
between two sub-components within a device, which
acts on different protocols, the algorithm introduces lo-
cal communication actions (e.g., between HS and ZFE
of hub shown by the broken lines in Fig.1). PI.lc ∈ P
is the receiver (lc 6∈ TR.R) when local communication
between two sub-components exists. PI.BR is the branch
information.

TABLE 4: Communication and Local Actions
Type Action Definitions Meaning

Comm. send(ch,message) ch ∈ C;
message ∈ T

sending a message message
via channel ch

receive(ch, x) ch ∈ C; x ∈ V receiving a message via
channel ch and storing in x

Local

newnonce(x) variable x ∈ V generating a new nonce
and storing it in x

newskey(x) variable x ∈ V generating a new symme-
try key and storing it in x

newkeypair(pk, sk) variables
pk, sk ∈ V

generating and storing a
pair of public-private keys

executeCommand(c) constant c ∈ C executing the command c

Parameterized Labeled Transition System. A tradi-
tional labeled transition system (LTS) is a 4-tuple L =
(S, s0,A,→) where S is a set of states (locations); s0 ∈ S
is the initial state; A is a set of actions; →⊆ S × A × S
is a labeled transition relation. We extend the LTS with
parameters to differentiate the instances of the same
behavior pattern to facilitate the attacker modeling. For
example, we use the parameter HubID′ to represent the
identity of the malicious hub compared with the HubID
for the benign hub.

4 SPECIFICATION EXTRACTION

The goal of specification extraction is to generate a rep-
resentation of system integration. One challenge that can
be foreseen is the gap between the execution traces (to
be precise, the transactions after pre-processing) and
the target LTS. To bridge the gap, we design a two-
step extraction approach, which first extracts PIs from
the transactions, and then transforms the PIs into LTS
representations.

4.1 Inference of Protocol Information

Given the transactions generated from trace processing,
HOMESCAN uses several analysis techniques to infer the
PIs. This is outlined in Algorithm 1. It takes a 5-tuple
(TRSet,PS, ÊL, IK,TC) as input, where TRSet is the set of
transactions; PS is the set of programs; ÊL is the sequence
of execution logs; IK is the set of initial knowledge; TC is
the set of test cases. The output of the algorithm is a list of
inferred PI (PIL), each of which correlates with one trans-
action. The algorithm executes the next test case (TC.next
at line 13) and iteratively identifies new semantics until
no new information can be found from the input. In
each iteration, the TRSetnew includes new values and
new branch information (BR) corresponding to the new

6

input : (TRSet,PS, ÊL, IK,TC)
output: A List PIL = [PI1,PI2, ...,PIδ] where δ = T ; Each

transaction in TRSet is mapped to a PI.
1 F = {f1, f2, ..., fη} where η is the number of selected hash,

cryptography and encoding/decoding functions.;
2 g : GEVSet× P(TRSet) is relation indicating the transactions

which a value appears.;
3 TRSetnew ← TRSet, TRSetold ← TRSet;
4 do
5 TRSet← TRSetnew;
6 GEVSet =

⋃
EVSeti(1 ≤ i ≤ T)// global set of EVSet.;

7 g← Grouping(TRSet) ;
8 GEVSet← WB(GEVSet,PS, ÊL, IK);
9 GEVSet← ES(GEVSet, F, IK);

10 GEVSet← DA(GEVSet,PIL,TRSet,TRSetold, IK);
11 PIL← updatePIL(GEVSet, g);
12 TRSetold ← TRSet;
13 TRSetnew ← updateTRSet(TC.next) ;
14 while TRSetnew 6= TRSet;
15 return PIL;

Algorithm 1: PI Inference Algorithm

configuration specified in the TC.next. The remaining of
this section details the Algorithm 1 by elaborating with a
few examples on the techniques HOMESCAN uses to infer
the types of new values.

4.1.1 Whitebox Analysis
HOMESCAN uses WB(GEVSet,PS, ÊL, IK) (line 8 in Al-
gorithm 1) to infer the type of values that are produced
or consumed by the given program. This is conducted in
Algorithm 2. It begins by initializing the global variables
cgraph (call graph), la (local actions), and br (branch infor-
mation) (line 1). For each program in the input program
set (PS), it performs a code analysis (lines 2-8). This
analysis identifies the code (clsCode) which produces or
consumes the extracted values, parses it into an Abstract
Syntax Tree (AST) and resolves the symbols in it us-
ing a symbol solver (lines 4-5). The parsed AST with
symbols resolved (parsedSmblAST) is then input to the
AnalyzeClass function (line 7) which recursively analyzes
all related classes to identify the dependencies among
variables. During the class analysis, each method which
belongs to the class is analyzed by the AnalyzeMethods
function, to find the domain-specific types, local actions
and branch information (lines 26-44). If a value Ev.v is
equivalent to a variable with a known domain type (dT),
HOMESCAN assigns the dT to the Ev.t (lines 16-24). The
call graph (cgraph) of the program is used to retrieve the
control information during the analysis (line 6).

Below we brief some key techniques used in this
algorithm. To ease the understanding, we use the AST
shown in Fig. 4 as an example. It includes the AST of the
method a in Fig. 2-a (i.e., the code snippet A in Fig. 1).
Code Snippet Identification (lines 3-4). Since gener-
ating the AST and solving the symbols of the whole
program (e.g., a java jar file) is expensive, HOMESCAN
first identifies part of the program (e.g., a class) that
is likely to produce or consume the extracted values.
To this end, findCodeSnippet conducts a string match-
ing to search the call sites of security APIs such as
"javax.crypto.Cipher" in the program. This results
in a list of classes which have called those APIs. It

input : GEVSet,PS,ÊL, IK
output: GEVSet

1 cgraph← null, la← null, br← List();
2 for program ∈ PS do
3 initC← findCodeSnippet(program);
4 clsCode← ReverseEngineerClass(initC, program);
5 parsedSmblAST ← JavaSymbolSolver(clsCode);
6 cgraph← GenerateCallGraph(program);
7 GEVSet← AnalyzeClass(parsedSmblAST, initC, null, IK);
8 end
9 Function AnalyzeClass(ast, class, dTmap, IK):

10 (dTmap,m)← UpdateDT(AnalyzeMethods(ast, dTmap, IK));
11 dTmap← PropDomainTwithinClass(class, dTmap);
12 (nxtM, nxtC)← GetCallerOCallee(cgraph,m, class);
13 while nxtM 6= null do
14 AnalyzeNextClass(nxtM, nxtC, dTmap);
15 end
16 for (vnode, dT ∈ T,mname) ∈ dTmap do
17 for EV ∈ GEVSet do
18 if IsEVMapVarNode(vnode,mname, ÊL,Ev.v) then
19 EV.t← dT;
20 GEVSet← UpdateGEVSet(EV)
21 end
22 end
23 end
24 return GEVSet;
25 end
26 Function AnalyzeMethods(ast, dTmap, IK):
27 fieldsPT ← GenerateFieldPrimaryTypeMap(ast.fields);
28 for methodNode ∈ ast do
29 varPT ← null, dT ∈ T ← null, sig← null;
30 for n ∈ methodNode.childNodes do
31 if n ∈ dTmap then dT ← GetDT(n, dTmap) ;
32 if (n.expr ∈ VariableDeclaration) then
33 varPT ← UpdateVarPT(n, n.pT) ;
34 else if (n.expr ∈ MethodCall) then
35 sig← GenSignature(n.expr, fieldsPT, varPT);
36 if sig ∈ securityAPICallList then
37 (dT, lcA)← GenTerm(sig, n.expr, IK);
38 la← UpdateLA(n, lcA);
39 dTmap← UpdateDT(n, dT,methodNode.name) ;
40 else if (n ∈ BlockStatement) then
41 br← UpdateBranchInfo(BranchAnalysis(n));
42 end
43 return dTmap;
44 end
45 end

Algorithm 2: Whitebox Analysis Automation Al-
gorithm

then reverse engineers them using off-the-shelf tools (line
4), and uses a symbol solver to parse the decompiled
source code clsCode into an AST with resolved sym-
bols (parsedSmblAST) (line 5).
AST with Symbol Solving (line 5). In our parsed AST,
each node has at least one child except the leaf nodes,
and all the nodes except the root has exactly one parent.
A node can be an expression, a statement, a name (i.e.
fields, variables, parameters or types), a parameter, or a
return type. The root is a java class file and its child nodes
are import statements and the class declarations. At the
next level, each class declaration node has fields and
methods as its children. Similarly, each node is divided
into child nodes until the leaf node is a name expression.

However, the AST is an abstract representation which
does not have enough information to identify the types
of the variables used in the program. Therefore, we use
a symbol solver to calculate additional information such

7

byte[]	k	=	b.getBytes("UTF-8");
byte[]	bk	=	Arrays.copyOf(k,	16);
SecretKeySpec	kspec	=	new	SecretKeySpec(bk,	"AES");
Cipher	c	=	Cipher.getInstance("AES/ECB/PKCS5Padding");
c.init(1,	kspec);
byte[]	m	=	c.doFinal(a.getBytes("UTF-8"));
return	Base64.getEncoder().encodeToString(m);

byte[]	k=	b.getBytes("UTF-8")

Cipher	c	=	Cipher.getInstance
("AES/ECB/PKCS5Padding")

	SecretKeySpec	kspec=
new	SecretKeySpec(bk,	"AES")

byte[]	bk=	Arrays.copyOf(k,	16)

c.init(1,	kspec)

byte[]	m	=	c.doFinal(a.getBytes("UTF-8"))

	return	Base64.getEncoder().encodeToString(m)

k

byte[]

b.getBytes("UTF-8")

bk

byte[]

	Arrays.copyOf(k,	16)

kspec

SecretKeySpec	

new	SecretKeySpec(bk,	"AES")
c

Cipher	
Cipher.getInstance

("AES/ECB/PKCS5Padding")

init

c

m
byte[]

c.doFinal(a.	getBytes("UTF-8"))

Base64.getEncoder().encodeToString(m)

Base64.getEncoder()

encodeToString(m)

Base64
getEncoder()

encodeToString

m

c

doFinala.	getBytes("UTF-8")

getBytes

b

UTF-8

Arrays copyOf

16k

SecretKeySpec	

bk

AES Cipher	
getInstance AES/ECB/PKCS5Padding

1

kspec getBytesa UTF-8

public	static	String	a(String	a,	String	b)
	Security	APIs	method	call	node

	Interested	APIs	expression	node

Return	node

Skipped	unimportant	nodes

1

2

3

4 5

6

1

2 3

Fig. 4: AST for the method a in Fig. 2-a

as resolving references and finding dependencies among
nodes. For example, this helps to find out whether an
expression is a mathematical operation or a method-
call, and then further to identify the semantics of its
children such as method-name, arguments and so on.
The type information included in a declaration statement
can be propagated to child nodes or dependent nodes to
find out the type of variables. With this, we are able to
obtain the primary type (pT) of a variable representing
an EV.v, as shown in Fig. 4. After the symbols in the
AST are resolved, HOMESCAN further analyzes the nodes
based on its expression, i.e., a variable declaration, an
assignment, a method-call or an object creation.
Domain Type Annotation and Local Action Identifica-
tion (lines 26-45). After deriving the AST of the identified
program, the next step is to infer the domain type of
the program variables (which could potentially mapped
to an EV ∈ GEVSet). The basic idea is to annotate
parameters and return values with types obtained from
the knowledge of the cryptographic APIs. To this end,
HOMESCAN maintains a set of rules for each specified
security API1. As an instance, Fig. 5 shows such rules for
the symmetric encryption.

These rules are derived based on the knowledge of
how the APIs are used to implement a symmetric en-
cryption. In brief, first, the getInstance method of
java.crypto.Crypto is called with the transforma-
tion (i.e.,symmetric or asymmetric) specified as the first
argument (line 10 in Fig. 2-a). Next, the init method
of java.crypto.Crypto instance is called, specifying
the operation mode (i.e., encryption or decryption) as
the first argument and the key as the second argu-
ment (line 11 in Fig. 2-a). Finally, the doFinal method
of java.crypto.Crypto instance is called with the
data (i.e., plaintext or ciphertext) as the first argu-
ment (line 12 in Fig. 2-a).

With these rules, HOMESCAN first traverses
through the AST for the nodes which represent
method-call expressions that invoke security APIs,
for example, getInstance(java.lang.String),
init(int,javax.crypto.spec.SecretKeySpec),
and doFinal(byte[]) in Fig. 4. Whenever a node is

1. Currently, HOMESCAN supports Java cryptographic library
javax.crypto.

found, the rules are applied to annotate its arguments,
reference or return value with a domain type.

In particular, this is done by the AnalyzeMethods func-
tion in Algorithm 2. It takes a 3-tuple (ast, dTmap, IK) as
input, where ast is the parsed AST with resolved symbols;
dTmap is a map of (node, domain type, related method); IK is
the initial knowledge and returns an updated dTmap. The
function analyzes each method node (methodNode) in the
input ast (lines 28-44). During the analysis, HOMESCAN
gets the child nodes of methodNode, and further analyzes
each child node n based on its expression (lines 30-42). If
n has already been analyzed, its domain type is retrieved
from the dTmap (line 31). Otherwise, if the expression of n
is a MethodCall, the method signature (sig in line 35) of
the method-call is generated using GenSignature. In order
to do that, HOMESCAN requires the primary types of the
n’s arguments. This information can be obtained from
the class-field or method-variable declarations.
Therefore, Algorithm 2 records the primary types of the
class-field nodes (fieldsPT at line 27) and method-variable
nodes (varPT at line 29). The algorithm then verifies
whether the method signature (sig) is in a pre-specified
list of security APIs securityAPICallList (line 36). If yes, the
dT for n is generated by the GenTerm function (line 37),
and is also assigned to its relevant siblings (i.e., method-
reference), updating the dTmap (line 39).

We use our running example to illustrate this process.
The first rule in Fig. 5 is applied on the node marked
as 1 in red circle in Fig. 4. The domain type of c is
obtained from its parent node, which is an assignment
expression. As a result, dT of the c node is inferred as s
representing symmetric transformation. The second and
the third rules are applied on the node marked as 2 in
red circle in Fig. 4. The second input argument kspec is
inferred as k representing symmetric key. As the reference
of this node is c and the first input argument is 1, the dT
of the reference node (c) is updated as senc representing
symmetric encryption. The fourth rule is applied on the
node marked as 3 in red circle in Fig. 4. Based on the rule,
the first input argument node a.getBytes("UTF-8")
is inferred as message representing a plaintext, since the
dT of the reference is symmetric encryption (senc).

While traversing the AST, HOMESCAN also records lo-
cal actions (lcA) of the entities related to the generation of

8

n.method = “Cipher.getInstance(java.lang.String)”, n.arg[0] = “AES/ECB/PKCS5Padding”
[Symmetric getInstance]

n.ret.dT ← scipher

n.method = “Cipher.init(int, javax.crypto.spec.SecretKeySpec)”, n.ref .dT=“scipher”
[Symmetric init arg1]

n.arg[1].dT ← k

n.method = “Cipher.init(int, javax.crypto.spec.SecretKeySpec)”, n.ref .dT=“scipher”, n.arg[0] = 1
[Symmetric init reference]

n.ref .dT ← senc

n.method = “Cipher.doFinal(byte[])”, n.ref .dT=“senc”, n.arg[0].dT = “”
[Symmetric doFinal arg0]

n.arg[0].dT ← message

Fig. 5: Rules for Symmetric Encryption APIs (n stands for the AST node being visited. These rules annotate the node n itself or
its children/dependants (including its arguments (n.arg[]), reference (n.ref) and return value(n.ret)) with the domain types
learnt from the knowledge of the security APIs.

a term (dT) (line 37). For example, in the running example,
when HOMESCAN infers the node kspec as symmetric
key k, it also records a local action newskey(x) (listed in
Table. 4) for the entity CP, to represent the generation of
k. Once the dT and lcA are determined, they are added
to the dTmap and the la (lines 38-39). Consequently, the
AnalyzeMethods function recursively analyzes all method
nodes in the input parsedSmblAST, and returns the dTmap
to the AnalyzeClass function (line 43).
Domain Type Propagation (line 7 and lines 9-25).
After annotating the domain types at the nodes which
invoke the security API, the next step is to propagate
these types to other variables in the program. This is
done by the AnalyzeClass function. It takes a 4-tuple
(ast, class, dTmap, IK) as input, where class is the current
code snippet (that calls security APIs) in analysis, and
outputs the updated GEVSet including the domain types
inferred (line 24). The AnalyzeClass function first calls the
AnalyzeMethods, and then combines the returned dTmap
with type information derived previously. The new dTs
(in the dTmap at line 10) are then propagated to the other
nodes (in the class) which have dependency with the
nodes with known dTs (line 11). To this end, the following
four propagation rules are applied.

1) In the variable declaration and assignment ex-
pressions, if the source has a dT, then the dT of
the target variable is propagated from the source,
or vice versa.

2) In the variable declaration and assignment ex-
pressions, if the source is a method-call expres-
sion and the corresponding method is imple-
mented in initC, then the dT of the method’s
return-statement (e.g., marked in green circle in
Fig. 4) is propagated to the target.

3) In method-call or object creation expressions, if
the expression is a call expression to security APIs
or interested APIs (marked in blue in Fig. 4), the
dT of the expression is propagated to the method-
reference or to a method-argument, or vice versa.

4) When propagating the dT from one expression
to another, if both expressions have a child
node (i.e., a variable name or an argument) with
the same name expression, then the dT for one

child is propagated to the other.

We use our running example to illustrate this process.
The dT of the leaf node kspec at branch 5 (marked in
yellow circle) is k ∈ T (from Table. 3) representing a
symmetric key. Using the four rules, HOMESCAN infers
that the dT of the leaf node b (an input to the method
a) at branch 1 is also k. First, using rule 4, the type
k is propagated to the kspec leaf node at branch 3.
Second, using rule 1, k is propagated to the node
new SecretKeySpec(bk,"AES") at the same branch.
Third, using rule 3, k is propagated to the leaf node
bk. Fourth, using rule 4, k is propagated to the leaf
node bk at branch 2. Similarly, using the rules 1 and
3, k is propagated to the leaf node k in branch 2. Fifth,
again using rule 4, k is propagated to the leaf node k in
branch 1. Finally, using the rules 1 and 3, k is propagated
to the leaf node b which is the second input to the method
a. Hence, the dT of the input argument String b of
method a is symmetric key k.

The PropDomainTWithinClass function iteratively per-
forms the propagation until a fix point is reached where
the dTmap has no new changes. Afterwards, HOMES-
CAN finds the next method (nxtM) and its class (nxtC)
which requires analysis to find all relevant dTs (line
12). The nxtM is either the caller or a callee of the
current method. The AnalyzeNextClass function calls the
AnalyzeClass and recursively analyzes all related classes
within the program (lines 13-15).

After obtaining the type information of the values
in the program, the next step is to map these values
with those extracted from the trace (GEVSet). HOMES-
CAN uses the IsEVMapVarNode function (line 18) to do
this. The ÊL has the values of the input arguments of
each method which is called during the execution of
the control app. This function maps the variable node
vnode (e.g., node b leaf node at branch 1 in Fig. 4) with
the value of the corresponding input argument (e.g.,
b at line 5 in Fig. 2-a) of the method mname (e.g.,
a(String,String)) on the ÊL. If the value is equal
to Ev.v, then the corresponding dT is assigned to the
EV.t (line 19). For example, HOMESCAN identifies that
the EV.v "hue-secret-key-meethue345" (at row 4 of
Table 1) is mapped with the node b (leaf node at branch

9

1 in Fig. 4). Hence, the dT of this EV.v is inferred as
k ∈ T (symmetric key; also named as SecretKey at row
4 of Table 1).
Branch Information Inference (line 41). HOMESCAN
identifies the branch information resulted from configu-
ration changes in the system. In the AnalyzeMethods func-
tion, it identifies potential branches by further analyzing
nodes which are BlockStatments (lines 40-41). The block
statements which are if-else or case-switch may
trigger different transactions based on the input values
assigned to the variables in the program. In addition,
HOMESCAN utilizes all programs (∈ PS at line 2, e.g.,
mobile and desktop CP source code) to uncover branches
introduced during the change of entities.

For example, different privileges may be assigned
to different user (e.g., general/guest) or CP (e.g., mo-
bile/desktop) configurations. To formalize the con-
figurations, we assume the finite configuration set
C={C1,C2, ...,Ci , ...,Cλ}where λ is the number of config-
urations that can be changed (e.g., C ={Cuser,CCP} where
Cuser={general, guest} and CCP={mobile, desktop}).

As an example, in the LIFX system that we studied,
the desktop app (CP) is allowed to control the SD over
SD’s open Wi-Fi hotspot whilst the mobile app enforced
the setup of SD with the home Wi-Fi before starting
the control. Hence, HOMESCAN records the control (over
open Wi-Fi) and setup (with home Wi-Fi) actions as two
option-branches in the PI corresponding to the discovery
success transaction.

4.1.2 Exhaustive Search

HomeScan uses exhaustive search to identify the type
of a value with respect to a known function applied
on a subset of extracted values. Hence, in this search,
a finite set of existing functions are executed on all
extracted values to check whether the values of unknown
types can be generated. As shown in (line 9) Algo-
rithm 1, the GEVSet is input into the ES(GEVSet,F, IK)
with F a set of existing functions (e.g., MD5, SHA-1 and
Base64) and IK. For example, consider v=7B824...299CC
in our running example (at row 4 in Table 1). HOME-
SCAN performs all the existing hash functions on the
values it has collected in GEVSet. Once it finds that
SHA1(Password,HubID) has the same value, it can infer
that the type of this value (EV.v5 in Table 1) is a hash
value over (Password,HubID).

4.1.3 Differential Analysis

HOMESCAN uses DA(GEVSet,PIL,TRSet,TRSetold, IK)
(line 10 in Algorithm 1) to infer the types based on the
associations from two categories of changes, i.e., config-
urations and control commands. HOMESCAN identifies
the association for the difference of the v in TRSetold and
TRSet for the value with identity EV.id ∈ TR. Further,
HOMESCAN triggers the trace capturing component to re-
execute a particular test case during an analysis to assure
the consistency of values EVSet ∈ TR.

Configuration Changes. In our generic architecture,
the configuration C={Chub,CSD,CCP} is a set of enti-
ties. Hence, for example, HOMESCAN can substitute the
hub with other hubs using the same interface (e.g., the
communication protocol), i.e., Chub={hub1, hub2, ..., hubH}
where H indicates the number of the hubs under the
control of HOMESCAN, to check the difference of the
target EV.v against the change of the hub. For a value
EV.v whose domain-specific type is unknown, HOMES-
CAN infers its type (t) as follows.
• If Ci and EV.v always change together, then they

are likely correlated, e.g., HubID in the running
example.

• If EV.v always changes in every execution, then
it is likely a session-specific random nonce, e.g.,
nonce.

• If EV.v keeps constant, then it is likely a protocol-
specific value, e.g., UPnPMsearchRequest.

Control Command Changes. During the control stage,
the commands sent to the SD may be encrypted. HOME-
SCAN exploits the association between the control com-
mands and the meta-data of the encrypted messages
by using differential analysis, to infer the types (e.g.,
ON/OFF/color-change command) of the encrypted mes-
sages. According to the connection through which a
control command can be sent to the SD, HOMESCAN uses
the following approaches to infer its type.
• Persistent Connection. Typically, the heart-

beats (e.g., shown in Fig. 2-b) are required in order
to maintain a persistent connection. In this sce-
nario, the packets including the commands may
be inundated by the heartbeat packets. To remove
the packets of the heartbeat from the trace, HOME-
SCAN captures the packets when no command is
issued by the CP, and labels it as the heartbeat.
This enables HOMESCAN to remove the heartbeat
packets from the trace and infers the remaining
packets as the control command(s). For example,
EV.v8 in Table 1 is inferred as an association of the
command SecretCommand when the heartbeat
packets (shown in Fig. 2-b) are removed.

• Non-persistent Connection. In non-persistent con-
nection, a handshake is often used to establish
the connection before a control command is sent.
Therefore, given a trace of control command exe-
cution, HOMESCAN identifies the packets on the
trace corresponding to three different stages in a
handshake based protocol (〈connection, command,
disconnection〉). To achieve this, HOMESCAN re-
runs test cases for different control commands. The
packets common in all runs are considered to be
relevant to connection and disconnection stages. The
remaining packets are inferred as the command
data packets.

4.2 Local LTS Generation
After extracting the PIs, HOMESCAN translates them
into the LTS representations. Algorithm 3 shows our ap-

10

input : PIL
output: A List LTSL = [LTS1, LTS2, ..., LTSσ] where σ =| P |.

Each entity in P is mapped to an LTS
1 for p ∈ P do
2 srcp ← s0, dstp ← null, LTSp = (srcp, {srcp},∅,∅);
3 foreach PIq ∈ PIL do sq

p ← null;
4 end
5 for PIq ∈ PIL do
6 PIq.ACSeq_CreateLCActions(PIq.msg, PIq.lc);
7 uch← UniqueCH(PIq.ch);
8 for ac ∈ PIq.ACSeq do
9 p = ac.u, l← CreateLabel(ac, uch);

10 dstp ← GenState(ac);
11 if (sq

p 6= null) then srcp ← sq
p;

12 LTSp.A← LTSp.A ∨ {l}, LTSp.S← LTSp.S ∨ {dstp};
13 LTSp.Tr← LTSp.Tr ∨ {srcp, l, dstp};
14 srcp ← dstp, sq

p ← null;
15 for TR.id ∈ BR do
16 if (q < TR.id) then sTR.id

p ← dstp;
17 else if (q = TR.id) then
18 LTSp.Tr← LTSp.Tr ∨ {dstp, l, dstp};
19 else if (q > TR.id) then
20 exdstp ← GenState(AC1 ∈ PITR.id.ACSeq);
21 LTSp.Tr← LTSp.Tr ∨ {dstp, l, exdstp};
22 end
23 LTSL← LTSp
24 end
25 end
26 return LTSL;

Algorithm 3: LTS Representation Algorithm

proach. It takes the PIL (output of Algorithm 1) as input
and generates a list of LTSs. It begins with initializing
an LTSp for each entity p ∈ P with the initial state (s0),
the set of states (S), the set of actions (A), and the set
of transitions (Tr) in a tuple (s0, {s0},∅,∅) (lines 1-4).
Then it iterates through the PIL and transforms each PI
into LTS transitions. First, it extends the PI.ACSeq, if a
private communication exists (line 6). Next, it creates a
unique channel (line 7) before creating an action label
(line 9). Once the source and destination states and labels
are created (lines 9-11), it updates the LTS components
of entity p identified at line 9. If the PI has branch
information, it either records the source state of options
(line 16), adds self-recursions (line 18), adds sequence-
recursions, or merges branches (lines 20-21). Below, we
detail the LTS generation.

States. A transition involves two states. Its source state
is denoted by srcp, while the destination state is denoted
by dstp. In addition, HOMESCAN uses state sq

p to track the
srcp of a branch, where q is the transaction ID (TR.id).
The dstp is given by the function GenState (line 10). If
the input ac represents a new action, GenState outputs
a new dstp. If the action has been mapped to a dstp by
the function before, the function outputs the existing dstp.
Moreover, the srcp of the immediate transition is the dstp
of the current transition, when it is not a branch (line 14).

Actions and Transitions. During the iterations through
PIL, the information in each PIq is used to create labels
(actions). The PIq.ACSeq states the actions information
with their sequence. The algorithm creates labels for
actions in the stated order (e.g., 〈AC1,AC2,AC3,AC4〉
where AC1 and AC2 are local actions conducted by
the sender, AC3 = (se, send,msg) is an action of mes-

sage sending, and AC4 = (ri ∈ R, receive, msg) is an ac-
tion of message receiving). Further, HOMESCAN uses the
CreateLCActions function to add information of the local
sending and local receiving actions to PIq.ÂCSeq (e.g.,
PIq.ÂCSeq

_
〈(ri ∈ R, send,msg), (lc, receive,msg)〉 (line 6).

Each label is created using the function CreateLabel
(line 9). The input to the function, i.e., ac, has informa-
tion about action (a and X). If ac is a local action, then
a ∈ {newnonce, newkey, newkeypair, executeCommand} and
X ∈ T. If ac is a communication action, then a ∈ {send,
receive} and X = msg. The input uch generated using
the UniqueCH function is used to send/receive the msg
via a unique channel (line 7). If ac is a local communica-
tion, then the CreateLabel function uses a unique private
channel to transmit the msg. Once the label and the next
state are ready, LTSp is updated such that srcp

l→ dstp is
added (lines 12-13).
Branches. If the PIq includes information about
branches (represented by TR.id ∈ BR), it is analyzed
from line 15 to line 22. Fig. 6 shows different types of
branches in an LTS. If TR.id of the branch is greater
than that of the current PI, it is an option. Hence, current
dstp is tracked using sTR.id

p (line 16). After it is set, sTR.id
p

is taken as the srcp (line 11) in the next iteration. If
the TR.id of the branch is the same as that of PI, this
branch is a self-recursion. It is represented as an edge
from dstp to dstp (line 18). Otherwise, the PITR.id is al-
ready processed. Hence, the dstp of the first action (as
stated in sequence PITR.id.ACSeq) of the branch exists.
The GenState function returns that existing state as exdstp.

b0 b1

send(wifi2,(HubIP,
HubID))

d0 d1

executeCommad(x)

receive(zigbee1,x)

a4

a5

send(wifi5,
AdminCmd)

a7

a6

send(wifi6,
ControlCmd)

receive(wifi7,
Success)

Self-Recursion Options

Sequence-Recursion

receive(wifi8,
Success)

Fig. 6: Types of Branches in an LTS

HOMESCAN adds
a transition from
the current state
dstp to exdstp (lines
20-21). This is called
a branch merge. If
the first action of the
branch exists in the
current path (root
to the srcp), this branch is a sequence-recursion. Hence,
HOMESCAN merges the current and existing srcp states.
After all actions are processed, the LTS representation is
generated.

5 FLAW IDENTIFICATION

After the specification extraction, the local LTS represen-
tation is generated to model the behaviors of the entities
and their communications. We can further analyze the
security properties of the extracted protocol by verifying
the generated LTS model against the attack models.

In HOMESCAN, the behavior of an attacker is mod-
eled as an LTS Latt = (S, s0, Aatt,→att), where Aatt is a
set of actions performed by the attacker. In Fig. 8, we
illustrate the behaviors of the malicious entities and the
network attacker using the examples of the malicious CP
and the Wi-Fi network attacker in the running example.
The malicious CP pretends to be an honest one in the
same network. It sends out its own decided password′

11

B. Execution Rules

si
executeCommand(c)−−−−−−−−−−→i s′i

[exec cmd]

(s1, · · · , si, · · · , sn, (satt,NSatt))
executeCommand(c)−−−−−−−−−−→ (s1, · · · , s′i , · · · , sn, (satt,NSatt))

satt
executeCommand(c)−−−−−−−−−−→att s′att

[exec cmd att]
(s1, · · · , si, · · · , sn, (satt,NSatt))

executeCommand(c)−−−−−−−−−−→ (s1, · · · , si, · · · , sn, (s′att,NSatt))

si
a−→i s′i , a = newnonce(x) or newskey(x), ∃ v • v = generate(a)

[new]

(s1, · · · , si, · · · , sn, (satt,NSatt))
a[v/x]−−−→ (s1, · · · , s′i , · · · , sn, (satt,NSatt))

satt
a−→att s′att, a = newnonce(x) or newskey(x), ∃ v • v = generate(a)

[new att]
(s1, · · · , si, · · · , sn, (satt,NSatt))

a[v/x]−−−→ (s1, · · · , si, · · · , sn, (s′att,Upd(NSatt ∪ {v})))

si
newkeypair(x,x−1)−−−−−−−−−−→i s′i , ∃ v, v−1 • (v, v−1) = generatePair(newkeypair(x, x−1))

[newkeypair]

(s1, · · · , si, · · · , sn, (satt,NSatt))
newkeypair(v,v−1)−−−−−−−−−−→ (s1, · · · , s′i , · · · , sn, (satt,NSatt))

satt
newkeypair(x,x−1)−−−−−−−−−−→att s′att, ∃ v, v−1 • (v, v−1) = generatePair(newkeypair(x, x−1))

[newkeypair att]

(s1, · · · , si, · · · , sn, (satt,NSatt))
newkeypair(v,v−1)−−−−−−−−−−→ (s1, · · · , si, · · · , sn, (s′att,Upd(NSatt ∪ {(v, v−1)})))

si
Send(ch,M)−−−−−−→i s′i , sj

Receive(ch,x)−−−−−−−→j s′j , ai = Send(ch,M), aj = Receive(ch, x)
[comm]

(s1, · · · , si, · · · , sj, · · · sn, (satt,NSatt))
(ai,aj[M/x])−−−−−−−→ (s1, · · · , s′i , · · · , s′j , · · · sn, (satt,NSatt))

si
Send(ch,M)−−−−−−→i s′i , satt

Receive(ch,x)−−−−−−−→att s′att, ai = Send(ch,M), aatt = Receive(ch, x)
[att rec]

(s1, · · · , si, · · · , sn, (satt,NSatt))
(ai,aatt[M/x])−−−−−−−→ (s1, · · · , s′i , · · · , sn, (s′att,Upd(NSatt ∪ {M})))

si
Receive(ch,x)−−−−−−−→i s′i , satt

Send(ch,M)−−−−−−→att s′att, ai = Receive(ch, x), aatt = Send(ch,M)
[att send]

(s1, · · · , si, · · · , sn, (satt,NSatt))
(aatt,ai[M/x])−−−−−−−→ (s1, · · · , s′i , · · · , sn, (s′att,NSatt))

si
Receive(ch,x)−−−−−−−→i s′i , satt

Send(ch,∀)−−−−−−→att s′att, ai = Receive(ch, x), ∃Mi ∈ NSatt • aatt = Send(ch,Mi)
[att send any]

(s1, · · · , si, · · · , sn, (satt,NSatt))
(aatt,ai[Mi/x])−−−−−−−−→→(s1, · · · , s′i , · · · , sn, (s′att,NSatt))

Fig. 10: Execution Rules where x, x−1 ∈ V,M ∈ T and c ∈ C

13

Fig. 7: Execution Rules where x, x−1 ∈ V,M ∈ T and ch ∈ C

att_m0 att_m1

send(wifi1,upnpM-
searchRequest)

Malicious CP

att_m2
receive(wifi2,(x,y))

att_m3

send(wifi3,(y,
password'))

att_m4

receive(wifi4,(z,
secretKey1)

att_m5

send(wifi5,(z,
senc(secretCommand',secretKey1))

receive(wifi2,(x,y))

att_n0 att_n1
receive(wifi4,(z,secretKey1))

Wi-Fi Network Attacker
send(wifi4,(z,secretKey1'))

att_n2

Fig. 8: LTS Representation for the Malicious CP and Wi-Fi
Attacker
(state att m2), trying to receive an authenticated token
hash(HubID, password′) (this value is stored in a variable
z in the LTS in Fig. 8) and the secretKey1 from the
hub (state att m3). Once successful, the malicious CP
is able to control the smart device by sending its own
encrypted command senc(secretCommand’,secretKey1)
(state att m4). The Wi-Fi network attacker resides be-
tween the CP and the HS. It is able to intercept and
replace the secretKey1 sent from the honest HS with
secretKey1’ (state att n1).

Given the extracted LTS models of both entities and
attackers, HOMESCAN generates the execution of the
whole smart home system defined in Definition 1.

Definition 1 (Global LTS Generation) Let Li =
(Si, s0i ,A,→i) be the model of entity i, Latt =
(Satt, s0att ,Aatt,→att) be the attack model, NSatt be the attacker’s
knowledge set, and As be the sending action and Ar be the
receiving action (As,Ar ⊆ A). The model of the whole system
is an LTS (S, s0,A′,→), where S ⊆ S1 × · · ·Sn × (Satt × PT),
initial state s0 = (s01 , · · · , s0n , (s0att ,∅)), A′ = A∪Aatt ∪Asr,
Asr = (As × Ar) is a set of sending and receiving action
pairs denoting synchronization, and →⊆ S × A′ × S is the
transition relation.

Due to the page limitation, we list part of our LTS
generation rules in Fig. 7, and the full list can be found in
our technical report [12]. Here we intuitively introduce
it. Rule comm denotes a communication action between
two honest entities. Rules att rec and att send represent
the attacker’s capabilities. att rec captures the message
sent from an honest entity and those generated by the
attacker (attacker can apply a cryptographic function to

the captured message and generate new terms using
function Upd). These new terms are added to the set
NSatt. att send sends out a fake simulated message to
pretend as an honest entity. Rule att send all represents
the network attacker’s capability that it can intercept the
communication between honest entities and thereafter
randomly send a message from its knowledge set NSatt
to the intercepted honest receiver.

Notice that we define an additional sending action
send(ch,∀) to represent the network attacker’s capability
of sending any message from the attacker’s knowledge
set NSatt ⊂ K where the knowledge set K is a set of terms.
According to Definition 2, an attacker has the capability
of updating his knowledge set NSatt by applying the
attacker knowledge’s set update function Upd defined as
follows.

Definition 2 (Attacker Knowledge Set Update)
Let NSatt and NS′att be the input and output of the
attacker’s knowledge update function Upd such that
NS′att ← Upd(NSatt). Let m,n, pk, sk ∈ T where pk and
sk represent a public-private key pair such that:

NS′att ← NSatt ∪

{senc(m, n)}, m, n ∈ NSatt

{m}, senc(m, n), n ∈ NSatt

{aenc(m, pk)}, m, pk ∈ NSatt

{m}, aenc(m, pk), sk ∈ NSatt

{sign(m, sk)}, m, sk ∈ NSatt

{m}, sign(m, sk), pk ∈ NSatt

{hash(m)}, m ∈ NSatt

In order to verify the security properties, HOMES-
CAN applies the reachability analysis to the generated
execution of the smart home systems, using the classical
algorithms such as BFS and DFS. It determines whether
a vulnerability exists by searching whether a particular
state (referred to bad state hereinafter) can be reached in
the whole system. For example, in order to determine
if the CP can have unauthorized control of the hub
and the SD, we can query if the system execution in
the running example can reach state att m5 from state
att m4 in Fig. 8. Alternatively, we can also query the
existence of a particular set of terms in the attacker’s

12TABLE 5: Summary of Trace Capturing and Pre-processing

Column 2: The no. of generated test cases (all test cases are listed online [12]).
Column 3: The no. of captured traces (each test case is executed for three times
for differential analysis). Column 4: The no. of identified transactions. Column 5:
The no. of extracted unique values.

Case Study Test Cases Traces Transactions GEVSet
Philips Hue 17 51 41 43
LIFX 11 33 21 17
Chromecast 22 66 30 79

knowledge set NSatt to determine if the attacker has
enough information to launch an attack. For example,
we can query if the set {senc(secretCommand′, secretKey1),
hash(HubID, password′)} exists in the attacker’s knowl-
edge set in Fig. 8 to determine if the malicious CP can
have unauthorized control of the hub and the SD.

6 CASE STUDIES

To evaluate HOMESCAN, we conduct case studies on
three popular real-world smart home systems from lead-
ing smart home brands. In this section, we present our
experiment setup and overall results. Afterwards, we
focus on one of our findings to demonstrate the stepwise
experiment. The recorded demonstration of the security
issues and other supporting materials are published on-
line [12].

6.1 Subjects of Our Evaluation

Philips Hue System. Philips Hue is a smart lighting
system produced by Philips, and it is claimed to be the
world’s most popular smart home lighting system (31%
market share) [21]. The components and the working
process of this system are similar to the running example
discussed in Section 2.1. We have analyzed its hub of API
version “1.19.0” and bulb with model id “LCT007”. This
system is comprised of three basic components including
a smart bulb (SD), a hub (consisting in HS and ZFE), and
a mobile application (CP). The hub is connected to a Wi-
Fi router, enabling communication between the CP and
the HS over Wi-Fi. The SD and ZFE communicate over
ZigBee channel. In each of the three stages, the following
system configuration and control are completed.

The CP sends a UPnP M-SEARCH request to discover
the HS, while the SD broadcasts a ZigBee beacon request
to discover the ZFE on the hub. The CP sends an HTTP
POST request with a random string to the HS. After the
owner clicks the button, the boolean value in the Philips
Hue protocol called “linkbutton” becomes true. This
enables the hub to respond to the authentication requests
from the CPs. However, the “linkbutton” value can also
be set by the command LinkButtonTrue which can
be sent by any authenticated CP. This property results
in a vulnerability with several consequences which is
discussed soon. The HS authenticates the CP by replying
a unique token that represents the CP’s identity. The HS
also adds this token to the list of whitelisted CP users.
Next, the CP sends a SearchLight request using the
received token to the HS. It initiates TLC between ZFE
and SD. After being authenticated by the HS, the CP
can send control commands (e.g., turning on/off and

TABLE 6: Statistics of Whitebox Analysis

Column 2: The no. of code snippets in the input program that use security APIs.
Column 3: The no. of classes recursively analyzed by HOMESCAN in each code
snippet, and their sizes in terms of nodes. Column 4: The no. of nodes labelled
with a domain type. Column 5: Total analysis time (in minutes).

Case Study Code
Snippets

Classes (AST
Sizes)

Labelled
Nodes

Time
(min)

Philips Hue 1 3 (448, 472, 2200) 54 0.06

LIFX 3
1 (508) 34 0.04
1 (344) 6 0.03
1 (359) 18 0.04

Chromecast 2
2 (6175, 1107) 65 1.50

7 (1549, 339, 318, 39 6.197455, 324, 305, 107)

changing color/brightness) to the HS. Furthermore, the
CP is capable of sending administrative commands, e.g.,
LinkButtonTrue.
LIFX Lighting System. LIFX is another smart lighting
system which comprises a CP and a SD (i.e., the smart
bulb). The SD is Wi-Fi enabled and initially provides an
open Wi-Fi hotspot. The CP first joins this hotspot and
then broadcasts a GetService UDP packet to discover
the SD. After the SD is discovered, the CP sends creden-
tials (SSID and Password) of the home Wi-Fi to the SD
over its joined open Wi-Fi. Once the SD joins the home
Wi-Fi, its open Wi-Fi is disabled, and the CP broadcasts a
GetService packet again to discover the SD in the home
Wi-Fi. Now, the SD can be controlled by any CP which
joins the same wireless LAN as the SD. The CP then can
send commands, e.g., SetColorRequest, to control SD.
Chromecast System. Google’s Chromecast is a streaming
media player, which allows streaming a video to a TV.
It comprises a CP, a Chromecast receiver, i.e., the SD,
and a Google’s server (denoted by GS). The Chrome-
cast SD also provides an open Wi-Fi hotspot. The CP
joins this hotspot and requests for the device informa-
tion (e.g., PublicKey) of the SD. Next, the CP sends
the credentials (SSID and password encrypted with the
PublicKey) of the home Wi-Fi to the SD. Once the SD
is connected to the home Wi-Fi, the CP uses Multicast
DNS (MDNS) to discover the services provided by the
SD. Further, to pair the CP and the GS, the CP sends
the ScreenID of the SD to the GS. The CP obtains this
ScreenID by sending GetMdxSessionStatus request
to the SD. The GS responds to the CP with a token,
which is later used as an authentication token by the
CP at the control stage. After being authenticated by
the GS, the CP sends the PostBindRequest request
with a VideoID and the token to the GS for casting a
YouTube video. The same request without the VideoID
can be sent to the GS to receive the current status (e.g.,
current/last VideoID) of the SD.

6.2 Setup and Summary

Trace Capturing and Pre-Processing. We use 2.4 GHz
deRFusb23-E00 USB sniffing radio stick and Perytons
Analyzer to capture ZigBee traces, and Wireshark tool
to capture the Wi-Fi traffic. We use Xposed framework
[22] to obtain the execution log of the Android app (i.e.,
the CP). A summary of the statistics related to this
component is listed in the Table 5.

13TABLE 7: Summary of Flaw Identification

Types of True Positives (TPs): TP#1: mis-response to discovery request, TP#2: flawed authentication protocol, TP#3: lack of authorization, TP#4: misuse of insecure
underlying protocols, TP#5: unprotected SD’s Wi-Fi hotspot, TP#6: lack of device/user authentication protocol, TP#7: vulnerable to network traffic replay
Causes of False Positives (FPs): FP#1: incomplete model extracted, FP#2: unrealistic assumption, FP#3: infeasible attacker model

Case Study Violations Reported by HOMESCAN TP FP

Philips Hue

The HS accepts the discovery request (UPnPMsearchRequest) from a malicious CP, and replies with
HubIP,HubID and AssoPermit.

#1

The SD accepts the discovery request (BeaconRequest) from a malicious hub, and replies with DeviceID
and PanID.

#1

The HS accepts the authentication request (including a nonce) from a malicious CP, and replies with a
hash(nonce).

#2

A malicious CP gets authenticated from hub and sends the LinkButtonTrue admin command to HS to enable
the functionality of auth-token generation in the hub.

#3

The SD accepts LinkNetworkJoinRequest (of the flawed ZLL protocol) from a malicious ZFE, and replies
with a LinkNetworkJoinResponse.

#4

The CP sends a Controlcmd to the malicious hub which sends the Encryptedcmd to its connected SD.
(During manual confirmation, the malicious hub fails to generate the Encryptedcmd due to the algorithm for
encryption being unspecified in the specification.).

#1

The CP requests an authentication token from a malicious HS by sending a nonce. The CP accepts the token
hash(nonce) from the malicious HS. (During confirmation, we find this attack requires that the malicious
HS has been authenticated with the SD.)

#2

LIFX

The SD incorrectly allows a malicious CP to connect with its hotspot. Then SD authenticates and connects
with the attacker’s Wi-Fi when the malicious CP sends AttWifi and AttPasswrd.

#5

The CP connects to a malicious SD’s hotspot and sends the HomeWifiPassword to the malicious SD. #5
The SD connects to a malicious CP which sends request SetColorRequest. The SD accepts the request and
changes its color.

#6

The SD accepts a replayed message (SetPowerRequest) by a network attacker and changes its on/off status. #7

Chromecast

The SD accepts the discovery request (MDNSDiscoveryRequest) from a malicious CP, and replies with
MDNSDiscoveryResponse.

#1

A malicious CP connects to the SD’s hotspot. Then the malicious CP sends AttWifi and AttPasswrd to
authenticate and connect the SD to the attacker’s Wi-Fi.

#5

The GS authenticates a malicious CP and replies with the CurrentVideoID (video ID cast by the victim user)
upon receiving PostBindRequest from the malicious CP.

#6

The CP connects to the malicious SD’s hotspot and sends aenc(Password,PublicKey) to the malicious SD.
The malicious SD replies with adec(aenc(Password,PublicKey), PrivateKey). (During confirmation,
we find this attack requires all SDs share the same key pair, which is unrealistic.)

#2

The CP connects to a malicious SD and requests GetMdxSessionStatus. The SD replies the ScreenID.
(During manual confirmation, we find even though the ScreenID is received, no insecure consequence is
caused.)

#2

The SD pairs with a malicious GS and replies with ScreenID upon the ScreenIDRequest from the malicious
GS. (During manual confirmation, we find that a malicious GS is infeasible.)

#3

The CP pairs with a malicious GS and requests an authentication token (GetLoungeToken) from the malicious
GS. The malicious GS replies with a ScreenIDAssociation. (During manual confirmation, we find that a
malicious GS is infeasible.)

#3

PI Inference and LTS Representation. In Table 6, we
summarize the statistics of the whitebox analysis. The
extracted specifications and the detailed LTSs for the
three systems are available online [12].
Flaw Identification. HOMESCAN uses a model checker
called PAT [23] as the inference engine in our experi-
ments. By analyzing the LTS representations of the sys-
tems against the attack models defined in Section 2.2,
HOMESCAN reports twelve security flaws. We have re-
ported our findings to the affected parties. Philips Hue
confirmed them and proposed fixes, Chromecast has
accepted our report, and LIFX confirmed that they are
investigating our findings. In Table 7, we summarize our
confirmation and analysis on the violations reported by
HOMESCAN.

6.3 Details of Findings
As shown in Table 7, vulnerabilities discovered by
HOMESCAN can be further categorized into the following
seven categories.
Mis-response to Discovery Request (TP#1). During the
discovery stage, entities send or reply to discovery re-

quests to identify other possible entities of the system.
However, if an entity fails to validate the source of the
discovery requests, it may incorrectly respond to the at-
tacker. HOMESCAN identifies three vulnerabilities which
belong to this category. First, Philips Hue HS replies to
discovery requests, from any UPnP (a known flawed
protocol [24]) enabled devices. Second, Philips Hue ZFE
always replies to the discovery requests from ZigBee en-
abled devices. Third, the Chromecast SD replies to MDNS
discovery requests from any device in the home Wi-Fi. As
a consequence, the attacker can initiate a connection with
the victim device and keep them under their control.

Flawed Authentication Protocol (TP#2). Due to the
resource limitations, smart home systems may adopt
customized authentication protocols. This may result in
flawed protocols. HOMESCAN identifies one vulnerabil-
ity from Philip Hue which can be exploited by a mali-
cious CP. In the authentication stage, the Philips Hue HS
relies on the user to press the button on the hub to enable
the authentication token generation. However, after the
pressing, this protocol does not guarantee that the HS
only generates the token to the benign CP requests. Con-

14

sequently, the token can be received by a CP controlled
by the attacker.
Lack of Authorization (TP#3). In the control stage,
the CP is allowed to send administration commands,
such as adding/removing SDs. However, this permission
should be limited to authorized parties. HOMESCAN
identifies one vulnerability from Philips Hue—any CP
authenticated by the HS, instead of only the admin user,
can re-configure Philips Hue. This may lead to severe
consequences, including uncontrolled authentication and
denial-of-service against both the hub and the SD.
Misuse of Insecure Underlying Protocols (TP#4). Smart
home systems typically rely on existing protocols, but
some of them may select an insecure one. HOMESCAN
identifies such a vulnerability from Philips Hue, which
uses ZLL for authentication. However, ZLL is designed
to allow an entity to reset the established connection.
In particular, after the SD and the hub have estab-
lished a connection though ZLL, the attacker can send
a LinkNetworkJoinRequest to the SD to trigger it
to re-execute the protocol. After that, the attacker can
impersonate as a hub to establish another connection
with the SD.
Unprotected SD’s Wi-Fi Hotspot (TP#5). SDs may come
with on-board open Wi-Fi hotspots. These unprotected
Wi-Fi hotspots can be exploited by malicious entities
at all stages of the system. HOMESCAN identifies three
vulnerabilities which belong to this category. First, in the
discovery stage of LIFX, any CP which joins the SD’s
hotspot can obtain the SD’s configurations and forcefully
connect the SD to an attacker’s Wi-Fi. Another vulner-
ability of this category is found in the CPs of the LIFX
and Chromecast, which causes them to be deceitfully con-
nected to a fake SD’s hotspot. This vulnerability leads to a
severe consequence in LIFX’s authentication stage, where
the CP sends the credentials of the home Wi-Fi in plain
text so that the attacker can exploit this vulnerability to
steal these credentials.
Lack of Device or User Authentication Protocol (TP#6).
Due to the resource limitations, smart home systems may
be developed without any authentication protocol. These
systems can be exploited by malicious entities to take
over control or obtain sensitive information. HOMESCAN
identifies two vulnerabilities of this category. In the LIFX
system, any CP which joins the home Wi-Fi can control
the SD. Similarly, but with a serious consequence, a
malicious CP in the Chromecast system which joins the
home Wi-Fi can obtain the VideoID of a private YouTube
video and cast it to the TV screen.
Vulnerable to Network Traffic Replay (TP#7). The net-
work packets exchanged among entities over channels
may not include any session related data (e.g., timestamp
and nonce). These packets can be intercepted and later
replayed by a network attacker who taps on the commu-
nication channel. HOMESCAN identifies one vulnerability
which belongs to this category. The UDP packets sent by
LIFX CP can be intercepted and replayed by a network
attacker to manipulate the victim SD.

6.4 Analysis of a Vulnerability
In this section, we use one of the vulnerabilities HOME-
SCAN identifies from the Philips Hue to further demon-
strate how HOMESCAN works on real-world systems.
Input. The IK includes that the CP and the HS use Wi-Fi
channel, the ZFE and the SD use ZigBee channel, and the
6-digit serial number of the SD. The detailed test cases
for the Philips Hue system is included in the technical
report [12].
Trace Capturing and Pre-Processing. HOMESCAN is
given 9 test cases. It generates 7 extra test cases and 38
transactions.
PI Inference. HOMESCAN generates 38 PIs, and four
LTSs.

c0 c1 c2 c3 c4 c5

c6c7c8c9c10

c13

receive(zigbee1,
beaconrequest1)

send(zigbee2, (PanID,
HubID, AssoPermit))

receive(zigbee3, (x, PanID1)

send(zigbee6,(x, PanID4
IdentifyRequest))

send(zigbee7, (x,PanID5,
NetworkJoinRequestreceive(priv3, Controlcmd)

receive(zigbee8, (HubID2,PanID6,
NetworkJoinSuccessResponse))

receive(priv1, SearchLights1)
send(zigbee4, PanID2
ScanRequest1)

receive(zigbee5,(HubID1,
PanID3, ScanResponse1)

send(zigbee9,(x,
EncryptedControlcmd))

receive(zigbee3, (x,PanID1)

send(zigbee2, (PanID,
HubID, AssoPermit))

receive(zigbee1,
beaconrequest1)

receive(priv2, JoinNearest-
DeviceRequest1)

send(zigbee11,
 beaconrequest)

receive(zigbee12,
 (y,z, AssoPermit))

ZigBee Front End

c11

send(priv4,ACK1)
c12

receive(zigbee10, (HubID3,ACK1))

c14 c15

send(zigbee13, PanID7
LinkScanRequest1)

c20

send(zigbee15,(x,PanID9,
LinkIdentifyRequest))

send(zigbee16,(x,PanID10
LinkNetworkJoinRequest

receive(zigbee17, (HubID2,PanID11,
LinkNetworkJoinSuccessResponse))

receive(zigbee14,(HubID1,PanID8,
 LinkScanResponse1)c17

receive(priv2, JoinNearest-
DeviceRequest1)

c19

c18

c16
send(zigbee13, PanID
LinkScanRequest1)

Fig. 9: The LTS of the Malicious ZFE

Flaw Identification. We use the vulnerability “Use of
insecure underlying protocols” of Philips Hue to explain
this step. The four LTSs and the attacker models are used
by HOMESCAN to generate the execution of the whole
system. In the following, we explain the attack model,
security property, algorithm, counter example and our
investigations about the vulnerability.

Attack Model. We consider a malicious hub as
the attacker. Here, we explain the capabilities rea-
soned for the vulnerability using the LTS shown in
Fig. 9. First, the ZFE of the malicious hub discovers
the victim SDs by sending beaconrequest (from the
state c0 to c13). Then, the ZFE is capable of send-
ing a sequence of unauthorized commands includ-
ing LinkScanRequest1, LinkIdentifyRequest and
LinkNetworkJoinRequest to the victim SD.

Security Property Checking. HOMESCAN finds
whether the malicious hub violates the authorization
property. If this property is violated, then the malicious
hub becomes capable of sending unauthorized commands
to the benign SD. To check this property, HOMESCAN
finds whether the execution of the whole system reaches
the bad state c9 in the LTS (shown in Fig.9) as de-
scribed in the Section 5. The bad state for the property
is identified by the fact that, ZFE receives an ACK for the
EncryptedControlcmd it sends and reaches the state
c9. The malicious ZFE reaches the bad state in three traces.
In the following, we explain one trace marked in red in
Fig.9.

Counter Example. First, the ZFE of the malicious hub
sends the beaconrerequest and receives y (PandID
of the network to which the victim SD is being joined),
z (DeviceID) and AssoPermit (from the state c0
to c14) from the victim SD. Next, the malicious ZFE
sends the unauthorized LinkScanRequest1 to the

15

victim SD. After receiving the LinkScanResponse1
from the victim SD, the malicious ZFE sends
the unauthorized LinkIdentifyRequest and
LinkNetworkJoinRequest to the victim SD. After
receiving the LinkNetworkSuccessResponse,
malicious ZFE sends EncryptedControlcmd to
the victim SD and receives ACK.

Our Investigations. These sequence of messages trig-
ger the TLC of ZLL protocol between the malicious hub
and the victim SD, forcing the SD to disconnect from the
benign ZFE and join the ZFE of the malicious hub.

7 LIMITATIONS

HOMESCAN aims to detect as many security vulnerabili-
ties as possible from the partially available implementa-
tion of smart home integrations. To this end, it extracts
a unified specification of the entire integration. Since our
extraction approach is mainly based on the execution and
communication traces, capturing a complete specification
is infeasible. As a result, false positives may be reported
by the flaw identification. In order to remove these, we
take as future work to automatically construct attack test
cases from the output of the model checker, and execute
them against the system under analysis. This serves as
a flaw confirmation, and the triggered actions and traces
are further given as feedback to HOMESCAN to optimize
the extracted specification.

We demonstrate the use of static analysis and testing
for specification extraction and security issue detection
in smart home integration. Our current approach still
requires interaction from the security analyst during the
specification extraction process. Although the whitebox
analysis and trace analysis can be automated, during
the testing, HOMESCAN requires the security analyst to
interact with the UI of the control app and to perform
actions on physical devices (e.g., press the button on the
hub during pairing process), to trigger the functionalities
of the system. Translating the generated LTS into the
input of the model checker and interpreting the traces
given by the model checker also require manual effort
from the analyst.

8 RELATED WORK

HOMESCAN targets security of the smart home integra-
tion, and thus is related to the research work on specifi-
cation extraction and IoT security.

8.1 Specification Extraction
Extracting models from the implementation/traces is not
a new topic. In the literature, there exist different extrac-
tion approaches and algorithms, such as L* and Adaptive
Discrimination Tree. In particular to security protocols,
Prospex [25] automatically infers protocol specification
from the logs of network traces. Discoverer [26] reverse
engineers the protocol messages from the network traces.
AuthScan [27] extracts the specifications of the authenti-
cation protocols and Ye et al [28] extracts models from the

payment protocol implementations. Aizatulin et al [29]
extract verifiable models from the code of SSL/TLS li-
braries using symbolic execution. Lo et al [30–32] propose
to mine automata models of software from execution
traces.

8.2 IoT Security
The research of IoT security mainly focuses on three
domains, i.e., IoT devices, protocols and platforms.
Security of IoT Devices. Recently, IoTFuzzer [33] was
proposed to find memory corruptions in IoT devices.
To overcome the unavailability of firmware for analysis,
IoTFuzzer uses the control app to manipulate the input
values send to the smart devices, while HOMESCAN
performs dynamic analysis on traffic traces to extract
protocol information in communication with the smart
device. Ho et al. [34] present flaws in the design of smart
locks and show how they lead to unauthorized home
access. Fawaz et al. [35] propose a system that protects
BLE equipped devices from privacy leakages during the
device discovery. Das et al. [36] have discovered privacy
leakage in BLE network traffic of wearable fitness track-
ers.
Security of IoT Protocols. Ronen et al. [37] discover a
worm attack against Philips Hue lamps by exploiting
the ZigBee protocol. Zilliner et al. [38] show that the
actual implementations of ZigBee certified smart devices
have insufficient security controls. Santos et al. [39] reveal
the information leakage on ZigBee network and propose
countermeasures. Fouladi et al. [40] demonstrate that
proprietary Z-Wave protocol vulnerabilities could lead
to remote unlocking of locks. Siby et al. [41] propose
IoTScanner which provides an overview of operations in
all observed wireless networks. Choi et al. [42] develop
an automatic spoofer tool which reconstructs protocols
over IEEE 802.15.4. Compared with these studies, our
work focuses more on the application layer of the in-
tegration of such protocols which may introduce novel
attacks.
Security of IoT Platforms. Safechain [43] detects hid-
den attack chains by exploiting combinations of rules in
trigger-action platforms. Although Safechain model the
IoT environment, their abstraction is in terms of the status
of the devices and automation rules, while HOMESCAN
models the communication protocol. Bu et al. [44] also
propose an approach to find problems when executing
automation rules in an IoT system using model checking
and verification. However, to generate the model the
authors assume the availability of device specification in
a given format, while in HOMESCAN specification extrac-
tion is done from a given implementation. Jia et al. [5]
propose a context-based permission system for applied
IoT platforms. Fernandes et al. [45] propose Fernandes
et al. [17] demonstrate that CP applications could be
exploited by evaluating the security design of Samsung
SmartThings framework. AutoTap [46] provides a plat-
form to ease property specification. The existing studies
mainly focus on the application frameworks, which is
part of our consideration in our work.

16

9 CONCLUSION

We present HOMESCAN, a semi-automatic approach to
extract the abstract specification of the application-layer
protocol and internal behaviors of smart home systems
from their implementations, whereby it is possible to
conduct an end-to-end security analysis against various
practical attack models. Using HOMESCAN, we have
found twelve security vulnerabilities from three real-
world smart home systems. Our work has demonstrated
the necessity of considering the security issues in IoT
systems from the perspective of integration.
Acknowledgment. This work is supported by the Na-
tional Research Foundation, Prime Minister’s Office, Sin-
gapore under its National Cybersecurity R&D Program
(TSUNAMi project, Award No.NRF2014NCR-NCR001-
21) and administered by the National Cybersecurity R&D
Directorate, and the Corporate Laboratory@University
Scheme, National University of Singapore, and Singapore
Telecommunications Ltd.

REFERENCES

[1] K. Mahadewa, K. Wang, G. Bai, L. Shi, J. S. Dong,
and Z. Liang, “Homescan: Scrutinizing implementa-
tions of smart home integrations,” in ICECCS, 2018,
pp. 21–30.

[2] Y. Oren and A. D. Keromytis, “From the Aether to
the Ethernet-Attacking the Internet using Broadcast
Digital Television,” in USENIX Security, 2014, pp.
353–368.

[3] K. Townsend, “Attacking smart TVs ,” http:
//itsecurity.co.uk/2014/06/attacking-smart-tvs/,
2017.

[4] Y. Michalevsky, S. Nath, and J. Liu, “Mashable:
mobile applications of secret handshakes over blue-
tooth le,” in MobiCom, 2016, pp. 387–400.

[5] Y. J. Jia, Q. A. Chen, S. Wang, A. Rahmati, E. Fer-
nandes, Z. M. Mao, and A. Prakash, “Contexiot:
Towards providing contextual integrity to appified
iot platforms,” in NDSS, 2017.

[6] I. Bastys, M. Balliu, and A. Sabelfeld, “If this then
what?: Controlling flows in iot apps,” in CCS, 2018,
pp. 1102–1119.

[7] Z. B. Celik, L. Babun, A. K. Sikder, H. Aksu, G. Tan,
P. McDaniel, and A. S. Uluagac, “Sensitive informa-
tion tracking in commodity iot,” in USENIX Security,
2018, pp. 1687–1704.

[8] Z. B. Celik, G. Tan, and P. McDaniel, “IoTGuard:
Dynamic enforcement of security and safety policy
in commodity IoT,” in NDSS, 2019.

[9] W. Ding and H. Hu, “On the safety of iot device
physical interaction control,” in CCS, 2018, pp. 832–
846.

[10] E. Fernandes, A. Rahmati, J. Jung, and A. Prakash,
“Decentralized Action Integrity for Trigger-Action
IoT Platforms,” in NDSS, 2018.

[11] R. M. Keller, “Formal verification of parallel pro-
grams,” Communications of the ACM, vol. 19, pp. 371–
384, 1976.

[12] HomeScan. https://sites.google.com/view/
homescandemo/home.

[13] Samsung SmartThings. http://
www.samsung.com/us/smart-home/.

[14] HomeGenie. https://genielabs.github.io/
HomeGenie/.

[15] M. M. Hossain, M. Fotouhi, and R. Hasan, “Towards
an analysis of security issues, challenges, and open
problems in the internet of things,” in IEEE SER-
VICES, 2015, pp. 21–28.

[16] T. Denning, T. Kohno, and H. M. Levy, “Computer
security and the modern home,” Communications of
the ACM, vol. 56, pp. 94–103, 2013.

[17] E. Fernandes, J. Jung, and A. Prakash, “Security
analysis of emerging smart home applications,” in
IEEE S&P, 2016, pp. 636–654.

[18] H. Ryu and J. Kwak, “Secure data access control
scheme for smart home,” in Ubicomp, 2015, pp. 483–
488.

[19] S. Sicari, A. Rizzardi, L. Grieco, and A. Coen-
Porisini, “Security, privacy and trust in internet of
things: The road ahead,” Computer Networks, pp. 146
– 164, 2015.

[20] O. Mouaatamid, M. Lahmer, and M. Belkasmi, “In-
ternet of things security: Layered classification of
attacks and possible countermeasures,” Electronic
Journal of Information Technology, 2016.

[21] P. den Dunnen. Philips. http://
www.newsroom.lighting.philips.com/news/
2017/20170831-philips-hue-marks-5th-birthday-
with-new-products-and-entertainment-capability.

[22] Xposed. http://repo.xposed.info/.
[23] J. Sun, Y. Liu, J. S. Dong, and J. Pang, “Pat: Towards

flexible verification under fairness,” in CAV, 2009,
pp. 709–714.

[24] H. Moore, “Security flaws in universal plug and
play: Unplug. don’t play,” https://hdm.io/writing/
SecurityFlawsUPnP.pdf.

[25] P. M. Comparetti, G. Wondracek, C. Kruegel, and
E. Kirda, “Prospex: Protocol specification extrac-
tion,” in IEEE S&P, 2009, pp. 110–125.

[26] W. Cui, J. Kannan, and H. J. Wang, “Discoverer: Au-
tomatic protocol reverse engineering from network
traces,” in USENIX Security, 2007, pp. 14:1–14:14.

[27] G. Bai, J. Lei, G. Meng, S. S. Venkatraman, P. Saxena,
J. Sun, Y. Liu, and J. S. Dong, “Authscan: Automatic
extraction of web authentication protocols from im-
plementations.” in NDSS, 2013.

[28] Q. Ye, G. Bai, K. Wang, and J. S. Dong, “Formal
analysis of a single sign-on protocol implementation
for android,” in ICECCS, 2015, pp. 90–99.

[29] M. Aizatulin, A. D. Gordon, and J. Jürjens, “Ex-
tracting and verifying cryptographic models from c
protocol code by symbolic execution,” in CCS, 2011,
pp. 331–340.

[30] D. Lo and S.-C. Khoo, “Smartic: Towards building an
accurate, robust and scalable specification miner,” in
FSE, 2006, pp. 265–275.

17

[31] T. D. B. Le and D. Lo, “Deep specification mining,”
in ISSTA, 2018, pp. 106–117.

[32] T.-D. B. Le, X.-B. D. Le, D. Lo, and I. Beschastnikh,
“Synergizing specification miners through model
fissions and fusions (t),” in IEEE ASE, 2015, pp. 115–
125.

[33] J. Chen, W. Diao, Q. Zhao, C. Zuo, Z. Lin, X. Wang,
W. C. Lau, M. Sun, R. Yang, and K. Zhang,
“Iotfuzzer: Discovering memory corruptions in iot
through app-based fuzzing.” in NDSS, 2018.

[34] G. Ho, D. Leung, P. Mishra, A. Hosseini, D. Song,
and D. Wagner, “Smart locks: Lessons for securing
commodity internet of things devices,” in ASIACCS,
2016, pp. 461–472.

[35] K. Fawaz, K.-H. Kim, and K. G. Shin, “Protecting
privacy of ble device users,” in USENIX Security,
2016, pp. 1205–1221.

[36] A. K. Das, P. H. Pathak, C.-N. Chuah, and P. Moha-
patra, “Uncovering privacy leakage in ble network
traffic of wearable fitness trackers,” in HotMobile,
2016, pp. 99–104.

[37] E. Ronen, A. Shamir, A.-O. Weingarten, and
C. O’Flynn, “Iot goes nuclear: Creating a zigbee
chain reaction,” in IEEE S&P, 2017, pp. 195–212.

[38] T. Zillner and S. Strobl, “Zigbee exploited: The good
the bad and the ugly,” in Black Hat, 2015.

[39] J. Dos Santos, C. Hennebert, and C. Lauradoux,
“Preserving privacy in secured zigbee wireless sen-
sor networks,” in WF-IoT, 2015, pp. 715–720.

[40] B. Fouladi and S. Ghanoun, “Honey, i’m home !!-
hacking z-wave home automation systems,” in Black
Hat, 2013.

[41] S. Siby, R. R. Maiti, and N. O. Tippenhauer, “Iotscan-
ner: Detecting privacy threats in iot neighborhoods,”
in IoTPTS, 2017, pp. 23–30.

[42] K. Choi, Y. Son, J. Noh, H. Shin, J. Choi, and Y. Kim,
“Dissecting customized protocols: Automatic analy-
sis for customized protocols based on ieee 802.15.4,”
in ACM WiSec, 2016, pp. 183–193.

[43] K.-H. Hsu, Y.-H. Chiang, and H.-C. Hsiao,
“Safechain: Securing trigger-action programming
from attack chains,” IEEE Transactions on Information
Forensics and Security, 2019.

[44] L. Bu, W. Xiong, C.-J. M. Liang, S. Han, D. Zhang,
S. Lin, and X. Li, “Systematically ensuring the con-
fidence of real-time home automation iot systems,”
ACM Transactions on Cyber-Physical Systems, vol. 2,
no. 3, p. 22, 2018.

[45] E. Fernandes, J. Paupore, A. Rahmati, D. Simionato,
M. Conti, and A. Prakash, “Flowfence: Practical
data protection for emerging iot application frame-
works,” in USENIX Security, 2016, pp. 531–548.

[46] L. Zhang, W. He, J. Martinez, N. Brackenbury, S. Lu,
and B. Ur, “AutoTap: synthesizing and repairing
trigger-action programs using LTL properties,” in
ICSE, 2019, pp. 281–291.

GLOSSARY
TABLE 8: The Glossary of Terms and Abbreviations

Term/
Abbreviation

Description

A

a Name of action in AC
A A set of Actions in LTS
AC An Action Information (u, a,X)
ACSeq A sequence of Action Inofrmation
API Application Programming Interface
AST Abstract Syntax Tree

B BR A Set of Branch

C

C Constant Terms
C A set of Configurations
ch A channel in CH
CH A set of Channels
CP Control Point

D DFS Depth-First Search
dT Domain Type

E
EL A set of Execution Logs
EV Extracted Value
EVSet A set of Extracted Values in TR

F F Function Terms

G GEVSet Global set EVSet
GS Google Server

H HS HTTP Server
HTTP HyperText Transfer Protocol

I

id/ID The Identity
IK A set of Initial Knowledge
IoT Internet of Things
IP Internet Protocol

K k Symmetric Key Term

L
lc Local Communication
LAN Local Area Network
LTS Labelled Transition System L = (S, s0,A,→)

M
MDNS Multicast DNS
msg A concatenation of Terms (A message)
message PlainText (Term)

N NS Knowledge Set of Attacker

P

P A set of Entities
PI Protocol Information
PIL A list of Protocol Information
PS A set of Programs

R R A set of Receivers of TR

S

S A set of States in LTS
S1 Discovery Stage
S2 Authentication Stage
S3 Control Stage
SD Smart Device
SDK System Development Kit
se Sender of TR

T

t Type of EV
T Terms
TC A set of Test Cases
TLC Touch Link Commissioning
Tr A set ot Transitions in LTS
TR A Transaction
TRSet A set of Transactions

U
u Entity which perform the action in AC
UDP User Datagram Protocol
UPnP Universal Plug and Play

V v Value in EV
V Variable Terms

X X A set of Terms in AC

Z ZFE ZigBee Front End
ZLL ZigBee Light Link

Kulani Mahadewa received the bachelor’s de-
gree in Information Technology from University
of Moratuwa, Sri Lanka, in 2013. She is currently
a Ph.D. candidate with the Department of Com-
puter Science, National University of Singapore.
Her research interests include IoT security and
privacy, program analysis, and protocol verifica-
tion.

18

Kailong Wang received the bachelor’s degree
in Electrical and Electronics Engineering from
Nanyang Technological University, in 2015. He
is currently a Ph.D. candidate and a Research
Assistant with the Department of Computer Sci-
ence, National University of Singapore. His re-
search interests include IoT and web security
and privacy analysis.

Guangdong Bai received the bachelor’s and
master’s degrees in computer science from
Peking University, China, in 2008 and 2011, re-
spectively, and the Ph.D. degree in computer sci-
ence from the National University of Singapore
in 2015. He is now a Senior Lecturer with the
University of Queensland. His research interests
include cyber security, protocol verification, and
software engineering.

Ling Shi received the bachelor’s degree from
Institute of Software Engineering, East China
Normal University, China and the PhD degree
from School of Computing, National University of
Singapore. She is a research scientist in School
of Information System, Singapore Management
University. Her research interests include formal
semantics, software/system modeling and verifi-
cation, and IoT security.

Yan Liu received the bachelor’s degree in com-
puter science from Southeast University, China,
in 2009, and the Ph.D. degree from National
University of Singapore in 2014. She is now a
Senior Engineer with Ant Financial-Blockchain
Platform. Her research interests include model
checking, programming language, IoT and cyber
security.

Jin Song Dong received the bachelor’s (First
Class Hons.) and Ph.D. degrees in computing
from the University of Queensland in 1992 and
1996, respectively. From 1995 to 1998, he was a
Research Scientist with CSIRO Australia. Since
1998, he has been with the School of Com-
puting, National University of Singapore, where
he received full professorship in 2016. He is on
the Editorial Board of the ACM Transactions on
Software Engineering and Methodology and the

Formal of Computing.

Zhenkai Liang received the B.S. degree from
Peking University in 1999 and the Ph.D. degree
from Stony Brook University in 2006. He is cur-
rently an Associate Professor with the Depart-
ment of Computer Science, National University
of Singapore. His research interests include soft-
ware security, web security, and mobile security.

