
BesFS: Mechanized Proof of an Iago-Safe Filesystem for Enclaves
Shweta Shinde∗

National University of Singapore
shweta24@comp.nus.edu.sg

Shengyi Wang∗
National University of Singapore

shengyi@comp.nus.edu.sg

Pinghai Yuan
National University of Singapore
yuanping@comp.nus.edu.sg

Aquinas Hobor
National University of Singapore &

Yale-NUS College
hobor@comp.nus.edu.sg

Abhik Roychoudhury
National University of Singapore

abhik@comp.nus.edu.sg

Prateek Saxena
National University of Singapore

prateeks@comp.nus.edu.sg

ABSTRACT
New trusted computing primitives such as Intel SGX have shown
the feasibility of running user-level applications in enclaves on a
commodity trusted processor without trusting a large OS. However,
the OS can compromise the integrity of the applications via the
system call interface by tampering the return values. This class of
attacks (commonly referred to as Iago attacks) have been shown to
be powerful enough to execute arbitrary logic in enclave programs.
To this end, we present BesFS — a formal and provably Iago-safe
API specification for the filesystem subset of the POSIX interface.
We prove 118 lemmas and 2 key theorems in 3676 lines of CoQ
proof scripts, which directly proves safety properties of BesFS im-
plementation. BesFS API is expressive enough to support 17 real
applications we test, and this principled approach eliminates sev-
eral bugs. BesFS integrates into existing SGX-enabled applications
with minimal impact to TCB (less than 750 LOC), and it can serve
as concrete test oracle for other hand-coded Iago-safety checks.

1 INTRODUCTION
Existing computer systems encompass millions of lines of complex
operating system (OS) code, which is highly susceptible to vulnera-
bilities, trusted by all user-level applications. In the last decade, a
line of research has established that trusting an OS implementation
is not necessary. Specifically, new trusted computing primitives
(e.g. Intel SGX [59], Sanctum [29], PodArch [74], Bastion [19]) have
shown the feasibility of running user-level applications on a com-
modity trusted processor without trusting a large OS. These are
called enclaved execution primitives, using the parlance introduced
by Intel SGX — a widely shipping feature in commodity Intel pro-
cessors today. Applications on such systems run isolated from the
OS in a region of CPU-protected memory called an enclave; the
adversary model defeated by individual designs vary (see [28, 58]).

The promise of enclaving systems is to minimize the trusted code
base (TCB) of a security-critical application. Ideally, the TCB can be
made boiler-plate and small enough to be formally verified to be free
of vulnerabilities. Towards this vision, recent works have formally
specified and checked the interfaces between the enclave and the
CPU [30, 80], as well as verified confidentiality properties of an
application [77, 78]. One critical gap remains unaddressed: verifying
the integrity of the application from a hostile OS. Applications
are increasingly becoming easier to port to enclaves [13, 21, 73];
however, these legacy applications optimistically assume that the

∗ These joint first authors contributed equally to this work.

OS is benign. A hostile OS, however, can behave arbitrarily violating
assumptions inherent in the basic abstractions of a process or files,
and exchange malicious data with the application. This threat is
well-known, originally identified by Ports and Garfinkel as system
call tampering [65], and more recently discussed as Iago attacks [22].

A number of enclave execution platforms have recognized this
channel of attack, but left specifying the necessary checks out of
scope. For instance, systems such as Haven [13], Panoply [73],
Graphene-SGX [21], and Scone [12] built on Intel SGX have alluded
to syscall tampering defense as an important challenge; however,
none of these systems claim a guaranteed defense. One of the rea-
sons is that a hostile OS can deviate from the intended behavior in
so many ways, and reasoning about a complete set of checks that
suffices to capture all attacks is difficult.

In this work, we take a step towards a formally verified TCB to
protect integrity of enclaves against a hostile OS. To maximize the
eliminated attack surface and compatibility with existing OSes, we
propose to safeguard at the POSIX system call interface. We scope
this work to the filesystem subset of the POSIX API. Our main
contribution is BesFS— a POSIX-compliant filesystem specification
with formal guarantees of integrity, and a machine-checked proof
of its implementation. Client applications running in SGX enclaves
interact with a commodity (e.g., Linux) OS via our BesFS imple-
mentation, running as a library (see Figure 1). Applications use the
POSIX filesystemAPI transparently (see Table 1), requiring minimal
integration changes. Being formally verified, BesFS specifications
and implementation can further be used to test implementations of
existing platforms based on SGX and similar primitives.
Challenges & Approach. The main set of challenges in develop-
ing BesFS are two-fold. The first challenge is in establishing the
“right” specification of the filesystem interface, such that it is both
safe (captures well-known attacks) and admits common benign
functionality. To show safety, we outline several known syscall
tampering attacks and prove that BesFS interface specification de-
feats at least these attacks by its very design. The attacks defeated
are not limited to identified list here — in fact, any deviations from
the defined behavior of the BesFS interface is treated as a violation,
aborting the client program safely. To address compatibility, we
empirically test a number of real-world applications and bench-
marks with a BesFS-enhanced system for running SGX applications.
These tests show no impact on compatibility, which bolsters our
claim that the BesFS specification is rich enough to run practical ap-
plications on commodity OS implementations. The BesFS API has
only 13 core operations. However, it is accompanied crucially by a

1

ar
X

iv
:1

80
7.

00
47

7v
1 

 [
cs

.C
R

] 
 2

 J
ul

 2
01

8



composition theorem that safeguards chaining all combinations of
operations, making extensions to high-level APIs (e.g., libc) easy.

The second challenge is in the execution of the proof of the
BesFS implementation itself. Our proof turns out to be challenging
because the properties require higher-order logic (hence the need
for Coq) and reasoning about arbitrary behavior at points at which
the OS is invoked. Specifically, the filesystem is modeled as a state-
transition system where each filesystem operation transitions from
one state to another. A number of design challenges arise (Section 4)
in handling a stateful implementation in the stateless proof system
of Coq, and uncovering inductive proof strategies for recursive data
structures used in the BesFS implementation. These proof strategies
are more involved than those applied automatically by Coq.
Results. Our Coq proof comprises of 118 theorems and 3676 LOC
while our implementation of BesFS is 1449 LOC in size. We add
724 LOC for application stubs and compatibility with enclave code.
We demonstrate the expressiveness of BesFS by supporting 17 ap-
plications. We show that BesFS is compatible with state-of-the-art
filesystems. It is fully compatible with a large array of benchmarks
we tested. It also aids in finding implementation mistakes. We hope
BesFS serves as a specification for future optimizations and hand-
coded implementations to be tested against.
Contributions.We make the following contributions:

• We formally model the class of attacks that the OS can
launch against SGX enclaves via the filesystem API; and
develop a complete set of specifications to disable them.

• We present BesFS — a formally verified set of API imple-
mentations which are machine-check for their soundness
w.r.t. API specifications. Our auto-generated run-time mon-
itoring mechanism ensures that the runs of the concrete
filesystem stay within the envelope of our specification.

• We prove 118 lemmas and 2 key theorems in 3676 lines
of CoQ proof scripts and evaluate correctness, compatibil-
ity and expressiveness of BesFS over a set of 17 applica-
tions from real-world programs from SPEC CINT 2006 and
filesystem benchmarks to eliminate several bugs.

2 PROBLEM
There has been long-standing research on protecting the OS from
user-level applications [45]. In this work, the threat model is re-
versed; the applications demand protection from the OS kernel. We
briefly review the specifics of Intel SGX, on which our system is
built, and highlight the need for a formal approach to safety.

2.1 Background & Setup
Intel SGX provides a set of CPU instructions which can protect
selected parts of user-level application logic from an untrusted op-
erating system. Specifically, the developer can encapsulate sensitive
logic inside an enclave. When the hardware starts to execute the
enclave, it creates a protected virtual address space for the enclave.
The CPU allocates protected physical memory from Enclave Page
Cache (EPC) that backs the enclave main memory; and its content is
encrypted in the main memory (RAM). Only the owner enclave can
access its EPC pages at any point during execution. The hardware
does not allow any other process or the OS to access or modify

OS																(e.g.,	Linux)	

File	system	(e.g.,	EXT4)	

BesFS		Library	

Application	Enclave	

Machine-
checked	
Code	

Machine-
generated		
Proof	

Coq	Theorem	
Prover	

BesFS	
Implementation	

BesFS	
Specification	

Syscall	Stubs	

Compiled 
Binary 

Figure 1: BesFSOverview. Thick black and dotted outline rep-
resents trusted and untrusted components respectively.

code and data inside the enclave’s boundary. Interested readers can
refer to [28] for full details.

Due to the strict memory protection, unprotected instructions
such as syscall are illegal inside the enclave. However, the appli-
cation can use out calls (OCALLs) to executes system calls outside
the enclave. The enclave code copies the OCALL parameters to the
untrusted partition of the application, which in turn calls the OS
system call, collects the return values and passes it back to the en-
clave. When the control returns to the enclave, the enclave wrapper
code copies the syscall return values such as buffers from the un-
trusted memory to the protected enclave memory. This mechanism
facilitates interactions between the enclave and non-enclave logic
of an application. Almost all enclave applications need to dispatch
OCALLs either for standard APIs such as syscalls or for application-
specific operations. To save developer time, the Intel’s Software
Development Kit for SGX (SGX SDK [3]) provides a boilerplate
code and tools to generate the OCALL wrapper code. The developer
can provide the type signature for the function call, and the SDK
generates the wrapper code and switch-case from the type-based
templates (using Edger8r tool [2]).

Enclaves ensure that the control from untrusted execution re-
turning inside the enclave enters at the right entry points via the
ENCLU[EENTER] and ENCLU[ERESUME] instructions [59]. This safety
mechanism prevents the OS from resuming the enclave at arbitrary
points and execute arbitrary sequences of logic inside the enclave.
All the OCALLs have to use ENCLU[ERESUME] instruction to re-enter
the enclave. For simplicity, SGX SDK consolidates all entry and exit
points of the enclave into just a few selected locations. The SGX
SDK internally creates a large switch-case statement for handling
of different OCALLs and ECALL exits and entries respectively. To this
end, the SGX SDK provides a helper function sgx_ocall which
wraps the usage of ENCLU [ERESUME] instruction. It takes in the
number of the OCALL as a parameter and uses it to select the right
switch case. When the OCALL returns, the same number is used to
un-marshal the return values.
Syscall Parameter Tampering. This is a broad class of attacks
and has been inspected in various aspects by Ports andGarfinkel [65];
a specific subclass of it is called as Iago attacks [22]. Ports-Garfinkel
first showed system call tampering attacks for various subsystems
such as filesystem, IPC, process management, time, randomness and
I/O. For file content and metadata tampering attacks, their paper
suggested defenses such as maintaining protection metadata such
as a secure hash for pages in the file along protected by MAC and

2



freshness counter stored in the untrusted guest filesystem. For file
namespace management they proposed using a trusted, protected
daemon to maintain a secure namespace which maps a file’s path-
name to the associated protection metadata. This way, verifying
if OS return values are correctly computed would be easier than
undertaking to compute them. An added benefit is that the TCB
of such a trusted monitoring mechanism for the untrusted kernel
is smaller. The recent work on Iago attacks shows a subclass of
concrete attacks on these interfaces thus highlighting that verifica-
tion of return values is non-trivial for complex kernel tasks such
as managing virtual memory. Iago attacks demonstrate that verify-
ing return values may require the supervisor to have a complete
understanding of a kernel’s memory management algorithms and
data structures. In this paper, our focus is on the filesystem subset.
Further, we concentrate mainly on enclave-like systems, but our
work applies equally well to other systems [27, 41].
Threat to Existing Systems.Note that all systems such asHaven [13],
Scone [12], Panoply [73], Graphene-SGX [21] which use either SDK
or hand-code OCALL wrappers must address syscall parameter tam-
pering attacks. All the systems are upfront in acknowledging this
gap and employ ad-hoc checks for each API to address a subset of
attacks. See Appendix A.1 for the informal claims made by prior
works. Integrity preserving filesystems [9] and formally testing if
a filesystem abides by POSIX semantics [66] are a stepping stone
towards our goal, but their designs do not reason about intentional
deviations by the untrusted OS.

2.2 Attacks
We demonstrate two representative attack capabilities on state-of-
the-art enclave systems to motivate why a provable implementation
(down to the details) is important: (a) executing arbitrary code inside
the enclave using low-level memory exploits [22, 52] (b) subverting
the integrity of the enclave operation by violating the high-level
syscall semantics [65].
1 //enclave.c
2 char* buf = malloc(sizeof(char) * 100);
3 int status = ocall_fread(buf, 100, 1, fd);
4 //update buf
5 status = ocall_fwrite(buf, 100, 1, fd);
6 }
7 //ocall-helper.c
8 sgx_status_t SGX_CDECL ocall_fread(size_t* retval, void* ptr, size_t size,

size_t nmemb, FILE ..) {
9 ...
10 ms->ms_size = size;
11 ms->ms_nmemb = nmemb;
12 ms->ms_FILESTREAM = FILESTREAM;
13 status = sgx_ocall(FREAD, ms); //FREAD is pragma for fread in switch case
14 if (retval) *retval = ms->ms_retval;
15 if (ptr) `memcpy((void*)ptr, ms->ms_ptr, _len_ptr);`
16 sgx_ocfree();
17 return status;

Listing 1: Intel SGX SDK’s enclave OCALL mechanism.

Low-level Attacks. Listing 1 shows an example of OCALL mecha-
nism for fread call generated by the Intel SGX SDK [3]. At line 13
the enclave wrapper code calls the untrusted fread function which
executes outside the enclave. The results generated by the fread
call are copied into the enclave on line 15. The onus of checking
the buffer sizes of such untrusted OCALL return values lies on the
enclave wrapper code. In our example, line 15 has a buffer over-
flow in the read system call because the SDK leaves such checks

to be implemented by the client application by definition. As re-
cently demonstrated, this buffer overflow can be used to corrupt
the enclave stack and launch expressive attacks such as ROP on
the enclave logic [52]. The OS can also leverage more sophisticated
attacks such as data-corruption [42] to overwrite the OCALL num-
ber inside the enclave memory during un-marshaling. With such a
corruption, the OS can fake a return from of a different system call.
Once the OS jumps to the right OCALL return inside the enclave, the
enclave starts executing the logic following the wrong OCALL return.
In fact, the OS can chain enough of such OCALL return gadgets to
program arbitrary logic, depending on client logic [43, 52].
High-level Attacks. Consider an application where the enclave is
executing an anti-virus scan which white-lists user files. Listing 2
shows a code snippet of such an enclave function. It reads in the
names of the suspicious files (line 4) and opens each file (line 8).
The function inspect on line 9 then checks the signature of the
file against a white-list and returns a value 0 or 1. The enclave then
creates a new report file for logging results for each scanned file
(line 12). If the file is marked benign the enclave writes safe to the
.log file (line 13), else it writes malicious (line 14). The enclave is
supposed to protect the signature files, ensure complete inspection
of the suspicious files and safe logging of the scan results. However,
a malware-infected OS might deviate from the expected filesystem
semantics and cause the malware file to be falsely white-listed in
the following ways:
1 char list[MAXBUFSIZ], logname[BUFSIZ];
2 FILE* l, fd, logname;
3 l = `fopen` ("list_of_suspicious_files", r);
4 int err = `fread` (l, list, ... );
5 if (!err) {
6 //process each new line entry in the list
7 for (f = getline(list)) {
8 fd = `fopen` (f);
9 result = inspect(fd);
10 strcpy (logname, f);
11 strcat (logname, ".log");
12 log = `fopen` (logname);
13 if (result == 0) `fwrite` (log, "safe");
14 else `fwrite` (log, "malicious");
15 }
16 else
17 //report that scan was successful

Listing 2: Code snippet of client enclave logic for anti-
virus scanner to whitelist user files.

(A1) Paths & File Descriptor Mismatch. The OS can use the
wrong file paths, wrong permissions or wrong file names. In our
example, the OS can trick the enclave into believing that it is scan-
ning a different file on line 8 by opening say a safe file file4956
instead of a malicious file4444. This tricks the enclave to write
the scan results of the wrong file in the log and the OS succeeds in
marking the malicious file4444 as safe. Alternatively, the OS can
swap file descriptors on line 9 in order to redirect all file operations
to a file of its choice. So, on line 13 − 14 instead of writing "safe"
and "malicious" to file4956 and file4444 respectively, it can
swap the descriptors. Thus the enclave ends up marking the file
file4444 as safe.
(A2) Size Mismatch. The OS can violate the size requested in the
operations by increasing or decreasing the size of the buffers. For ex-
ample, on line 4, instead of returning ["file4956", "file4345",
"file1538"], the fread call returns ["file4956", "file4345"]
to bypass the checks for "file1538".

3



(A3) Iago Attacks on File Content.Apart from simple parameter
tampering, the OS can do subtle attacks at the memory mapping
layer for file content. This includes (a) mapping multiple file blocks
of the same or different files to single physical block (b) read/write
content from/to the wrong offset or block (c) misalign the sequence
of file blocks in a file. In our example, the OS can mark any file
with any tag it wants by manipulating the file to block mapping
in the above ways. If the last file to be scanned is file4956 and
it is safe, then the enclave is about to write the tag safe in the
file file4956.log on line 13. At this point, the OS can map the
blocks of all the .log files to a single physical block. Thus, when
the enclave writes to file4956.log, the safe tag is written to all
the .log files. The OS can do similarly file-to-block manipulation
attacks as and when it desires to achieve arbitrary effects.
(A4) Error Code Manipulation. The OS can change the error
codes returned by the filesystem and force the enclave to take a
different control-flow path in its execution. In our example on line
4, the enclave checks if there was an error while reading the list of
suspicious files that it wants to scan. If the enclave encounters an
error, it simply reports that the scan succeeded (line 17), with zero
malicious file warnings. The OS can intentionally send the error
code indicating the file does not exist and thus bypass the checks
from line 6 − 15. Note that this attack is more than just denial of
service because the OS does return back an error value (so it does
not deny the service), but it misrepresents filesystem state.

We do not claim to be the first to showcase these attacks. Further,
our list of attacks is not exhaustive. They aremerely a representative
of the intractably large number of ways the OS can cheat, depending
on the logic of the client application. Thismotivates a strong defense
which not only strictly defines an acceptable behavior but also flags
all violations as potentially dangerous.

3 BESFS DESIGN
All the classes of filesystem API attacks covered in Section 2.2 stem
from the fact that the OS can deviate from its expected semantics.
This, in turn, leads to exploitable behavior inside the enclave.

3.1 Approach
Attacks on an enclaved application can arise at multiple layers of
the filesystem stack (Appendix A.2). Our choice of BesFS API to for-
mally proof-check is guided by the observation that the higher the
layer we safeguard, the larger the attack surface we can eliminate,
and the more implementation-agnostic the BesFS API becomes.
One could include all the layers including the disk kernel driver,
where content is finally mapped to persistent storage, in the enclave.
Enforcing safety at this interface will require simply encrypting/de-
crypting disk blocks with correct handling for block positions [51].
Alternatively, one could include a virtual filesystem management
layer, which maps file abstractions to disk blocks and physical page
allocations, in the enclave — as done in several LibraryOS systems
like Graphene-SGX [13, 21]. To ensure safety at this layer, the model
needs to reason about simple operations (reads, writes, sync, and
metadata management). Further up, one could design to protect at
the system call layer, leaving all of the logic for a filesystem (e.g.,
journaling, physical page management, user management, and so

on) outside the enclave. However, this still includes the entire li-
brary code (e.g. the libc logic) which manages virtual memory of
the user-level process (heap management, allocation of user-level
pages to buffers and file-backed pages). This is about 1.29 MLOC in
glibc and 88 KLOC in musl-libc, for instance. Once we include
such a TCB inside the enclave, we either need to prove its imple-
mentation safety or trust it with blind faith. We decide to model
our API above all of these layers, excluding them from the TCB.

BesFS models the POSIX standard for file sub-system. POSIX is
a documented standard, with small variations across implementa-
tions on various OSes [66]; in contrast, many of the other layers
do not have such defined and stable interfaces. At the POSIX layer,
BesFS models the file/directory path structures, file content layouts,
access rights, state metadata (file handles, position cursors, and so
on). Specifically, BesFS ensures safety without the need to model
virtual-to-physical memory management, storage, specifics of ker-
nel data structures for namespace management (e.g., Linux inode,
user groups), and so on. BesFS is thus generic and compatible with
different underlying filesystem implementations (NFS, ext4, and
so on). Further, this choice of API reduces the complexity of the
proofs as they are dispatched for simpler data structures.
Solution Overview. BesFS is an abstract filesystem which ensure
that the OS follows the semantics of a benign filesystem i.e., the OS
is exhibiting a behavior which is observationally equivalent to a
good OS. This way, instead of enlisting potentially an infinite set
of attacks, we define a good OS and deviation from it is catego-
rized as an attack from a compromised or a potentially malicious OS.
Specifically, our definition of a good OS includes POSIX-compliance
and a set of safety properties expected from the underlying filesys-
tem implementation. We design a set of 13 core filesystem APIs
along with a safety specification. Table 1 shows this BesFS POSIX-
compliant interface, which can be invoked by an external client
program running in the SGX enclave. It has a set of methods, states,
and safety properties (SP1-SP5 and TP1-TP13) defined in Section 3.2.
Each method operates on a starting state (implicitly) and client
program inputs. The safety properties capture our definition of a
benign OS behavior. Empirically, we show in Section 6 that the real
implementations of existing OS, when benign, satisfy the BesFS
safety properties — the application executes with the BesFS in-
terface as it does with direct calls to the OS. Further, the safety
properties reject any deviations from a benign behavior, which at
least includes all the attacks outlined in Section 2.2.

The safety provided is proven to be compositional. First, the state
safety properties (SP1-SP5) ensure that if we invoke a BesFS core
API operation in a good (safe) state, we are guaranteed to resume
control in the application in a good state. Second, we show that calls
are chainable, i.e., the good state after a call can be used as an input
to any of the BesFS calls, through a set of safe transition properties
(TP1-TP13). This compositionality is crucial to allow executions of
benign applications which make a potentially infinite set of calls;
further, one can model higher level API (e.g. the fprintf interface
in libc) by composing two or more BesFS API operations.
Scope. BesFS aims strictly at integrity property; it does not claim
any guarantees about the privacy and the confidentiality of the file
operations. A number of side-channels and hardware mistakes are
known which impact the confidentiality guarantees of SGX [82, 84].

4



Out of 118 lemmas in BesFS, only one lemma assumes the correct-
ness of the cryptographic operations. Specifically, BesFS assumes
the secrecy of its AES-GCM key used to ensure the integrity of
the filesystem content. Our lemma assumes that the underlying
cryptography does not allow the adversary to bypass the integrity
checks by generating valid tags for arbitrary messages. Further, we
assume that the adversary does not know the AES-GCM key used
by the enclave to generate the integrity tags.

3.2 BesFS Interface
BesFS interface is a state transition system. Specifically, it defines a
set of valid filesystem states and methods to move from one state
to another. While doing so, BesFS also dictates which transitions
are valid by a set of transition properties.
State. BesFS has a set of type variables (denoted in sans-serif font
type) which together define a state. Specifically, BesFS state com-
prises valid paths in the filesystem (P), mapping from paths to file
and directory identifiers and metadata (N ), a set of open files (O)
and the memory map of file content (M).

All file and directory paths that exist in the filesystem are cap-
tured by path set P, where Path represents the data type path.

P B {p | p : Path}
A directory path type can be specifically denoted by PDir, whereas
a file path type is denoted by PFile. We also define the Parent
operator which takes in a path and returns the parent path. For
example, if the path p is /foo/bar/file.txt, then Parent(p) gives
the parent path /foo/bar.

BesFS captures the information about the files and directories
via the node map N . Thus, BesFS associates an identifier to each
file and directory for simplifying the operations which operate on
file handles instead of paths. We represent the user read, write
and execute permissions by Permission. The size field for a file
signifies the number of bytes of file content. For directories, the
size is supposed to signify the number of files and directories in
it. For simplicity, BesFS currently does not track the number of
elements in the directory and all the size field for all the directories
is always set to 0. For a path p, we use the subscript notations
N(p)Id,N(p)perm, andN(p)Size to denote the id, permissions, and
size respectively.

N B Path ↛ Id × Permission × Size

Each open file is tracked using O via its file id. O also tracks the
current cursor position for the open file to facilitate operations on
the file content. Given a tuple o in O, for simplicity, we use subscript
notations oId and oCur to denote the id and the cursor position of
that file.

O B {(fileId, cursor) | fileId : Id, cursor : N}
The file content is stored in a byte memory and each byte can be
accessed using the tuple file id and the specific position in the file.

M B Id × N↛ Byte

Thus, the BesFS state SBesFS can be defined by the tuple ⟨P,N ,O,M⟩.
The state variables cannot take arbitrary values, instead, they must
abide by a set of state properties defined by BesFS. For path set P,
BesFS enforces that the entries in the path set are unique and do

not contain circular paths [18, 20]. This ensures that each directory
contains unique file and directory names by the definition of a path
set. All files and directories in BesFS have unique identifiers and
are mapped by the partial function N to their metadata such as
permission bits and size. Formally, this is defined as:

dom(N) = P
∀(p,p′) ∈ P × P,p , p′ ⇒ N(p)Id , N(p′)Id (SP1)

All open file IDs have to be registered in the O. O can only have
unique entries and the cursor of an open file handle cannot take a
value larger than that file’s current size.

∀o ∈ O,∃p s.t. p ∈ P ∧ N(p)Id = oId (SP2)

∀(o,o′) ∈ O × O,oId = o′Id ⇒ o = o′ (SP3)

∀p ∈ P,o ∈ O,N(p)Id = oId ⇒ oCursor < N(p)Size (SP4)

The M does not allow any overlap between addresses and has
a one-to-one mapping from virtual address to content. The par-
tial function M ensures this by definition. All file operations are
bounded by the file size. Specifically, the memory can be derefer-
enced only for offsets between 0 and the EOF. Any attempts to access
file content beyond EOF are invalid by definition in BesFS. Similarly,
the current cursor position can only take values between 0 and
EOF. We represent such invalid memory accesses by the symbol ⊥.
Formally, this is defined as:

∀f,∀o,∃p s.t. p ∈ P ∧ f = N(p)Id ∧ o < N(p)Size
⇒ M(f ,o) , ⊥ (SP5)

State Transitions. BesFS interface specifies a set of methods listed
in BesFS API in Table 1. Each of these methods takes in a valid state
and user inputs to transition the filesystem to a new state. Thus,
BesFS interface facilitates safe state transitions. Formally, we repre-
sent it as τmi (S, S′,

−−→out), where τmi is the interface method invoked
on state S to produce a new state S′. The vector −−→out represents
the explicit results of the interface. This way, BesFS enforces state
transition atomicity i.e., if the operation is completed successfully
then all the changes to the filesystem because of the operations
must be reflected; if the operation fails, then BesFS does not reflect
any change to the filesystem state. Formally,

−−→outerror , ESucc

S = S′
τmi (S, S′,

−−→out)

Safety Properties. BesFS satisfies the state properties at the initial-
ization. This is because the start state (Sinit) is empty. Specifically,
all the lists are empty and the mappings do not have any entries. So,
they trivially abide by the state properties in (Sinit). Once the user
starts interfacing with the BesFS state, we need to ensure that the
BesFS state properties (SP1-SP5) still hold true. Further, each inter-
face itself dictates a set of constraints – for example, a file should
be opened first in order to close it. Thus, such interface-specific
properties not only ensure that the state is valid but also specify the
safe behavior for each interface. Transition properties TP1-TP13 in
Table 1 specify the relation between type map, state and the state
transition in BesFS.

5



TPi BesFS Interface Pre-condition Prei (, ) Transition Relation τi (, , S′)

TP1
fs_close (h : Id) ∃o, oId = h ∧ o ∈ O S′ = S[O/O − {o}] ∧ e = ESucc→ (e : Error)

TP2
fs_open (p : Path) p ∈ P ∧

S′ = S[O/O + {(N(p)Id, 0)}] ∧
e = ESucc∧

→ (h : Id, ∀o ∈ O, N(p)Id , oId h = N(p)Ide : Error)

TP3
fs_mkdir (p : Path, p ∈ P ∧ Parent(p) ∈ PDir ∧ S′ = S[P/P + {p}, ∧ e = ESuccr : Perm) N(Parent(p))W = True→ (e : Error) N/N

⊕
(p 7→ ⟨h, r , 0⟩)]

TP4
fs_create (p : Path, p ∈ P ∧ Parent(p) ∈ PDir ∧ S′ = S[P/P + {p},

∧ e = ESuccr : Perm) N(Parent(p))W = True N/N
⊕

(p 7→ ⟨h, r , 0⟩)]→ (e : Error)

TP5
fs_remove (p : Path) p ∈ PFile ∧

S′ = S[P/P − {p}] ∧ e = ESucc→ (e : Error) N(Parent(p))W = True

TP6
fs_rmdir (p : Path) p ∈ PDir ∧ ∀q ∈ P, Parent(q) , p ∧

S′ = S[P/P − {p}] ∧ e = ESucc→ (e : Error) N(Parent(p))W = True

TP7

fs_stat (h : Id) ∃o, oId = h ∧ o ∈ O ∧
S′ = S ∧

e = ESucc∧

→
(r : Perm, r = N(p)Perm ∧
n : String, ∃p,N(p)Id = h ∧ p ∈ PFile

l = N(p)Size ∧
l : N, e : Error) n = N(p)Name

TP8
fs_readdir (p : Path)

p ∈ PDir S′ = S ∧
e = ESucc∧

→ l : [Strinд], ∀n ∈ l , p + n ∈ P
e : Error)

TP9
fs_chmod (p : Path,

p ∈ P S′ = S[N/N
⊙

(p 7→ ⟨N(p)Id, r , N(p)size⟩)] ∧ e = ESuccr : Perm)
→ (e : Error)

TP10
fs_seek (h : Id, ∃o, oId = h ∧ o ∈ O ∧

S′ = S[O/O − {o} + {(h, l)}] ∧ e = ESuccl : N)
→ (e : Error) ∃p,N(p)Id = h ∧ l < N(p)Size

TP11
fs_read (h : Id, ∃o, oId = h ∧ o ∈ O ∧

S′ = S[O/O − {o} + {(h,oCur + l)}] ∧
e = ESucc∧

l : N)

→ (b : [Byte], ∃p,N(p)Id = h ∧ oCur + l < N(p)Size
b =M(h,oCur), . . . ,

M(h,oCur + l))e : Error)

TP12
fs_write

(h : Id, ∃o, oId = h ∧ o ∈ O ∧ S′ = S[O/O − {o} + {(h, l + blen)},
∧ e = ESucc

l : N,
b : [Byte]) ∃p,N(p)Id = h ∧ l < N(p)Size

M/M
⊙

((h, l) 7→ b[0], . . . ,
((h, l + blen) 7→ b[blen])]→ (e : Error)

TP13
fs_truncate (h : Id, ∃o, oId = h ∧ o ∈ O ∧

S′ = S[N/N
⊙

(p 7→ ⟨N(p)Id, N(p)perm, l⟩)] ∧ e = ESuccl : N)
→ (e : Error) ∃p,N(p)Id = h ∧ l < N(p)Size

Table 1: BesFS Interface.MethodAPI, pre-conditions, transition relations and post-conditions. S′ = S[K/K ′] denotes everything
in S′ is the same as S, onlyK is replaced withK ′. In Column 4, the − and + symbols denote set addition and deletion operations.⊕

denotes new mapping is added and
⊙

denotes update of a mapping in relation.

3.3 How Do Our Properties Defeat Attacks?
Our state properties in Section 3.2 and transition properties in
Table 1 are strong enough to defeat attacks described in Section 2.2.
PathMismatch (A1a).BesFS state ensures that each path is uniquely
mapped to a directory or a file node. All methods which operate
on paths first check if the path exists and if so is the operation
allowed on that file/directory path. For example, for a method call
readdir("foo/bar"), the path foo/bar may not exist or can be a
file path instead of a directory path. SP1 ensures that file directory
paths are distinguished, are unique and are mapped to the right
metadata information. Subsequently, any queries or changes to
the path structure ensure that these properties are preserved. For
example, fs_create checks if the parent path is valid and if the

file name pre-exists in the parent path. When all the pre-conditions
are met, the corresponding state variables are updated (SP4).
File Descriptor Mismatch (A1b). Similar to path resolution, file
descriptor resolution is critical as well. Once the file is opened suc-
cessfully, all file-content related operations are facilitated via the
file descriptor. BesFS ensures that the file name to descriptor map-
pings are unique and are preserved while the file is open. Further,
BesFS maps any updates to the metadata or file content via the file
descriptor in such a way that it can detect any mapping corruption
attempts from the OS (SP5).
Size Mismatch (A2). BesFS’s atomicity property ensures that the
filesystem completely reflects the semantics of the interface dur-
ing the state transition. Our file content specific operations have
properties which ensure that BesFS performs the operation on the

6



entire size specified in the input. The post-conditions of fs_read,
fs_write and fs_truncate reflect this in Table 1.
File Content Manipulation (A3). The unique mapping property
(SP5) of M ensures that the OS cannot reorder or overlap the
underlying pages of the file content.
Error Code Manipulation (A4). All violations of state or transi-
tion properties during the execution of the interface correspond to
a specific error code. Each of these error codes distinctly represents
which property was violated. For example, if the user tries to read
using an invalid file descriptor, the SP3 and TP11 properties are
violated and BesFS return an eBadF error code. All error types in
BesFS map to standard error codes in the POSIX API specification.
If there are no violations and the state transition succeeds, BesFS re-
turns the new filesystem state and a ESucc error code. Since BesFS
interface performs its own checks to identify error states, so the
enclave does not rely on the OS to return the right error codes. This
way, we ensure that the OS cannot manipulate the enclave logic by
returning wrong error codes.

3.4 BesFS Implementation
BesFS defines a collection of data structures that are sufficient to
capture the filesystem state and completely model the interfaces
in Section 3.2. We build BesFS types by using pre-defined types
built from ascii, list, nat, bool, set, record, string, map and
by composing or induction over one or more types in standard Coq
libraries. We give their simplified definition below.

f B N d B N

Pg B [Byte]Pg_Size Pmn B W × R × E
Mta B Pmn × N PgId B N

Fda B Str ×Mta × [PgId] Dda B Str ×Mta

T B File: f | Dir: d × [T] O B [f × N]
All files and directories in BesFS have ids f and d respectively. These
ids are mapped to the corresponding file and directory nodes Fda
and Dda. Specifically, Fda stores the file name, permissions and all
the pages that belong to this file and the size of the file; Dda stores
the directory name, permission bits, and the number of files and
directories inside it. The BesFS filesystem layout T stores the f and
d in a tree form to represent the directory tree structure. The list of
open file handles O stores tuples of f and cursor position. Lastly,
each page is a sequence of Pg_Size bytes which is typical size of
a page 1 and has a unique page number PgId. Finally, the entire
filesystem memory is stored as a list of pages v. In summary, BesFS
implementation represents its filesystem state as below:

Fsys B (t : T, h : O, v : [Pg], F : f → Fda,D : d → Dda)
Our BesFS implementation must satisfy the state properties SP1-
SP5 and transition properties TP1-TP13 we outlined in Section 3.2.
We discuss how we achieve this for each data structure. Table 2
summarizes the invariants for our data structure implementation.
Virtual Memory (M). The filesystem memory is represented by
a set of virtual memory pages such that each page is a sequence of
Pg_Size bytes and is represented by a unique page id PgId. Unallo-
cated pages are marked as free in the pool. Each file comprises an
1We set the page size (Pg_Size) to 4096 bytes.

Virtual
Memory M ∀i j, i , j ⇒ F(i)[2] ∩ F(j)[2] = ∅

Files &
Directories N

Fids(File: i) B [i]
Fids(Dir: i s) B Fids(s[1]) + · · · + Fids(s[n])
Dids(File: i) B []
Dids(Dir: i s) B [i] + Dids(s[1]) + · · · + Dids(s[n])

Layout &
Paths P

TreeName(File: i) B F(i)[0]
TreeName(Dir: i s) B D(i)[0]
NoDupName(t : T) B ∃ i, t = File: i ∨
∃d s, t = Dir: d s ∧ (∀i, NoDupName(s[i]))∧
(∀ij, i , j ⇒ TreeName(s[i]) , TreeName(s[j]))
NoDup([. . . si . . . sj . . . ]) B ∀i j, i , j ⇒ si , sj

Open file
handles O Ids([. . . , (fi ,pi ), . . . , (fj ,pj ), . . . ] : O) B [. . . , fi , . . . , fj , . . . ]

NoDup(Ids[. . . si . . . sj . . . ]) B ∀i j, i , j ⇒ si , sj

Table 2: BesFS data structures invariants from Section 3.4.

ordered sequence of pages allocated from a pool of free pages. One
page can belong only to a single file. This ensures that no two files
have overlapping page memory.
Files & Directories (N ). Each file’s information including file
name, the current size of the file, permission bits of the file is
stored in a file node Fda. Each file’s content is a sequence of bytes,
partitioned into uniformly sized pages. This content is tracked by
keeping an ordered list of virtual memory page ids [PgId ]. For
example, the first id in a file node’s page list points to the exact
page in the virtual memory where the first n bytes of the page
are stored. BesFS also maintains a map F which associates each
file node Fda with a unique file identifier f. Similar to file nodes,
BesFS also has directory nodes Dda to track directory information
such as names and permissions. Each directory is associated with a
unique directory id d. The directory map D tracks the one-to-one
relationship between ids and nodes.
Layout & Paths (P). BesFS tracks the paths for all files and di-
rectories via a tree layout T. Each node in the tree can be a file
node id f or a directory node id d. Files are leaf nodes. On the other
hand, each directory, in turn, can have its own tree layout. Note
that BesFS does not allow cycles in the tree layout. Also, each level
of the layout tree has non-duplicate directory and file names.
Open File Handles (O). Each open file has a file handle which is
allocated when the file is first opened. The file handle comprises the
file id f and the current cursor position for that file. BesFS tracks all
the list of open files via the open file handles list O. All operations
on an open file are done via its file handle. When the file is closed,
the file handle is removed from the list. Further, the O list cannot
have any duplicate f because each open file can have only one
handle.
Error Codes. In cases where the filesystem cannot complete the
operation successfully, the enclave should receive the right error
code to know the exact reason for failure. BesFS models a subset of
15 error codes as specified by POSIX. This ensures that the attacker
cannot alter the enclave’s behavior by via error codes.
Good State. BesFS must satisfy all the data structure invariants in
Table 2 before and after any interface invocation to be in a good
state. We can summarize a state as good if the following holds true:

7



NoDupName(t) ∧ NoDup(Fids(t)) ∧ NoDup(Dids(t)) ∧
NoDup(Ids(h)) ∧ ∃d s s.t. t = Dir: d s ∧

∀i j, i , j ⇒ F(i)[2] ∩ F(j)[2] = ∅

Known Limitations. BesFS implementation does not support a
small set of filesystem operations such as symbolic links, file-backed
mapping, shared files, and rename because they violate our safety
properties. We have consciously decided to not support these func-
tionalities in our first version of BesFS to maintain simplicity. How-
ever, there is no fundamental limitation in extending BesFS specifi-
cation and proofs to a broader set of file operations in the future.

4 BESFS SAFETY PROOF
The key theorems for our BesFS implementation are that the func-
tions meet our interface specifications. For each method of our
interface, we must prove that the implementation satisfies the state
properties (SP1-SP5) from Section 3.2 and the transition properties
(TP1-TP13) outlined in Table 1. We assume BesFS is running on a
hostile OS that can take any actions permitted by the hardware.

Theorem 4.1 (State Transition Safety). Given a good state
S satisfying prei , then if we execute fi to reach state S′, then S′ is
always a good state and relation between S and S′ is valid according
to the transition relation τi :

∀S, S′, i . S |= SP1–SP5 ∧ prei (S) ∧ S
fi
{ S′ ⇒

τi (S, S′) ∧ S′ |= SP1–SP5

We can verify sequences of calls to our functions by inductively
chaining this theorem. Our second theorem states that the state
property is preserved for a composition of any sequence of interface
calls. We close the proof loop with induction by starting in a good
initial state and using Theorem 4.1 to show that amethod invocation
in BesFS always produces a good state for a sequential composition
of transitions. The proof is dispatched using the Coq proof assistant.

Theorem 4.2 (Compositional Safety). Given a good initial state
S0 subject to a sequence of transitions τm1 , . . . ,τmn always produces
a good final state Sn :

S0 |= SP1–SP5 ∧ S0
fm1
{ S1 ∧ S1

fm2
{ S2 ∧ · · · ∧ Sn

fmn
{ Sn ⇒

τm1 (S0, S1) ∧ τm2 (S1, S2) ∧ . . . ∧ τmn (Sn−1, Sn ) ∧
Sn |= SP1–SP5

4.1 Coq Proof Assistant
As one can readily see, our implementation uses recursive data
structures, and its state properties require second-order logic. For
example, in the BesFS filesystem layout T in Section 3.4 is defined
represented mutually recursively in terms of a forest (a list of trees).
This motivates our choice of Coq, an interactive proof assistant sup-
porting calculus of inductive constructions. Coq allows the prover
to write definitions of data structures and interface specification in
a language called Gallina, which is a purely functional language.
The statements of the theorems are written in Galina as well. The
proofs of the statement, called proof scripts are written in a language
called Ltac. Ltac makes writing proofs less tedious as it supports

a library of “tactics”, or one-line commands that encode standard
proof strategies.

The Coq system performs two operations with proof scripts.
First, it mechanically checks that the proof script entails the state-
ment of the theorem. If the proof cannot go through, it interacts
with the prover by showing parts of the proof that are not complete
as “holes”, prompting the human prover to provide a proof script
for each hole. Second, after the entire proof is checked, the proof
script is converting to a Gallina program. The type of that program
is the statement of the theorem. Coq proof system embodies the
Curry-Howard correspondence between typing and programming,
enabling rich statements to be written as mathematic types [64].
Gallina. Gallina is a functional programming language similar to
OCaml and Haskell. The following code listing shows Gallina code
snippet for the implementation of write method. It starts with the
keyword Definition. It can be split into two parts: the signature
(arguments and return type separated by colon) before := and the
body after :=. Most part of the code is self-explanatory; so, we turn
attention to specific features of Gallina for readers. In line 2, the
return type State FSState ErrCode indicates that we adopt the
state monad to ease the state passing coding style [63, 81]. Lines 3
and 13 can be seen as getting and setting actions of the state. They
are classical syntactic sugar in monadic style programming: the fs
is not a variable but an argument representing the state. On line 10,
the action externalCall actually does 4 tasks: increase the global
counter retrieved from the state, perform the external call with the
global counter as the additional argument, append logs to the state
and put back the new counter to the state.
1 Definition fs_write (fId: Fid) (buf: string)
2 (pos: nat) : State FSState ErrCode :=
3 do fs <- getFS;
4 let opos := find (fun x => (fst x) =? fId) fs.(open_handles) in
5 match opos with
6 | None => return_ eBadF
7 | Some _ => ...
8 do err <- externalCall (Call_VLSeek fId (pos_to_vpage pos)) (v_lseek fId

(pos_to_vpage pos));
9 if (isNotSucc err) then return_ err else ...
10 putFMap ... >>
11 end.

Ltac Language. Ltac allows the programmer to write lemmas,
which have a representation in Gallina. In the following code list-
ing, we can see the statement is written in Gallina, which actually
declares a program whose type is the statement of the lemma. The
script called tactics between Proof and Qed is written in Ltac. Dur-
ing the interactive development, human provers can see the effect
of each tactic on the proof goals and finally prove it by trial and
error. From the perspective of Coq, those tactics guide it to con-
struct a programwritten in Gallina, then Coqwill check whether its
type is the statement after Lemma, we call this step as “mechanized
verification”. We also prove helper lemmas to simplify proofs.
1 Lemma fs_write_ok: forall fId buf pos fs err fs',
2 (err, fs') = fs_write fId buf pos fs -> good_file_system (fsFS fs) ->
3 (~ In fId (map fst (openhandleFS fs)) /\ ...) \/ ...
4 (... /\ In (fId, ...) (openhandleFS fs') /\
5 (forall id, id <> fId -> (fMapFS fs) id = (fMapFS fs') id) /\ ...)
6 Proof.
7 intros. unfold fs_write in H. ...
8 - right. rm_hif_eqn H. 1: left; ...
9 + right. destruct p0 as ...
10 - left. inversion H. intuition..
11 Qed.

8



4.2 Challenges
Purely Functional. The programming language provided by Coq
is purely functional, having no global state variables. However, the
filesystem is inherently stateful. So, we use state passing to bridge
this gap. The state resulting from the operation of each method is
explicitly passed as a parameter to the next call. If we explicitly
pass these state in each call, it is prone to clutter and accidental
omission; therefore, we define them as a monad. As we can see in
the definition of fs_write, the code is purely functional but it looks
like the traditional imperative program. The benefit of this monadic
style programming is that it hides the explicit state passing, which
makes the code more elegant and less error-prone.

While proof script checking, if Coq encounters a memoized ex-
pression for f (z), it will skip proving f (z) again. This is a challenge
because in a sequence of system calls the same call to f with iden-
tical arguments may return different values. Therefore, we have
to force Coq to treat each call as different. To implement this, we
introduce an implicit counter as an argument to all calls, which
increments after each call completes. For example, consider the
consecutive external calls read_dir, create_dir, and read_dir.
The two read_dir commands may read the same directory (the
same argument) but with different return values because of the
create_dir command. To reason about such cases, the real ar-
guments passed to the external calls contain not only common
arguments but also an ever-increasing global counter. Thus, in our
read_dir example, the two commands with original argument p will
be represented as read_dir(p,n) and read_dir(p,n + 1) so that Coq
will treat them as the different commands.
Atomicity. The purely functional nature of Coq proofs helps to
prove atomicity of each method call. In an enclave, the internal
state of the enclave is not accessible by the OS; so, in a way, the
enclave behaves as a pure function between two OS calls. This
allows us to prove atomicity directly. We structure the proof script
to check if an error state is reachable from the input state and
the OS returned values; if so, the input state is retained as the
output state. If no error is possible, the output state is set to the
new state. For concrete illustration, the write method illustrates it
progressively checks 5 conditions (1: Argument id is in the handler.
2: The specified position is correct. 3: It writes to the copied virtual
memory successfully. 4: The external call to seek succeeds. 5: The
external call to write succeeds.) before changing the state.
Non-deterministicRecursiveTermination.Gallina’s consistency
guarantees that any theorem about a Gallina program is consistent,
i.e., it cannot be both proven and disproved. Further, all programs
in Gallina must terminate, since the type of the program is the
statement of a theorem 2. Coq uses a small set of syntactic crite-
ria to ensure the termination. Gallina’s termination requirement
poses challenges for writing a BesFS implementation, which uses
recursive data structures. In most cases, the termination proof for
BesFS properties are automatic; however, for a small number of
properties, we have to provide an explicit termination proof. For
instance, the write_to_buffer does not admit a syntactic check
for termination, as there is a recursive call. To prove termination,
we show via induction that size of the input buffer strictly reduces
2A non-terminating program such as letf (x ) := f (x ) has an arbitrary type, and
hence any theorem is valid about it.

for each invocation of write. Effectively, we establish that there are
no infinite chains of nested recursive calls for that program.
Mutually Recursive Data Structures.Most of our data structure
proofs are based on the induction principle, and Coq always pro-
vides an induction scheme for each inductively declared structure.
The automatically generated induction scheme from Coq is not
always strong enough to prove for some of our properties. Specif-
ically, a key data structure in our design is a tree, the leaves of
which are a list of trees — this represents the directory and file lay-
outs (Section 3.2) — is the case. We provide an inductive statement
Tree_ind2 that is stronger than Coq-provided induction scheme
Tree_ind, shown in the following listing. Tree_ind is correct but
useless. We dispatch the proof by the principle of strong induction,
which is Tree_ind2. Our induction property uses Coq’s second-
order logic capability, as the following code listing shows that the
sub-property P is an input argument to themain property. A number
of specific instances of properties instantiate P in our full proof.

1 Tree_ind: forall P : Tree -> Prop,
2 (forall f : Fid, P (Fnode f)) -> (forall (d : Did) (l : list Tree),
3 P (Dnode d l)) -> forall t : Tree, P t
4 Tree_ind2: forall P : Tree -> Prop,
5 (forall f : F, P (Fnode f)) -> (forall (d : Did) (l : list Tree),
6 Forall P l -> P (Dnode d l)) -> forall t : Tree, P t

External Calls to the OS. In our proof, we assume that calls to
the OS always terminate to allow Coq to provide a proof. If the call
terminates, the safety is guaranteed; the OS can, of course, decide
not to terminate which constitutes as a denial-of-service attack.
Odds & Ends. Out of 118 lemmas, 75 of them are proved using
inductions while the resort of them are proved by logical deductions.
There are two kinds of inductions in our proofs: strong induction
and weak induction. Their difference is the proof obligation. For
example, in weak induction we need to prove “if P(k) is true then
P(k + 1) is true” while in strong induction it is “if P(i) is true for
all i less than or equal to k then P(k + 1) is true”. Our customized
induction principle for Tree is a typical strong induction. In all, we
proved 75 lemmas by induction of which 39 are by strong induction
and the rest 36 are by weak induction.

We do not implement the function get_next_free_page but en-
force that an implementation must satisfy the property that the new
page allocated by get_next_free_page is not used for existing files
and is a valid page (less than the upper bound limit). Similarly, for
functions new_fid and new_did we enforce the new ids are unique
to avoid conflict which is formally stated as new_fid(t) < Fids(t)
and new_did(t) < Dids(t) respectively. Note that we only give a
specification for allocating new pages and ids for files and directo-
ries because we do not want to restrict the page management and
namespace management algorithm. This way, the implementation
can use a naive strategy of just allocating a new id/page for each
request, employ a sophisticated re-use strategy to allocated previ-
ously freed ids, or use temporal and spatial optimizations for page
allocation as long as they fulfill our safety conditions.

5 COQ TO EXECUTABLE CODE
BesFS’s Coq definitions and proof script comprise 3676 LOC with
118 lemmas and 2 main theorems 3. The development effort for

3BesFS will be released at https://github.com/shwetasshinde24/BesFS

9

https://github.com/shwetasshinde24/BesFS


Component Language LOC Size (in KB)
Machine-proved Implementation

Coq definitions & Proofs Gallina 3676 1757.38
Hand-coded Implementation

Implementation C 863 172.39
External Call Interface C 469 201.55
SGX Utils C 117 667.04
Total 1449 1040.98

Table 3: LOC for various components of BesFS.

BesFS was approximately one year man hours for designing the
specifications and proving them. Our proofs are complete with-
out any unproven axioms. Coq implementation has been machine
checked to prove the safety theorems. But we cannot execute the
Coq code directly inside the enclave. Currently, Coq supports au-
tomatic extraction to OCaml, Haskell, and Scheme [6]. In our first
round of evaluation, we extracted our Coq code to Haskell and
compiled it with GHC along with wrappers to tunnel the syscalls
to the underlying untrusted OS. This setup ran out of the box in a
non-SGX environment. However, we failed to execute our Haskell
compiled binary implementation inside SGX using existing systems
(e.g., Graphene-SGX [21] or Panoply [73]). Our investigation shows
that Graphene-SGX cannot support a simple hello-world Haskell
binary. This is because Graphene-SGX does not support a set of
syscalls (create_timer, set_timer, delete_timer) used by the
Haskell runtime. We attempted to add support for these system
calls, but they depend on sigaction handling which is not yet sup-
ported in Graphene-SGX.We ran into similar problems with OCaml
implementation of BesFS. Currently, no other publicly available
system supports Haskell, OCaml or Scheme run-time inside SGX.
In fact, all the current public system for SGX only support C code.
Thus, we have resorted to manual extraction from Coq-to-C. We
first convert Coq implementation to C manually by hand-coding
line by line from Coq-to-C. Our C implementation comprises of 863
LOC core logic and 586 LOC helper functions, totaling 1449 LOC.
Our Coq code leaves out the implementation of untrusted POSIX
calls. While executing the code inside the enclave, these calls have
to be redirected to an actual filesystem provided by the OS.

Our implementation can be integrated with any SGX frame-
work [12, 21, 73]. We tested Graphene-SGX as our first choice for
integration and checked if it can execute our unmodified bench-
marks inside an enclave. However, Graphene-SGX segfaults on our
a large subset of our benchmark. Next, we chose Panoply as our
underlying enclave-execution system [73]. We tunnel the POSIX
calls from enclave to the untrusted environment using Panoply’s
OCALL interface. By default, Panoply converts the application call
arguments to its own representation, makes the OCALL and converts
the return values to the data type expected by the application. For
example, Panoply has an internal representation of file descriptors
and directory descriptors. But the actual libc API invoked by the
application and implemented in the external libc library use file
pointers (FILE*) or integers for descriptors. Panoply maintains a
mapping between its own representation and the libc descriptors.
For adding BesFS support, we wrap the application calls and mar-
shal its arguments to make them compatible with BesFS interface

described in Section 3.2. Once Panoply collects the return values
from the external libc call, we unmarshal the return values and
give it back to BesFS. Our wrapper then performs its checks on the
return values and converts back the results to a data type expected
by the application. If BesFS deems the results as safe, we return
the final output of the API call to the application. Otherwise, we
flag a safety violation. We add a total of 724 LOC to the Panoply
code-base, which is within the realm of auditing. Readers can refer
to Appendix A.3 for the detailed breakdown of LOC.

Future work can certify the process of creating machine code
from our implementation. Existing certified compilers do not sup-
port extraction from Coq to enclave executable code; however, a
roadmap to this feasibility is discussed in Appendix A.4.

6 EVALUATION
Our evaluation goal is to demonstrate the following:

• BesFS safety definition is compatible with the semantics
of POSIX APIs expected by benign applications.

• Our API has the right abstraction and is expressive enough
to support a wide range of applications.

• The bugs uncovered in our implementation due to BesFS
formal verification efforts.

• BesFS can be integrated into a real system.

Experimental Setup. All our experiments were conducted on a
machine with Intel Skylake i7-6600U CPU (2.60GHz, 4 cores) with
12GB memory and 128MB EPC of which 96MB is available to user
enclaves. We execute our benchmark on Ubuntu 14.04 LTS with
Linux Kernel 4.2. We use Panoply to run our benchmarks in an
enclave, which internally uses Intel SGX SDK Linux Open Source
version 1.6 [4]. Our system uses ext4 [1] as the underlying POSIX
compliant filesystem for our experiments.
Benchmarks. We use the benchmark suite from FSCQ [25] — a
filesystem written and verified in the Coq proof assistant for crash
tolerance. It comprises applications to test each system call and
different sequences of filesystem operations on large and small files.
For testing BesFS on real-world applications, we use programs from
SPEC CINT2006 [5]. Panoply’s available case studies do not include
any of our benchmarks. So we port all 10 of our target benchmarks
to Panoply successfully. However, for our CPU bound benchmarks,
we were able to port 7/12 programs from SPEC. We were unable to
port the rest of the benchmarks because some programs from SPEC
(omnetpp, perlbench, xalancbmk) use non-C APIs which are not
supported in Panoply. Other limitations such as lack of support for
longjmp in Panoply’s SDK version prevent us from running the
gobmk and gcc programs. Our final evaluation is on a total of 17
applications: 7 programs from SPEC and 10 programs from FSCQ.

6.1 Expressiveness & Compatibility
BesFS maintains compatibility with 99.26% of the filesystem API
calls in our benchmarks. We empirically demonstrate that if the
underlying filesystem and OS are POSIX compliant and benign
then BesFS is not overly restrictive in the safety conditions. We
first analyze all filesystem libc calls made by our benchmarks for
various workloads using strace and ltrace respectively. We then
filter out the fraction of calls related to filesystem. Table 4 shows
the statistics of the type of filesystem call and its frequency for

10



Libc
Calls

SPEC CINT 2006 FSCQ Totalastar mcf bzip2 hmmer libqu h264 sjeng single small large
BesFS Core Calls

close 3 0 5 0 0 4 0 5 4 2 23
open 6 0 5 0 0 2 0 6 4 2 25
mkdir 0 0 0 0 0 0 0 0 1 0 1
remove 0 0 6 4 0 0 0 0 0 0 10
stat 0 0 0 1 0 0 0 1 0 0 2
chmod 0 0 1 0 0 0 0 0 0 0 1
lseek 0 0 0 0 0 6 0 0 0 4 10
read 33 0 1 0 0 3 0 1 2 3 43
write 0 0 3 0 0 4 0 2 2 2 13

BesFS Auxiliary Calls
fread 0 0 3 68 12 1 0 0 0 0 84
fscanf 12 0 0 0 0 9 0 0 0 0 21
fwrite 0 0 4 84 1 4 0 0 0 0 93
fprintf 0 5 89 304 3 308 13 0 1 22 745
fopen 1 2 10 23 2 19 3 0 0 0 60
fseek 0 0 0 11 0 2 0 0 0 0 13
rewind 0 0 1 7 0 0 0 0 0 0 8
ftell 0 0 0 4 0 1 0 0 0 0 5
fgetc 0 0 2 0 1 0 0 0 0 0 3
fgets 0 3 0 47 0 0 0 3 0 0 53

Unsafe Calls
fsync 0 0 0 0 0 0 0 0 0 2 2
rename 0 0 0 1 0 0 6 0 0 0 7
Total 55 10 130 554 19 363 22 18 14 37 1222

Table 4: Frequency of filesystem calls. Rows 3 − 11 and 13 −
22 represent the frequency of core and auxiliary calls sup-
ported byBesFS respectively. Rows 24−26 show the frequency
of unsafe calls for each of our benchmarks.

each of our 17 benchmarks. We observe a total of 1222 filesystem
calls comprising of 21 unique APIs. BesFS can protect 1213/1222 of
these calls. Table 5 shows how we support the remaining 12 calls
by composing using BesFS’s API.
Compositional Power of BesFS. BesFS directly reasons about 9
calls using the core APIs outlined in Section 3.2. We use BesFS’s
composition theorem and support all 21 set of auxiliary APIs that
have to be intercepted such that BesFS checks all the file operations
for safety. For example, fgets reads a file and stops after an EOF
or a newline. The read is limited to at most one less character
than size parameter specified in the call. We implement fgets
by using BesFS’s core API for read (see Table 5). Since we do not
know the location of the newline character, we read the input file
character-by- character and stop reading only when we see a new
line, end of file or the buffer size reaches the value size. Similarly,
when writing the content to the output file we already know the
total size of the buffer (e.g., after resolving the format specifiers in
fprintf) thus we write the complete buffer in one single call. Many
of the libc calls allow the application to specify flags in order to
decide what all operations the API must perform. For example, the
application can use the fopen API to open the file for writing. If the
application specifies the append flag ("a"), the library will create
the file if it does not exist, and position the cursor at the end of the
file. To achieve the same functionality using BesFS, we first try to
open the file, if it fails with an ENOENT error, we check if the parent
directory exists. If so, we first create a new file. If the file exists, we
open the file and then explicitly seek the cursor to the end of the
file. Thus, even if there exists a one-to-one mapping from BesFS to
libc APIs, we still have to use multipleBesFS APIs to realize the
semantics of various modes/flags supported by libc. We implement
and support a total of 16 flags in total for our 3 APIs which require
flags. Note that our implementation currently supports only the

Libc
API LOC BesFS Core API used for composition of LibC API

fstat read open close seek create mkdir rmdir remove chmod readdir truncate write
read 7 ✓
fread 25 ✓
fscanf 34 ✓
fwrite 12 ✓ ✓
write 20 ✓ ✓
fprintf 15 ✓ ✓
fopen 78 ✓ ✓ ✓ ✓ ✓
open 60 ✓ ✓ ✓ ✓ ✓
fclose 9 ✓
close 17 ✓
fseek 31 ✓ ✓
lseek 39 ✓ ✓
rewind 5 ✓
creat 30 ✓ ✓
mkdir 25 ✓
unlink 21 ✓
chmod 23 ✓
ftruncate 5 ✓
ftell 12 ✓
fgetc 9 ✓
fgets 25 ✓
readdir 10 ✓

Table 5: Expressiveness of BesFS. Row represents a libc file
system API used by our benchmarks. Column 2 represents
the LOC added to implement the libc API. Columns 3 − 15
represent the 13 core APIs supported by BesFS. A ✓in a cell
represents that the BesFS API is used to compose libc API.

common flags used by applications. However, the support can be
extended to other flags if necessary for an application.

BesFS does not reason about the safety of the remaining 2 APIs
which amount to a total of 9 calls in our benchmarks. Although
BesFS does not support these unsafe calls, it still allows the en-
clave to perform those calls. Only 4/11 of our benchmarks invoke
at least one unsafe API. Importantly, these unsupported calls do
not interfere with the runs in our test suite and do not affect our
test executions. By the virtue of BesFS’s atomicity property, syn-
chronization calls sync/fsync/fdatasync have to be implicitly
invoked for the OS after each function call to persist the changes
by each call. We experimentally confirm that the program produces
the same output with and without BesFS, thus reaffirming that we
do not alter the program behavior because of our safety check.

6.2 Do Proofs Help in Eliminating Bugs?
We encountered many mistakes that our proof eliminates during
the development process as a part of our proof experience. They
highlight the importance of a machine-proved implementation.
Example 1: Seek Specification Bug. In at least two of our func-
tions, we need to test whether the position of the current cursor is
within the range of the file, in other words, less than the length of
the file. If the cursor is beyond the scope of a specific file, any fur-
ther operation such as read or write is illegal. In the early versions
of our Coq implementation, we simply put “if pos < size” as a
judgment. But during the proof, we found we cannot prove certain
assertions because we ignore the corner case: when the file is just
created with 0 size, the only valid position is also 0. In this sense,
the proof helped us to find a bug.
Example 2: Write Implementation Bug. The function write in
BesFS takes in pos as an argument, which represents the position at
which the buffer is to be written. In our initial Coq implementation
of write, we were using the name pos for the cursor stored in
the open handles (O). Thus, we had two different variables being
referred to by the same name. As a result, the second variable value
(the cursor) shadowed the write position. Due to this bug, our Coq
implementation of write was violating the specification for the

11



argument pos. We uncovered it when our proof was not going
through. However, once we fixed the bug by renaming the input
argument, we were able to prove the safety of write.
Example 3: Panoply & Intel SGX SDK Overflow Bugs. When
Panoply makes fread and fwrite calls, it passes the size of the
buffer and a pointer to the buffer. The default Intel SDK generated
code is then responsible for copying the buffer content from the
enclave to the untrusted part for write or the other way around for
fread. BesFS piggybacks on the Panoply calls to read and write
encrypted pages. While integrating BesFS code in Panoply, our
integrity checks after read/write calls were failing. On further in-
spection, we identified stack corruption bugs in both fread and
fwrite implementations of Panoply. Specifically, if the buffer size
is larger than the maximum allowed stack size in the enclave con-
figuration file (greater than 64KB in our experiments), even if we
pass the right buffer size, the enclave’s stack is corrupted. To fix this
issue, we changed the SDK code to splice the buffer into smaller
sizes (less than 64KB) to read/write large buffers. After our fix, the
implementation passed BesFS checks.
Example 4: Panoply Error Code Bugs. POSIX specification for
fopen call states that the function shall fail with error code ENOENT
if a component of the filename does not name an existing file or
filename is an empty string. When we used Panoply’s fopen in-
terface to tunnel BesFS’s open call, Panoply did not return the
expected error code when the file did not exist. BesFS checks after
the external call flagged a warning of a safety condition violation.
This was because BesFS did not have a record of this file but the
external call claimed that the file existed. We investigated this case
and discovered that Panoply had a bug in its errno passing logic.
In fact, on further testing of other functions using BesFS, we found
7 distinct functions where Panoply’s error codes were incorrect.

6.3 Performance
BesFS is the first formally verified filesystem for SGX and perfor-
mance is not our primary goal. Future optimizations can use BesFS
API as an oracle for golden implementation. For completeness of
the paper, we report our preliminary performance measurements.
We observe average overhead of 16.22% for the 7 SPEC CINT2006
benchmarks with our highly unoptimized implementation. For the I
/ O intensive benchmarks the overhead is larger. Interested readers
can refer to Appendix A.5 for more details. There is ample scope for
SGX optimization using well-known techniques discussed in the
previous literature [12, 62, 83]. We outline a set of 5 optimization
strategies in Appendix A.6 for interested readers.

7 RELATEDWORK
SGX Attacks & Defenses. BesFS reasons about the integrity of
its filesystem APIs and relies on SGX’s integrity guarantees from
the hardware. It makes an assumption on the confidentiality prop-
erties of SGX only in one of its lemmas, assuming secrecy of a
cryptographic key. This design choice is an important one in light
of the many side-channels that have been discovered on the SGX
platform [16, 17, 26, 35, 38, 53, 57, 60, 70, 72, 82, 84] and more re-
cently hardware mistakes in speculative execution [49, 56]. BesFS
assumes that the hardware is securely implemented, and is agnostic

to the defenses the enclave might deploy for ensuring confidential-
ity [15, 32, 36, 50, 67, 71, 79], on top of BesFS integrity properties.
Filesystem Support in SGX. Ideally, the enclave should not make
any assumptions about the faithful execution on the untrusted
calls and should do its due diligence before using any (implicit
or explicit) results of each untrusted call. The effects of malicious
behavior of the OS on the enclave’s execution depends on what
counter-measures the enclave has in place to detect and / or protect
against an unfaithful OS. Currently, the common ways to facilitate
the use of filesystem APIs inside an enclave are:

• Port the entire filesystem inside the enclave [7, 44].
• Keep the filesystem outside the enclave [21, 73]; and for

each return parameters, check the data types, bounds on
the IO buffers, valid value ranges of API specific values
such as error codes, flags, and structures.

• Implement a filesystem shield [12], such that the enclave
encrypts all the file data before writing it outside and de-
crypts the data being read.

All 3 methods help to reduce the attack surface of file syscall
return value tampering but do not provably thwart all the attacks
in Section 2.2. Appendix A.1 details how their claims lack formal
proofs of comprehensiveness. There are several other protected
filesystems designed to defend against an untrusted OS in a non-
enclave setting, but none of them are formally verified [41, 51].
Verified Guarantees for Enclaves. Formal guarantees have been
a subject of investigation in the context of enclaved applications.
Various efforts are underway to provide provable confidentiality
guarantees for pieces of code executing inside the enclave. Most no-
tably, Moat [78] formally models various adversary models in SGX
and ensures that the enclave code does not have any vulnerabilities
which leak confidential information. /Confidential [76] builds on
Moat to provide a narrow information release channel for enclaves
to reduce the attack surface. IMPe builds a type-system to provides
a strong non-interference-based information security guarantee for
enclave code [34]. All these efforts are towards confidentiality and
are orthogonal to BesFS’s integrity goals.

Another line of verification research has focussed on certifying
the properties of the SGX hardware primitive itself, which BesFS
assumes to be correctly implemented. Accordion [55] provides a
DSL and uses model checking to ensure that the concurrent inter-
actions between SGX instructions and the shared hardware state
maintain linearizability property [40]. Komodo [30] is a formally
specified and verified monitor for isolated execution which ensures
the confidentiality and integrity of enclaves. TAP [80] does for-
mal modeling and verification to show that SGX and Sanctum [29]
provide secure remote execution which includes integrity, confi-
dentiality, and secure measurement. However, the existing works
on verified filesystems cannot be simply added on top of TAP [80]
because they do not reason about an untrusted OS. BesFS is a layer
above the hardware abstractions provided by TAP and Komodo.
Filesystem Verification. Formal verification for large-scale sys-
tems such as operating systems [37, 48, 61, 85], hypervisors[8],
driver sub-systems [24] and user- applications [39] has been a long-
standing area of research. None of these works consider a Byzantine
OS, which leads to a completely different modeling of properties.

12



Filesystem verification for benign OS, however, is in itself a chal-
lenging task [46, 47] and is well studied. This includes building
abstract specifications [11, 33, 69], systematically finding bugs [86]
and POSIX non-compliance [66] in filesystem implementations.
Apart from end-to-end verified implementations [9, 68], filesystems
are also built to provided crash consistency [14, 31], refinement [75],
recovery [25] and safety [23].

8 CONCLUSION
BesFS is a formal and provably Iago-safe API specification for the
file-system subset of the POSIX interface. We prove 118 lemmas and
two key theorems for safety properties of BesFS implementation.
BesFS API is expressive enough to support 17 real applications we
test and our principled approach eliminates several bugs.

ACKNOWLEDGMENTS
We thank Michael Steiner from Intel for his feedback. Thanks to
Shruti Tople, Shiqi Shen, Teodora Baluta and Zheng Leong Chua
for their feedback and assistance in the preparation of this draft.
This research was partially supported by a grant from the Na-
tional Research Foundation, Prime Ministers Office, Singapore un-
der its National Cybersecurity R&D Program (TSUNAMi project,
No. NRF2014NCR-NCR001-21) and administered by the National
Cybersecurity R&D Directorate.

REFERENCES
[1] 2018. Ext4 Filesystem Documentation. https://www.kernel.org/doc/

Documentation/filesystems/ext4.txt. (2018).
[2] 2018. Intel SGX edger8r Tool. https://github.com/intel/linux-sgx/tree/master/

sdk/edger8r/. (2018).
[3] 2018. Intel Software Guard Extensions SDK - Documentation | Intel Software.

https://software.intel.com/en-us/sgx-sdk/documentation. (2018).
[4] 2018. intel/linux-sgx-driver at sgx_driver_1.6. https://github.com/intel/linux-

sgx-driver/tree/sgxdriver1 .6. (2018).
[5] 2018. SPEC CINT2006 Benchmarks. https://www.spec.org/cpu2006/CINT2006/.

(2018).
[6] 2018. Standard Library | The Coq Proof Assistant. https://coq.inria.fr/library/

Coq.extraction.Extraction.html. (2018).
[7] Adil Ahmad, Kyungtae Kim, Muhammad Ihsanulhaq Sarfaraz, and Byoungyoung

Lee. 2018. OBLIVIATE: A Data Oblivious File System for Intel SGX. In 25th
Annual Network and Distributed System Security Symposium, NDSS.

[8] Eyad Alkassar, Mark A. Hillebrand, Wolfgang Paul, and Elena Petrova. 2010.
Automated Verification of a Small Hypervisor. In Verified Software: Theories,
Tools, Experiments, Gary T. Leavens, Peter O’Hearn, and Sriram K. Rajamani
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 40–54.

[9] Sidney Amani, Alex Hixon, Zilin Chen, Christine Rizkallah, Peter Chubb, Liam
O’Connor, Joel Beeren, Yutaka Nagashima, Japheth Lim, Thomas Sewell, Joseph
Tuong, Gabriele Keller, Toby Murray, Gerwin Klein, and Gernot Heiser. 2016.
Cogent: Verifying High-Assurance File System Implementations. In International
Conference on Architectural Support for Programming Languages and Operating
Systems. Atlanta, GA, USA, 175–188. https://doi.org/10.1145/2872362.2872404

[10] Abhishek Anand, Andrew Appel, Greg Morrisett, Zoe Paraskevopoulou, Randy
Pollack, Olivier Savary Belanger, Matthieu Sozeau, and Matthew Weaver. 2017.
CertiCoq: A verified compiler for Coq - POPL 2017. In CoqPL 2017 The Third
International Workshop on Coq for Programming Languages (CoqPL’17).

[11] Konstantine Arkoudas, Karen Zee, Viktor Kuncak, and Martin Rinard. 2004. Veri-
fying a File System Implementation. In Formal Methods and Software Engineering,
Jim Davies, Wolfram Schulte, andMike Barnett (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 373–390.

[12] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre Martin,
Christian Priebe, Joshua Lind, Divya Muthukumaran, Daniel O’Keeffe, Mark L
Stillwell, David Goltzsche, Dave Eyers, Rüdiger Kapitza, Peter Pietzuch, and
Christof Fetzer. SCONE: Secure Linux Containers with Intel SGX. In OSDI ’16.

[13] Andrew Baumann, Marcus Peinado, and Galen Hunt. 2014. Shielding Applica-
tions from an Untrusted Cloud with Haven. In OSDI.

[14] James Bornholt, Antoine Kaufmann, Jialin Li, Arvind Krishnamurthy, Emina
Torlak, and Xi Wang. Specifying and Checking File System Crash-Consistency
Models (ASPLOS ’16).

[15] Ferdinand Brasser, Srdjan Capkun, Alexandra Dmitrienko, Tommaso Frassetto,
Kari Kostiainen, Urs Müller, and Ahmad-Reza Sadeghi. 2017. DR.SGX: Hardening
SGX Enclaves against Cache Attacks with Data Location Randomization. CoRR
abs/1709.09917 (2017). arXiv:1709.09917 http://arxiv.org/abs/1709.09917

[16] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan
Capkun, and Ahmad-Reza Sadeghi. 2017. Software Grand Exposure: SGX Cache
Attacks Are Practical. In 11th USENIXWorkshop on Offensive Technologies (WOOT
17). USENIX Association, Vancouver, BC. https://www.usenix.org/conference/
woot17/workshop-program/presentation/brasser

[17] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank Piessens, and Raoul
Strackx. 2017. Telling Your Secrets without Page Faults: Stealthy Page
Table-Based Attacks on Enclaved Execution. In 26th USENIX Security Sym-
posium (USENIX Security 17). USENIX Association, Vancouver, BC, 1041–
1056. https://www.usenix.org/conference/usenixsecurity17/technical-sessions/
presentation/van-bulck

[18] Ran Canetti, Suresh Chari, Shai Halevi, Birgit Pfitzmann, Arnab Roy, Michael
Steiner, and Wietse Venema. 2011. Composable Security Analysis of OS Services.
In Proceedings of the 9th International Conference on Applied Cryptography and
Network Security (ACNS’11). Springer-Verlag, Berlin, Heidelberg, 431–448. http:
//dl.acm.org/citation.cfm?id=2025968.2026002

[19] D. Champagne and R. B. Lee. 2010. Scalable architectural support for
trusted software. In HPCA - 16 2010 The Sixteenth International Symposium
on High-Performance Computer Architecture. 1–12. https://doi.org/10.1109/
HPCA.2010.5416657

[20] Suresh Chari, Shai Halevi, and Wietse Z. Venema. 2010. Where Do You Want
to Go Today? Escalating Privileges by Pathname Manipulation. In NDSS. The
Internet Society.

[21] Chia che Tsai, Donald E. Porter, and Mona Vij. 2017. Graphene-SGX: A Practical
Library OS for Unmodified Applications on SGX. In 2017 USENIX Annual Tech-
nical Conference (USENIX ATC 17). USENIX Association, Santa Clara, CA, 645–
658. https://www.usenix.org/conference/atc17/technical-sessions/presentation/
tsai

[22] Stephen Checkoway and Hovav Shacham. 2013. Iago Attacks: Why the System
Call API is a Bad Untrusted RPC Interface. In Proceedings of the Eighteenth
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’13). ACM, New York, NY, USA, 253–264. https:
//doi.org/10.1145/2451116.2451145

[23] Haogang Chen, Tej Chajed, Alex Konradi, Stephanie Wang, Atalay Ileri, Adam
Chlipala, M. Frans Kaashoek, and Nickolai Zeldovich. 2017. Verifying a high-
performance crash-safe file system using a tree specification. In Proceedings of
the 26th ACM Symposium on Operating Systems Principles (SOSP 2017). Shanghai,
China.

[24] Hao Chen, Xiongnan (Newman) Wu, Zhong Shao, Joshua Lockerman, and
Ronghui Gu. 2016. Toward Compositional Verification of Interruptible OS Ker-
nels and Device Drivers. In Proceedings of the 37th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’16). ACM, New York,
NY, USA, 431–447. https://doi.org/10.1145/2908080.2908101

[25] Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M. Frans Kaashoek,
and Nickolai Zeldovich. 2015. Using Crash Hoare Logic for Certifying the
FSCQ File System. In Proceedings of the 25th Symposium on Operating Systems
Principles (SOSP ’15). ACM, New York, NY, USA, 18–37. https://doi.org/10.1145/
2815400.2815402

[26] Sanchuan Chen, Xiaokuan Zhang, Michael K. Reiter, and Yinqian Zhang. 2017.
Detecting Privileged Side-Channel Attacks in Shielded Execution with DéJà
Vu. In Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security (ASIA CCS ’17). ACM, New York, NY, USA, 7–18.
https://doi.org/10.1145/3052973.3053007

[27] Xiaoxin Chen, Tal Garfinkel, E. Christopher Lewis, Pratap Subrahmanyam, Carl A.
Waldspurger, Dan Boneh, Jeffrey Dwoskin, and Dan R.K. Ports. 2008. Over-
shadow: A Virtualization-based Approach to Retrofitting Protection in Com-
modity Operating Systems. In Proceedings of the 13th International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS
XIII). ACM, New York, NY, USA, 2–13. https://doi.org/10.1145/1346281.1346284

[28] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. Cryptology
ePrint Archive, Report 2016/086. (2016). http://eprint.iacr.org/2016/086.

[29] Victor Costan, Ilia Lebedev, and Srinivas Devadas. Sanctum: Minimal Hardware
Extensions for Strong Software Isolation. In USENIX Security ’16.

[30] Andrew Ferraiuolo, Andrew Baumann, Chris Hawblitzel, and Bryan Parno.
2017. Komodo: Using verification to disentangle secure-enclave hardware
from software, In 26th ACM Symposium on Operating Systems Principles
(SOSP’17). https://www.microsoft.com/en-us/research/publication/komodo-
using-verification-disentangle-secure-enclave-hardware-software/

[31] Daniel Fryer, Kuei Sun, Rahat Mahmood, Tinghao Cheng, Shaun Benjamin,
Ashvin Goel, and Angela Demke Brown. 2012. Recon: Verifying File System
Consistency at Runtime. Trans. Storage 8, 4, Article 15 (Dec. 2012), 29 pages.
https://doi.org/10.1145/2385603.238560813

https://www.kernel.org/doc/Documentation/filesystems/ext4.txt
https://www.kernel.org/doc/Documentation/filesystems/ext4.txt
https://github.com/intel/linux-sgx/tree/master/sdk/edger8r/
https://github.com/intel/linux-sgx/tree/master/sdk/edger8r/
https://software.intel.com/en-us/sgx-sdk/documentation
https://github.com/intel/linux-sgx-driver/tree/sgx_driver_1.6
https://github.com/intel/linux-sgx-driver/tree/sgx_driver_1.6
https://www.spec.org/cpu2006/CINT2006/
https://coq.inria.fr/library/Coq.extraction.Extraction.html
https://coq.inria.fr/library/Coq.extraction.Extraction.html
https://doi.org/10.1145/2872362.2872404
http://arxiv.org/abs/1709.09917
http://arxiv.org/abs/1709.09917
https://www.usenix.org/conference/woot17/workshop-program/presentation/brasser
https://www.usenix.org/conference/woot17/workshop-program/presentation/brasser
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/van-bulck
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/van-bulck
http://dl.acm.org/citation.cfm?id=2025968.2026002
http://dl.acm.org/citation.cfm?id=2025968.2026002
https://doi.org/10.1109/HPCA.2010.5416657
https://doi.org/10.1109/HPCA.2010.5416657
https://www.usenix.org/conference/atc17/technical-sessions/presentation/tsai
https://www.usenix.org/conference/atc17/technical-sessions/presentation/tsai
https://doi.org/10.1145/2451116.2451145
https://doi.org/10.1145/2451116.2451145
https://doi.org/10.1145/2908080.2908101
https://doi.org/10.1145/2815400.2815402
https://doi.org/10.1145/2815400.2815402
https://doi.org/10.1145/3052973.3053007
https://doi.org/10.1145/1346281.1346284
http://eprint.iacr.org/2016/086
https://www.microsoft.com/en-us/research/publication/komodo-using-verification-disentangle-secure-enclave-hardware-software/
https://www.microsoft.com/en-us/research/publication/komodo-using-verification-disentangle-secure-enclave-hardware-software/
https://doi.org/10.1145/2385603.2385608


[32] Yangchun Fu, Erick Bauman, Raul Quinonez, and Zhiqiang Lin. 2017. Sgx-Lapd:
Thwarting Controlled Side Channel Attacks via Enclave Verifiable Page Faults.
In Research in Attacks, Intrusions, and Defenses, Marc Dacier, Michael Bailey,
Michalis Polychronakis, and Manos Antonakakis (Eds.). Springer International
Publishing, Cham, 357–380.

[33] Philippa Gardner, Gian Ntzik, and Adam Wright. 2014. Local Reasoning for the
POSIX File System. In Programming Languages and Systems, Zhong Shao (Ed.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 169–188.

[34] Anitha Gollamudi and Stephen Chong. 2016. Automatic Enforcement of Ex-
pressive Security Policies Using Enclaves. In Proceedings of the 2016 ACM SIG-
PLAN International Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA 2016). ACM, New York, NY, USA, 494–513.
https://doi.org/10.1145/2983990.2984002

[35] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel, and Tilo Müller. 2017.
Cache Attacks on Intel SGX. In Proceedings of the 10th European Workshop on
Systems Security (EuroSec’17). ACM, New York, NY, USA, Article 2, 6 pages.
https://doi.org/10.1145/3065913.3065915

[36] Daniel Gruss, Julian Lettner, Felix Schuster, Olya Ohrimenko, Istvan Haller,
and Manuel Costa. 2017. Strong and Efficient Cache Side-Channel Pro-
tection using Hardware Transactional Memory. In 26th USENIX Security
Symposium (USENIX Security 17). USENIX Association, Vancouver, BC, 217–
233. https://www.usenix.org/conference/usenixsecurity17/technical-sessions/
presentation/gruss

[37] Ronghui Gu, Zhong Shao, Hao Chen, XiongnanWu, Jieung Kim, Vilhelm Sjöberg,
andDavid Costanzo. 2016. CertiKOS: An Extensible Architecture for Building Cer-
tified Concurrent OS Kernels. In Proceedings of the 12th USENIX Conference on Op-
erating Systems Design and Implementation (OSDI’16). USENIXAssociation, Berke-
ley, CA, USA, 653–669. http://dl.acm.org/citation.cfm?id=3026877.3026928

[38] Marcus Hähnel, Weidong Cui, and Marcus Peinado. 2017. High-Resolution
Side Channels for Untrusted Operating Systems. In 2017 USENIX Annual Tech-
nical Conference (USENIX ATC 17). USENIX Association, Santa Clara, CA, 299–
312. https://www.usenix.org/conference/atc17/technical-sessions/presentation/
hahnel

[39] Chris Hawblitzel, Jon Howell, Jacob R. Lorch, Arjun Narayan, Bryan Parno,
Danfeng Zhang, and Brian Zill. 2014. Ironclad Apps: End-to-end Security via
Automated Full-system Verification. In Proceedings of the 11th USENIX Con-
ference on Operating Systems Design and Implementation (OSDI’14). USENIX
Association, Berkeley, CA, USA, 165–181. http://dl.acm.org/citation.cfm?id=
2685048.2685062

[40] Maurice P. Herlihy and Jeannette M. Wing. 1990. Linearizability: A Correctness
Condition for Concurrent Objects. ACM Trans. Program. Lang. Syst. 12, 3 (July
1990), 463–492. https://doi.org/10.1145/78969.78972

[41] Owen S. Hofmann, Sangman Kim, Alan M. Dunn, Michael Z. Lee, and Emmett
Witchel. 2013. InkTag: Secure Applications on an Untrusted Operating System.
In Proceedings of the Eighteenth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS ’13). ACM, New
York, NY, USA, 265–278. https://doi.org/10.1145/2451116.2451146

[42] Hong Hu, Zheng Leong Chua, Sendroiu Adrian, Prateek Saxena, and Zhenkai
Liang. 2015. Automatic Generation of Data-Oriented Exploits. In Proceedings of
the 24th USENIX Security Symposium.

[43] Hong Hu, Shweta Shinde, Sendroiu Adrian, Zheng Leong Chua, Prateek Saxena,
and Zhenkai Liang. 2016. Data-Oriented Programming: On the Expressiveness
of Non-control Data Attacks. In IEEE Symposium on Security and Privacy, SP 2016,
San Jose, CA, USA, May 22-26, 2016. 969–986. https://doi.org/10.1109/SP.2016.62

[44] Tyler Hunt, Zhiting Zhu, Yuanzhong Xu, Simon Peter, and Emmett Witchel. 2016.
Ryoan: A Distributed Sandbox for Untrusted Computation on Secret Data. In
12th USENIX Symposium on Operating Systems Design and Implementation (OSDI
16). USENIX Association, GA, 533–549. https://www.usenix.org/conference/
osdi16/technical-sessions/presentation/hunt

[45] Rob Johnson and David Wagner. 2004. Finding User/Kernel Pointer Bugs with
Type Inference. In Proceedings of the 13th Conference on USENIX Security Sym-
posium - Volume 13 (SSYM’04). USENIX Association, Berkeley, CA, USA, 9–9.
http://dl.acm.org/citation.cfm?id=1251375.1251384

[46] Rajeev Joshi and Gerard J. Holzmann. 2008. A Mini Challenge: Build a Verifiable
Filesystem. Springer Berlin Heidelberg, Berlin, Heidelberg, 49–56. https://doi.org/
10.1007/978-3-540-69149-56

[47] Gabriele Keller, Toby Murray, Sidney Amani, Liam O’Connor, Zilin Chen, Leonid
Ryzhyk, Gerwin Klein, and Gernot Heiser. 2013. File Systems Deserve Verification
Too!. In Proceedings of the Seventh Workshop on Programming Languages and
Operating Systems (PLOS ’13). ACM, New York, NY, USA, Article 1, 7 pages.
https://doi.org/10.1145/2525528.2525530

[48] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock,
Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael
Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. 2009. seL4: Formal
Verification of an OS Kernel. In Proceedings of the ACM SIGOPS 22Nd Symposium
on Operating Systems Principles (SOSP ’09). ACM, New York, NY, USA, 207–220.
https://doi.org/10.1145/1629575.1629596

[49] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom.
2018. Spectre Attacks: Exploiting Speculative Execution. ArXiv e-prints (Jan.
2018). arXiv:1801.01203

[50] Dmitrii Kuvaiskii, Oleksii Oleksenko, Sergei Arnautov, Bohdan Trach, Pramod
Bhatotia, Pascal Felber, and Christof Fetzer. 2017. SGXBOUNDS: Memory Safety
for Shielded Execution. In Proceedings of the Twelfth European Conference on
Computer Systems (EuroSys ’17). ACM, New York, NY, USA, 205–221. https:
//doi.org/10.1145/3064176.3064192

[51] Youngjin Kwon, Alan M. Dunn, Michael Z. Lee, Owen Hofmann, Yuanzhong
Xu, and Emmett Witchel. 2016. Sego: Pervasive Trusted Metadata for Efficiently
Verified Untrusted System Services. In ASPLOS.

[52] Jaehyuk Lee, Jinsoo Jang, Yeongjin Jang, Nohyun Kwak, Yeseul Choi, Changho
Choi, Taesoo Kim, Marcus Peinado, and Brent ByungHoon Kang. 2017. Hacking
in Darkness: Return-oriented Programming against Secure Enclaves. In 26th
USENIX Security Symposium (USENIX Security 17). USENIX Association, Van-
couver, BC, 523–539. https://www.usenix.org/conference/usenixsecurity17/
technical-sessions/presentation/lee-jaehyuk

[53] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and Mar-
cus Peinado. 2017. Inferring Fine-grained Control Flow Inside SGX Enclaves
with Branch Shadowing. In 26th USENIX Security Symposium (USENIX Security
17). USENIX Association, Vancouver, BC, 557–574. https://www.usenix.org/
conference/usenixsecurity17/technical-sessions/presentation/lee-sangho

[54] Xavier Leroy. 2005 - 2018. The CompCert verified compiler. http://
compcert.inria.fr/. (2005 - 2018).

[55] Rebekah Leslie-Hurd, Dror Caspi, and Matthew Fernandez. 2015. Verifying
Linearizability of IntelÂő Software Guard Extensions. In Computer Aided Verifi-
cation, Daniel Kroening and Corina S. Păsăreanu (Eds.). Springer International
Publishing, Cham, 144–160.

[56] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg.
2018. Meltdown. ArXiv e-prints (Jan. 2018). arXiv:1801.01207

[57] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R.B. Lee. 2015. Last-Level Cache Side-
Channel Attacks are Practical. In IEEE S&P.

[58] Martin Maas, Eric Love, Emil Stefanov, Mohit Tiwari, Elaine Shi, Krste Asanovic,
John Kubiatowicz, and Dawn Song. 2013. PHANTOM: Practical Oblivious Com-
putation in a Secure Processor. In Proceedings of the 2013 ACM SIGSAC Conference
on Computer and Communications Security (CCS ’13). ACM, New York, NY, USA,
311–324. https://doi.org/10.1145/2508859.2516692

[59] FrankMcKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas, Hisham Shafi,
Vedvyas Shanbhogue, and Uday R. Savagaonkar. 2013. Innovative Instructions
and Software Model for Isolated Execution. In Proceedings of the 2Nd International
Workshop on Hardware and Architectural Support for Security and Privacy (HASP
’13). ACM, New York, NY, USA, Article 10, 1 pages. https://doi.org/10.1145/
2487726.2488368

[60] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. 2017. CacheZoom:
How SGX Amplifies The Power of Cache Attacks. CoRR abs/1703.06986 (2017).
arXiv:1703.06986 http://arxiv.org/abs/1703.06986

[61] Luke Nelson, Helgi Sigurbjarnarson, Kaiyuan Zhang, Dylan Johnson, James
Bornholt, Emina Torlak, and Xi Wang. 2017. Hyperkernel: Push-Button Ver-
ification of an OS Kernel. In Proceedings of the 26th Symposium on Operat-
ing Systems Principles (SOSP ’17). ACM, New York, NY, USA, 252–269. https:
//doi.org/10.1145/3132747.3132748

[62] Meni Orenbach, Pavel Lifshits, Marina Minkin, and Mark Silberstein. 2017. Eleos:
ExitLess OS Services for SGX Enclaves. In Proceedings of the Twelfth European
Conference on Computer Systems (EuroSys ’17). ACM, New York, NY, USA, 238–
253. https://doi.org/10.1145/3064176.3064219

[63] Simon L. Peyton Jones and Philip Wadler. 1993. Imperative Functional Pro-
gramming. In Proceedings of the 20th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL ’93). ACM, New York, NY, USA,
71–84. https://doi.org/10.1145/158511.158524

[64] Benjamin C. Pierce, Arthur Azevedo de Amorim, Chris Casinghino, Marco
Gaboardi, Michael Greenberg, Cǎtǎlin Hriţcu, Vilhelm Sjöberg, and Brent Yorgey.
2017. Software Foundations.

[65] Dan R. K. Ports and Tal Garfinkel. 2008. Towards Application Security on
Untrusted Operating Systems. In HOTSEC.

[66] Tom Ridge, David Sheets, Thomas Tuerk, Andrea Giugliano, Anil Madhavapeddy,
and Peter Sewell. SibylFS: Formal Specification and Oracle-based Testing for
POSIX and Real-world File Systems (SOSP ’15).

[67] Sajin Sasy, Sergey Gorbunov, and Christopher W. Fletcher. 2017. ZeroTrace :
Oblivious Memory Primitives from Intel SGX. Cryptology ePrint Archive, Report
2017/549. (2017). https://eprint.iacr.org/2017/549.

[68] Gerhard Schellhorn, Gidon Ernst, Jörg Pfähler, Dominik Haneberg, andWolfgang
Reif. 2014. Development of a Verified Flash File System. InAbstract StateMachines,
Alloy, B, TLA, VDM, and Z, Yamine Ait Ameur and Klaus-Dieter Schewe (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 9–24.

[69] Andreas Schierl, Gerhard Schellhorn, Dominik Haneberg, and Wolfgang Reif.
2009. Abstract Specification of the UBIFS File System for Flash Memory. In

14

https://doi.org/10.1145/2983990.2984002
https://doi.org/10.1145/3065913.3065915
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/gruss
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/gruss
http://dl.acm.org/citation.cfm?id=3026877.3026928
https://www.usenix.org/conference/atc17/technical-sessions/presentation/hahnel
https://www.usenix.org/conference/atc17/technical-sessions/presentation/hahnel
http://dl.acm.org/citation.cfm?id=2685048.2685062
http://dl.acm.org/citation.cfm?id=2685048.2685062
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/2451116.2451146
https://doi.org/10.1109/SP.2016.62
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/hunt
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/hunt
http://dl.acm.org/citation.cfm?id=1251375.1251384
https://doi.org/10.1007/978-3-540-69149-5_6
https://doi.org/10.1007/978-3-540-69149-5_6
https://doi.org/10.1145/2525528.2525530
https://doi.org/10.1145/1629575.1629596
http://arxiv.org/abs/1801.01203
https://doi.org/10.1145/3064176.3064192
https://doi.org/10.1145/3064176.3064192
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-jaehyuk
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-jaehyuk
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-sangho
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-sangho
http://compcert.inria.fr/
http://compcert.inria.fr/
http://arxiv.org/abs/1801.01207
https://doi.org/10.1145/2508859.2516692
https://doi.org/10.1145/2487726.2488368
https://doi.org/10.1145/2487726.2488368
http://arxiv.org/abs/1703.06986
http://arxiv.org/abs/1703.06986
https://doi.org/10.1145/3132747.3132748
https://doi.org/10.1145/3132747.3132748
https://doi.org/10.1145/3064176.3064219
https://doi.org/10.1145/158511.158524
https://eprint.iacr.org/2017/549


Proceedings of the 2Nd World Congress on Formal Methods (FM ’09). Springer-
Verlag, Berlin, Heidelberg, 190–206. https://doi.org/10.1007/978-3-642-05089-
313

[70] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice, and Stefan
Mangard. 2017. Malware Guard Extension: Using SGX to Conceal Cache Attacks.
CoRR abs/1702.08719 (2017). arXiv:1702.08719 http://arxiv.org/abs/1702.08719

[71] Ming-Wei Shih, Sangho Lee, Taesoo Kim, andMarcus Peinado. 2017. T-SGX: Erad-
icating Controlled-Channel Attacks Against Enclave Programs (NDSS). Internet
Society.

[72] Shweta Shinde, Zheng Leong Chua, Viswesh Narayanan, and Prateek Sax-
ena. 2016. Preventing Page Faults from Telling Your Secrets. In Proceedings
of the 11th ACM on Asia Conference on Computer and Communications Security
(ASIA CCS ’16). ACM, New York, NY, USA, 317–328. https://doi.org/10.1145/
2897845.2897885

[73] Shweta Shinde, Dat Le Tien, Shruti Tople, and Prateek Saxena. 2017. Panoply:
Low-TCB Linux Applications With SGX Enclaves. In 24th Annual Network and
Distributed System Security Symposium, NDSS.

[74] Shweta Shinde, Shruti Tople, Deepak Kathayat, and Prateek Saxena. PodArch:
Protecting Legacy Applications with a Purely Hardware TCB. Technical Report.

[75] Helgi Sigurbjarnarson, James Bornholt, Emina Torlak, and Xi Wang. Push-button
Verification of File Systems via Crash Refinement (OSDI’16).

[76] Rohit Sinha, Manuel Costa, Akash Lal, Nuno Lopes, Sanjit Seshia, Sriram Raja-
mani, and Kapil Vaswani. A Design and Verification Methodology for Secure
Isolated Regions. In PLDI ’16.

[77] Rohit Sinha, Manuel Costa, Akash Lal, Nuno P. Lopes, Sriram Rajamani, Sanjit A.
Seshia, and Kapil Vaswani. A Design and Verification Methodology for Secure
Isolated Regions (PLDI ’16).

[78] Rohit Sinha, Sriram Rajamani, Sanjit Seshia, and Kapil Vaswani. Moat: Verifying
Confidentiality of Enclave Programs (CCS ’15).

[79] R. Strackx and F. Piessens. 2017. The Heisenberg Defense: Proactively Defending
SGX Enclaves against Page-Table-Based Side-Channel Attacks. ArXiv e-prints
(Dec. 2017). arXiv:cs.CR/1712.08519

[80] Pramod Subramanyan, Rohit Sinha, Ilia Lebedev, Srinivas Devadas, and San-
jit A. Seshia. 2017. A Formal Foundation for Secure Remote Execution of En-
claves. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security (CCS ’17). ACM, New York, NY, USA, 2435–2450.
https://doi.org/10.1145/3133956.3134098

[81] Philip Wadler. 1992. The Essence of Functional Programming. In Proceedings
of the 19th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL ’92). ACM, New York, NY, USA, 1–14. https://doi.org/10.1145/
143165.143169

[82] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang, XiaoFeng Wang,
Vincent Bindschaedler, Haixu Tang, and Carl A. Gunter. 2017. Leaky Cauldron
on the Dark Land: Understanding Memory Side-Channel Hazards in SGX. CoRR
abs/1705.07289 (2017). arXiv:1705.07289 http://arxiv.org/abs/1705.07289

[83] Ofir Weisse, Valeria Bertacco, and Todd Austin. 2017. Regaining Lost Cycles
with HotCalls: A Fast Interface for SGX Secure Enclaves. In Proceedings of the
44th Annual International Symposium on Computer Architecture (ISCA ’17). ACM,
New York, NY, USA, 81–93. https://doi.org/10.1145/3079856.3080208

[84] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-Channel Attacks:
Deterministic Side Channels for Untrusted Operating Systems. In S&P ’15’.

[85] Jean Yang and Chris Hawblitzel. 2010. Safe to the Last Instruction: Automated
Verification of a Type-safe Operating System. In Proceedings of the 31st ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI
’10). ACM, NewYork, NY, USA, 99–110. https://doi.org/10.1145/1806596.1806610

[86] Junfeng Yang, Paul Twohey, Dawson Engler, and Madanlal Musuvathi. 2006.
Using Model Checking to Find Serious File System Errors. ACM Trans. Comput.
Syst. 24, 4 (Nov. 2006), 393–423. https://doi.org/10.1145/1189256.1189259

A APPENDIX
A.1 Defenses Against Iago Attacks in Existing

Systems.
Following are the verbatim quotes from the research papers of
existing systems, which do not make any concrete claims.
Haven. We use established techniques to correctly implement the
OS primitives in the presence of a malicious host: careful defensive
coding, exhaustive validation of untrusted inputs, and encryption
and integrity protection of any private data exposed to untrusted
code.
Scone. The enclave code handling system calls also ensures that
pointers passed by the OS to the enclave do not point to enclave

memory. This check protects the enclave from memory-based Iago
attacks [12] and is performed for all shield libraries.
Panoply. The shim library performs checks for Iago attacks, safe-
guarding against low-level data-tampering for OS services.
Graphene-SGX. Any SGX framework must provide some shield-
ing support, to validate or reject inputs from the untrusted OS. The
complexity of shielding is directly related to the interface com-
plexity: inasmuch as a library OS or shim can reduce the size or
complexity of the enclave API, the risks of a successful Iago attack
are reduced.
Ryoan. Ryoan allows files to be preloaded in memory, and the list
of preloaded files must be determined before the module is confined;
e.g., they can be listed in the DAG specification, or requested by
the module during initialization. Ryoan presents POSIX-compatible
APIs to access preloaded files that are available even after the mod-
ule is confined. Second, a confined module can create temporary
files and directories (which Ryoan keeps in enclave memory). When
the module is destroyed or reset, all temporary files and directories
are destroyed, and all changes to preloaded files are reverted.

A.2 Layers in Filesystem Stack
The higher the layer we safeguard, the larger the attack surface we
can eliminate, and the more implementation-agnostic the BesFS
API becomes. Figure 2 shows various layers where one can intercept
the filesystem operations for integrity checks with the application
being the topmost layer and the device driver is the lowest layer.

Persistent	Storage	

Device	Drivers	

Block	Layer	

FS1	

Virtual	Filesystem	
Switch	(VFS)	

FS2	 FS3	

System	Call	
Interface	

libc	

Application	Logic	
U

nt
ru

st
ed

 O
pe

ra
tin

g 
S

ys
te

m
 

U
se

r s
pa

ce
 

Figure 2: Layers of the filesystem where the highest layer is
enclave application and lowest layer is the persistent device
storage. The dotted area shows the components within an
untrusted OS.

A.3 Implementation Details
Table 6 shows the detailed break down of LOC added for adding
support for each BesFS API in Panoply.

15

https://doi.org/10.1007/978-3-642-05089-3_13
https://doi.org/10.1007/978-3-642-05089-3_13
http://arxiv.org/abs/1702.08719
http://arxiv.org/abs/1702.08719
https://doi.org/10.1145/2897845.2897885
https://doi.org/10.1145/2897845.2897885
http://arxiv.org/abs/cs.CR/1712.08519
https://doi.org/10.1145/3133956.3134098
https://doi.org/10.1145/143165.143169
https://doi.org/10.1145/143165.143169
http://arxiv.org/abs/1705.07289
http://arxiv.org/abs/1705.07289
https://doi.org/10.1145/3079856.3080208
https://doi.org/10.1145/1806596.1806610
https://doi.org/10.1145/1189256.1189259


Test Time (usec) OverheadPanoply BesFS + Panoply
multicreate 517264 939727 0.8x
multiwrite 424193 1025797 1.4x
multiread 1007232 4756286 3.7x
multicreatewrite 245901 1578016 5.4x
multiopen 668430 2868140 3.3x
multicreatemany 21607 102655 3.8x

Table 7: Single syscall Performance. Execution time for FSCQ
single syscall benchmarks in Panoply and BesFS.

BesFS
API
Name

BesFS Panoply
TotalTrusted Trusted Untrusted

Custom Custom Auto Custom Auto
close 13 4 16 1 3 37
create 33 4 28 1 3 69
open 63 13 13 1 3 93
mkdir 28 4 28 1 3 64
remove 5 4 27 1 3 40
rmdir 5 4 27 1 3 40
stat 1 4 40 1 3 49
readdir 12 4 16 2 3 37
chmod 26 4 28 1 3 62
lseek 11 4 18 1 3 37
read 8 39 30 4 3 84
write 12 39 29 2 3 85
ftruncate 2 4 17 1 3 27
TOTAL 219 131 317 18 39 724

Table 6: LOC for implementing BesFS APIs in Panoply. Col-
umn 1 represents the code wrapper code to integrate BesFS
implementation in Panoply. Column 3 − 6 represent the ad-
dition to Panoply for integration or fixing bugs. Custom im-
plies hand-written code and Auto implies that the code was
generated by Intel SGX SDK’s edger8r tool. The Trusted code
runs inside the enclavewhereasUntrusted code runs outside
the enclave.

A.4 Feasibility of Machine-checked Executable
Code

Note that our primary goal in this paper is not to generate certified
assembly code but to certify higher-level properties of BesFS imple-
mentation. Currently, BesFS only guarantees certified correctness
for its Coq implementation. However, multiple projects have shown
that it is possible to extend certification all the way to assembly.
Thus, there are no fundamental limitations for certifying BesFS’s
machine code in the future. For our specific setup, one option is to
use a CertiCoq (Coq to C) and CompCert (C to assembly). Certi-
Coq [10] is a certified compiler from Gallina to CompCert C light.
CompCert [54] is a certified, optimized C compiler which ensures
that the generated machine code for various processors is efficient
and behaves exactly as prescribed by the semantics of the source
program. Thus, both these certified compilers can be composed
to give a certified Coq-to-assembly compiler which we can use to
certify our machine code for BesFS. We have contacted authors of
CertiCoq who report that the tool is under active development, not

available publicly, and cannot be used for our C implementation yet.
We believe that once CertiCoq is fully functional, BesFS can ensure
that its conversion from machine proved Coq implementation to
assembly code executing inside the enclave is certified end-to-end;
however, this is beyond the realm of demonstration today.

A.5 Performance
We perform the following measurements for our benchmarks:

(1) Enclaved execution in Panoply without BesFS checks.
(2) Enclaved execution in Panoply with BesFS checks.

All our results are aggregated over 5 runs. For non-I/O intensive
benchmarks (SPEC CINT2006) we observe an overhead of 16.22%
for the 7. For FSCQ benchmarks, our average overhead is 3.1× for
single syscall tests and 6.7× for large I / O workloads. Thus, BesFS
incurs an average of 3.3× CPU overhead compared to the baseline.
Our break down shows that a large fraction of BesFS’s overhead
is because of page-level AES-GCM encryption-decryption for pre-
serving integrity and system call latency in Panoply’s synchronous
OCALL mechanism. We present a set of optimizations for real world
applications so as not to incur excessive overhead.
Single-syscalls. We use the FSCQ micro-benchmark to measure
the performance of the I/O intensive calls in BesFS. Table 7 shows
the overhead of BesFS when a single system call is called multiple
times. The average overhead over 3.1×. We observe that read-write
operations incur a large overhead. Specifically, our read operation
is slowed down by 3.7×, while create+write is 5.4× slower. The
primary reason for this is that BesFS performs page-level AES-GCM
authenticated encryption when the file content is stored on the disk.
Thus, each read and write operation leads to encryption-decryption
and integrity computation of at least one page.
Large I/O Workloads. We test the performance of BesFS under
various file access patterns. We run all the tests in FSCQ with the
configuration of the block size of 8 KB, I/O transfer size is 1KB
and total file size to be 1 MB. We perform 100000 number of each
type of operations on files. We observe an average overhead of
6.7× because of BesFS checks. FSCQ performs a series of sequen-
tial write, sequential read, re-read, random read, random write,
multi-write and multi-read operations. Figure 3 the bandwidth
for each of these operations. Sequential access incurs relatively
less performance overhead because they consolidate the page-level
encryption-decryption for every 4K bytes. Random accesses on the
other hand are more expensive because each read / write may cause
a page-level encryption-decryption. Since BesFS does not cache
any page content, re-reads incur the same overhead as sequential
read.
SPEC CINT2006 Benchmarks. We test 7 benchmarks namely
astar, bzip2, h264ref, hmmer, libquantum, mcf, sjeng from SPEC.
Each of these benchmarks takes in a configuration file and option-
ally input file to produce an output file. Figure 4 shows the perfor-
mance for each of these benchmarks. With our libc analysis in
Table 4, we also measure the frequency of each call per application.
Programs hmmer, href, sjeng, and libquantum have relatively less
overhead. On the other hand, astar, bzip2, and mcf exhibit larger
overhead. On further inspection, we notice that astar and mcf use
fscanf to read the configuration files. Thus, reading each character
leads to a page read and corresponding decryption and integrity

16



seq_write
seq_read

rand_write

rand_read
re-read

0

50

100

150

200

250

300

350

Ba
nd

wi
dt

h 
(M

B/
se

c)

2

163

82

276

319

0

3225
54 58

FSCQ I/O
Panoply
BesFS+Panoply

Figure 3: Performance for FSCQ Large I/O Workloads.

bzip2
hmmer

astar
h264ref

libquantum mcf
sjeng

0

10

20

30

40

50

60

70

80

Ti
m

e 
(s

ec
on

d)

8
3

27

58

11

30

38

8
3

41

74

14

29

41

SPEC CINT2006
Panoply
BesFS+Panoply

Figure 4: Performance for SPEC CINT2006 Benchmarks.

check. Further, astar reads a binary size of 65 KB for processing. As
shown by our single syscall measurements (Table 7), reads are ex-
pensive. Both these factors amplify the slowdown for astar. bzip2,
and mcf output the benchmark results to a new file of sizes 274 and
32 KB respectively which leads to a slowdown. Specifically, bzip2
reads input file in chunks of 5000 bytes which leads to a 2-page read
/ write and decrypt/encrypt per chunk. Finally, libquantum has the
lowest overhead because it does not perform any file operations.

A.6 Optimizations
Note that we do not include any optimizations for caching or mem-
ory management at the moment. There is scope for improving
BesFS’s performance with various optimizations which are inde-
pendent of the BesFS safety properties.

(O1) Reduce OCALLs. When the applications invoke a protected
API, BesFS immediately relays the call to the OS. This results in
a lot of OCALLs. For example, we implement fgets using fgetc
because we don’t know beforehand how much buffer size we need
to read until we encounter a newline. This is safe but super slow
— each character read causes an I/O of 4KB. We can see the effect
of this in the mcf benchmark which reads character by character.
An alternative is to maintain a buffer inside the enclave which
reflects the changes, instead of doing an immediate BesFS call (and
hence an OCALL) for each operation. Then the accumulated changes
of batched calls can be flushed to the OS periodically. We can do
similar optimizations for writes.
(O2) Batch Processing. Since we integrate BesFS with Panoply,
we have to interface at the libc interface for tunneling the calls to
the untrusted OS. However, other systems such as Scone, Haven,
Graphene-SGX keep the C library inside the enclave and interface
with the OS purely at the syscall level. All modern C libraries (e.g.,
musl-libc, glibc, eglibc) have optimized the number of syscalls.
They do not invoke an underlying syscall for each libcAPI. Instead,
they batch as many I/O calls as possible to avoid expensive context
switches.
(O3) Optimized PageAllocationAlgorithm. BesFS ensures that
each page in the memory is being used only by a single file. Thus
when BesFS wants a new page, its lemma states that page allocation
algorithm should return an unused page. Similarly, when the page
is unallocated, BesFS states that no file should use that page after
allocation. To satisfy this lemma, BesFS implementation in Panoply
keeps a page bitmap, which is used for allocation and deallocation.
(O4) Optimized Block Alignment. Our current implementation
assumes a page of 4096 bytes. For each such page, BesFS uses the
first 4000 bytes to store the file content and the rest of the 96 bytes
for BesFS metadata such as the integrity tags. Thus any single page
operation in an I/O intensive program, BesFS will incur a read
/ write (and hence decrypt/encrypt) of two pages. Applications
which do custom block alignment to tune their performance will
see an added slowdown. Our choice of BesFS page sizes was just
a design choice and is independent of any BesFS proofs. BesFS
proofs and implementation use a macro for these values, and if
required, the developer can change them to suit their requirements.
The developer can change the block size in the application to 4000
bytes.
(O5) Reduce OCALL Costs. Our current implementation is inte-
grated with Panoply, which does synchronous OCALLs. It has been
experimentally shown that asynchronous OCALLs are much faster
and can speed up the applications by an order of magnitude [12,
62, 83]. As long as the asynchronous call implementations obey the
syscall semantics enforced by BesFS, our implementation will work
out of the box with this optimization.

17


	Abstract
	1 Introduction
	2 Problem
	2.1 Background & Setup
	2.2 Attacks

	3 BesFS Design
	3.1 Approach
	3.2 BesFS Interface
	3.3 How Do Our Properties Defeat Attacks?
	3.4 BesFS Implementation

	4 BesFS Safety Proof
	4.1 Coq Proof Assistant
	4.2 Challenges

	5 Coq to Executable Code
	6 Evaluation
	6.1 Expressiveness & Compatibility
	6.2 Do Proofs Help in Eliminating Bugs?
	6.3 Performance

	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Defenses Against Iago Attacks in Existing Systems.
	A.2 Layers in Filesystem Stack
	A.3 Implementation Details
	A.4 Feasibility of Machine-checked Executable Code
	A.5 Performance
	A.6 Optimizations


