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ABSTRACT
Coarse-Grained Reconfigurable Arrays (CGRA) are a promis-
ing class of accelerators that provide good balance between
flexibility, performance, and power. As the CGRAs are de-
signed to support dataflow, the acceleration is limited to loops
with simple control flows. The compiler generates static sched-
ules of loop kernels on the CGRA and completely eliminates
the burden of resource conflict resolution from the hardware.
In the presence of complex control flows, the static schedul-
ing on CGRA requires independent resource reservations for
mutually-exclusive dataflows along control-divergent paths.
Such reservations are not only wasteful but also limit per-
formance by increasing the schedule length. We introduce
a novel architecture, 4D-CGRA, that encourages mutually-
exclusive dataflows to map to the same set of resources but
allows execution of the appropriate dataflows at runtime based
on the branch outcomes. We achieve this by introducing an
architecture-enabled new branch dimension corresponding to
the branching decisions. We design a novel compiler to model
integrated placement and routing in four dimensions (two spa-
tial, one temporal, one branch). 4D-CGRA achieves upto
2.33x (average 1.44x) performance gain compared to a generic
CGRA, with the same area, power budget.
1. INTRODUCTION

Internet-of-Things (IoT) devices demand high performance
at low power. ASICs can accelerate workloads on such plat-
forms but suffer from lack of flexibility, while FPGAs provide
complete reconfigurability down to the bit level, leading to
high area, power overheads. CGRAs (Coarse-Grained Re-
configurable Arrays) retain configurability but with a coarser
operation-level granularity.

A CGRA, shown in Figure 1, is essentially a set of process-
ing elements (PE) arranged in a grid with each PE connected
to its neighbors. Each PE typically consists of a simple ALU,
a register file and a control memory to store configuration
information (instructions). An on-chip multi-bank scratchpad
memory (SPM) feeds data to the entire array during execution.
CGRAs are statically scheduled [1] with the compiler target-
ing frequently executed loops for acceleration, mapping the
operations onto individual PEs, and configuring the ALUs and
inter-PE interconnects appropriately to handle dependencies
among the operations. The schedule covers all the PEs and
interconnect for a fixed number of cycles per loop iteration
and the schedule is repeated for all iterations. Thus the sched-
ule is defined along both the spatial (PEs) and the temporal
(cycles) dimensions. Therefore, each PE is functioning in a
carefully engineered lock-step execution model that does not
incur stalls in compute or communications. This is the key
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Figure 1: A high-level view of CGRA architecture

BB3BB2

BB1

BB4

BB : basicblock

(a)

PE0 PE1

BB1

BB2

BB3

BB4

TIM
E

(b)

PE0 PE1

BB1

BB4

BB2
BB3

TIM
E

shards

BB3BB2

PE0 PE1

Data dependency

(c)

Figure 2: (a) Control-flow graph of a loop body; Mapping
onto (b) generic CGRA and (c) 4D-CGRA with shards.

feature of CGRAs. Recently, CGRAs have been deployed
commercially, for example, in Samsung Exynos 7420 SoC[2]
of Samsung Galaxy S6, Configurable Spatial Accelerator from
Intel[3], Movidius Myraid 2[4] (Intel), Wave DPU[5] (Wave
Computing) among others.

The state-of-the-art statically-scheduled CGRAs are excel-
lent at supporting dataflow, but limited in their ability to ac-
celerate loops with complex control flow. They rely on pred-
ication [6] to handle control divergence, where the compiler
maps both paths of each conditional branch onto the CGRA,
but only the instructions from the taken path (with true pred-
icate value) are permitted to execute at runtime. The predi-
cation effectively replaces the control flow with dataflow of
predicate values. Figure 2a shows the control flow graph of a
loop with control divergence, consisting of mutually exclusive
basic blocks BB2 and BB3. The resources allocated for the
different control paths cannot overlap in either the spatial or
the temporal dimensions as shown in Figure 2b. This leads
to static allocation of duplicate resources that are left unused
at runtime, resulting in increased schedule length and limit-
ing the performance. The goal of our proposed 4D-CGRA
architecture is to reduce this wastage of resources to support
complex control flows and thereby shorten the schedule length
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and substantially improve power, performance.
As the paths at control-divergence point are mutually exclu-

sive, an obvious choice to improve resource utilization is to
overlap their mapping in the schedule as shown in Figure 2c.
Each loop iteration can now complete in four cycles instead of
five, improving performance. This simple solution, however,
turns out to be exceedingly difficult to support with the current
execution model, where in each cycle, a PE simply executes
the only operation scheduled on it (provided the predicate is
true). If multiple operations, albeit from mutually exclusive
paths, are mapped onto a PE in the same cycle, the PE needs to
identify and execute the correct operation at runtime depend-
ing on the branch outcome. With only one conditional branch
in the loop body, a simple hardware mechanism can pick be-
tween two potential candidates per PE per cycle. However, the
loops with complex control flows (e.g., multiple conditionals,
nested conditionals, switch statements etc.) lead to multi-
ple candidate instructions to choose from, resulting in high
complexity. The hardware overhead now involves associative
search of all the candidate instructions to select the correct
one. Moreover, CGRAs heavily rely on software pipelining [7]
to improve throughput by concurrent execution of multiple
loop iterations. A PE needs to distinguish not only the opera-
tions from different paths within a loop but also the operations
from different in-flight loop iterations (with possibly different
branch outcomes).

We propose a novel execution model to address the chal-
lenges with juxtaposed scheduling of control-divergent paths
in the presence of arbitrarily complex control flows within
the loops on CGRAs and runtime selection of instructions at
the PEs. The distinguishing feature of our approach is that
we restrict the dynamic selection to only a fraction of the in-
structions and leverage the static schedule as much as possible.
Our design exploits the fact that all the instructions within a
basic block (straight line code sequence with a single entry,
single exit) have the same decision in terms of the control flow.
Thus once a PE selects one instruction within a basic block, it
can execute the rest of the instructions from that basic block
without further considerations. Note that the instructions from
a basic block are scheduled (scattered) across multiple PEs to
take advantage of the instruction level parallelism (ILP). We
define a shard as the subset of instructions from a basic block
mapped onto a single PE and the first scheduled instruction
within the shard as header. A basic block is split into multiple
shards, one per participating PE with possible data depen-
dencies among them. Multiple mutually exclusive shards are
mapped onto the same PE as shown in Figure 2c. Based on
the runtime control flow outcomes, a PE selects a shard by
its header and then executes the rest of the instructions from
that shard without further evaluation of the control flow condi-
tions. Therefore, the perception of multiple instructions being
scheduled in the same cycle on the same resource (compute
or route) can be viewed as scheduling along a new branch di-
mension. The planes in the branch dimension create multiple
configurations for the same spatio-temporal resource, while
each plane corresponds to a specific branch outcome — hence
the name 4D-CGRA.

We then design an enhanced CGRA architecture and corre-
sponding compiler specifically for 4D-CGRA execution model.
The PE supports limited runtime selection of the shards, and

For(i = 0 to IMAX){
N1  (N18)
if(N1) {

N2  (i) ; N3  (i) ;
N4  (N2,N3);
N5  (N2,N3);
if(N5){

N10  (N4) ; N11  (N4);
N13  (N10,N11);
N12  (N10,N11);
N18  (N12);

else {
N14  (N4); N15  (N4);
N16  (N14,N15);
N17  (N14,N15);
N19  (N15);
N18  (N16);

}
}
else{

N6  (i) ; N7  (i);
N8  (N6,N7);
N9  (N6,N7);
N18  (N8);

}
}
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Figure 3: (a) Loop with nested conditionals, (b) Breakdown
of basic blocks into shards, (c) Mapping.

allows the compiler to juxtapose the schedules belonging to
the shards of control-divergent paths onto a PE without increas-
ing the schedule length. Similarly, the interconnect enables
mutually-exclusive shards to share the same links, scheduled
by the compiler.

4D-CGRA is truly a hardware-software co-designed archi-
tecture that achieves upto 2.33x performance-per-watt im-
provement (average 1.44x) compared to a generic CGRA
with the same area/power budget. 4D-CGRA has an area
of 0.44mm2 at 40nm technology node and consumes 17-
66mW@714MHz, effectively providing configurable, ultra-
low-power acceleration for IoT devices.

2. 4D-CGRA EXECUTION MODEL
We introduce a novel 4D execution paradigm to support

complex control flows within loop body. The model allows
sharing of CGRA resources among mutually-exclusive execu-
tion paths and dynamic selection of the appropriate path.

Shard. The central concept here is the shard, a pre-defined
sequential execution order of a subset of instructions within
a basic block. A basic block is split into multiple shards and
each shard is exclusively mapped to a single PE. The size
of the shard could vary from a single instruction to the size
of basicblock, depending on the amount of parallelism and
dependencies in a basic block. The size of a shard is not pre-
determined, and instead is a consequence of performing the
instruction mapping to CGRA fabric in a 4-Dimensional space
(See Section 4).

The first scheduled instruction of each shard is called the
header. For example, in Figure 3, we have two shards for
basic block BB2: 〈N2, N4〉 in PE1 with N2 as the header
and 〈N3, N5〉 in PE2 with N3 as the header. There can be
data dependencies among the shards that lead to inter-PE
communication. Multiple shards from mutually-exclusive
execution paths may map to the same PE, for example, 〈N2,
N4〉 from BB2 and 〈N6, N8〉 from BB3 on PE1. Therefore,
we need a mechanism to identify and execute the correct shard
at runtime at each PE depending on the latest branch outcome.
This mechanism is provided by the expected and transitive
tags.

Expected tag. The control flows from a set of shards be-
longing to one basic block to another set of shards in a subse-
quent basic block along a specific execution path, determined
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by the outcome of the conditional branches. Each shard is
associated with a static expected tag based on the outcome of
the latest conditional branch before reaching this shard. For
example, the shards in BB4 and BB5 have expected tags with
the outcome of N5. With software pipelining of multiple loop
iterations, there is a possibility that multiple outcomes of the
same conditional branch belonging to consecutive loop itera-
tions can be in-flight within the CGRA fabric simultaneously.
To distinguish these branch outcomes from different iterations,
the expected tag is augmented with a modulo iteration counter
that is incremented per iteration and wrapped around when it
reaches the maximum number of pipelined iterations. Thus,
the expected tag consists of (1) outcome of the latest condi-
tional branch, and (2) modulo iteration counter. Moreover, the
downstream shards in a join basicblock (e.g., BB6) may have
more than one expected tag because they may be executed
along multiple paths. Therefore, the arrival of any such tag
from predecessor shards should trigger the downstream shard
(e.g., the shards of BB6 may get executed due to the arrival of
tags from BB4 or BB5).

Transitive tag. The flow of control is modeled through the
transitive tags. The execution starts with a transitive tag at BB1.
This transitive tag is inherited from one shard to another and is
updated when it encounters a conditional branch at the end of
a shard. A shard can be executed only when the transitive tag
it receives matches its expected tag. For example, in Figure
3, the control instruction N5 in BB2 may update the transitive
tag to execute all the shards in BB4 or all the shards in BB5,
depending on the outcome. Moreover, not all the headers
of the subsequent shards may have data dependencies with
the control instruction of the preceding shard, thus predicate
dependencies are added between such headers and the control
instructions, to deliver the tag.

Empirically, the number of conditional instructions that
defines branches rarely exceeds eight. Therefore, the tag (both
expected and transitive) should contain 4 bits to differentiate
such branches (3 bits) and their outcomes (1 bit). Similarly,
the number of pipelined iterations is less than four for most
scenarios. Thus, 2 bits are sufficient for the modulo iteration
counter that is used to distinguish between pipelined iterations.
So, the tag is 6 bits (4+2) and it is appended to 32-bit data
transmitted throughout the fabric.
3. 4D-CGRA ARCHITECTURE

4D-CGRA architecture realizes the 4D execution paradigm
through innovative design of the PE micro-architecture shown
in Figure 4. In conventional CGRA, the instructions are
fetched and executed sequentially based on the static schedule
generated by the compiler. However, in 4D-CGRA execution
paradigm, there are multiple shards mapped to a PE and one of
them needs to be selected for execution. The Control Memory
holds the instructions corresponding to all the shards with the
instructions corresponding to a shard typically placed sequen-
tially. Each instruction contains control information for (1)
ALU, (2) Interconnect, and (3) Address of the next instruction
in the shard (NCA). Thus, one could view the contents of the
control memory as a composition of multiple linked lists, each
corresponding to a shard.

To support the 4D-execution paradigm, each PE contains
16 control registers with (1) Header Pointers (HP) and (2)
Interim Pointers (IP). First, to enable tag matching for acti-

vation of a shard, each PE maintains pointers to the headers
of the shards in the (HP). In addition HP contains the source
channel (see Section 3.1) of the transitive tag, the temporal
cycle (see Section 3.1), and the expected tag itself.

Once the PE receives a transitive tag that matches with the
expected tag of a shard header, the corresponding shard is
selected for execution. The HP fetches the first instruction of
the shard (the header instruction) from the control memory
for execution. The retrieved instruction includes the address
of the next instruction (next NCA) in the shard. A new (IP)
register is allocated for the next instruction with the same tag
(that resulted in the activation of the header) and the next NCA.
Moreover, an identical shard belonging to the next iteration
may execute prior to the end of executing the shard from the
current iteration because of loop pipelining. Therefore, the
modulo iteration counter of the HP is incremented to differ-
entiate the tags among pipelined iterations. The NCA field
of the newly allocated IP gets updated as the execution con-
tinues with the remaining instructions in the shard. Finally,
there may be a control-flow join at the end of the shard. The
first instruction of the linked shard (e.g., N18 in Figure 3b) is
brought into the same IP and the execution continues for the
linked shard. At the end of the linked shard, the IP is freed.

3.1 Detailed architecture
Tag matching. The 4D-CGRA execution paradigm allows

the architecture to reduce tag matching overhead in two ways.
First, tag matching is only required for the headers of the
shards; the remaining instructions in the shards simply follow
the execution. Second, the compiler determines the cycle at
which each shard can potentially be selected. So when a tran-
sitive tag arrives at a PE at cycle t, it is compared against only
the HPs waiting for the trigger in cycle t. The PE maintains a
modulo cycle counter (currentCC) that increments and wraps
around at the end of the schedule. Each HP has a cycle counter
field (CC), also known as the temporal cycle, that indicates
the cycle number in which it could potentially be activated.
The compiler guarantees that at most one of the shard headers
will match in both cycle counter and tag value per cycle. In
4D-CGRA, the transitive tag arrives to a PE along with the data
through the same channel. These channels are the north, south,

ALU

Tag

Tag
Src

If PC == 
currentPC

If PC == 
currentPC

Tag
Src

PC END BodyTagTag
Src

PC END BodyTag

Input 
Selection 
Crossbar

Tag
Src

CC END NCATag

If CC == 
currentCC

Tag
Src

V Tag Data
V Tag Data

V Tag Data
V Tag Data

V Tag Data

Bitwise
AND

Tag
Received 

Tag

Compare

Fetch Idx

I1
Src

I2
Src

Body

The Triggered Instruction

Control 
Memory

I1

I2

Register 
File

V Tag Data

Tag

To Neighbouring PEs..

C

C == 1 (Token Generated)

IC

Figure 4: Architecture of 4D-CGRA processing element

3



east, and west input ports of the PE. Thus a HP waits for the
activation trigger only on a specific input channel as specified
in the static schedule, also known as the source channel.

Configuration word. Once the tag match is done, the NCA
of the matched shard header is used to fetch the full config-
uration word (instruction) from the control memory. The
configuration word contains all the information required to
configure the PE and the interconnect to execute the current
instruction (input sources for the ALU operands, the opcode
for the ALU, and the output channels for transmitting the re-
sult) and an address to the next instruction (new NCA) in the
shard. The output of an ALU consists of (a) valid bit, (b) tag,
and (c) data. The valid bit is set to true after the tag-match and
the data is the result of the ALU computation.

Thereafter, the output of the ALU is tranported to the des-
tination PE. However at the compile time, the destination PE
might be scheduled with multiple shards belonging mutually-
exclusive execution paths. Thus, the source data for such
shards might be expected from different source channels. How-
ever at runtime, only a single data would be arriving belonging
the taken path. Thus, the corresponding source channel is
used to identify the taken path. The tag is updated only for
control instructions; other instructions simply inherit the exist-
ing tag in the control register for the corresponding live shard.
The control instruction updates the tag by composing together
branch ID (retrieved directly from the configuration word),
branch outcome from the ALU output, and the modulo itera-
tion counter (inherited from the iteration field of the existing
tag in the control register of the current live shard).

3.2 Routing in 4D-CGRA
In fully statically-scheduled CGRAs, the compiler guaran-

tees congestion free communication when multiple pairs of
PEs exchange data in the same cycle to handle the data de-
pendencies. In case of data dependency between two distant
PEs, the data transfer takes place through one or more inter-
mediate PEs in multiple cycles. The routing between distant
PEs ties up multiple intermediate PEs and prevents them from
performing useful computation. Recently, software-scheduled
NoCs have been proposed as an alternative for CGRAs, to
facilitate concurrent computation and data transfer in the inter-
mediate PEs [8, 9]. A software-defined NoC ensures that the
scheduler-generated static routes are completely congestion-
free and thereby eliminates the routing and buffer management
overheads of a dynamically routed NoC. To support software-
defined NoC in the context of 4D-CGRA architecture, the
routing control information has to be appended to every in-
struction. In 4D-CGRA, we allow data dependencies from
mutually exclusive execution paths to share physical routing
resources.

4. 4D-CGRA COMPILER
The compiler maps the loop kernels to 4D-CGRA archi-

tecture and is crucial in defining the performance. Figure
5 shows two compiled schedules of two mutually exclusive
paths, that could be realized by mapping the operations from
mutually exclusive basic blocks BB2 and BB3 to the extended
spatio-temporal resources that belong to the branch planes
N4-true and N4-false, as shown in the last sub-figure. The
key constraints used in engineering the 4D-schedule is that
the common operations (e.g., N9, N4) among the different
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Figure 5: Merger of MRRG schedules from two mutually
exclusive control paths.

paths are placed in the same spatio-temporal locations and
extended bins for resources occupied by common operations
are blocked in the new branch planes (N4-true & N4-false).
An additional benefit of the compact merged schedule is that
it allows the opportunity to power gate the unused PEs.

Figure 6 shows the 4D-compilation framework. It accepts as
input the application source code in C with clearly annotated
loops to be mapped to the CGRA. We utilize the Clang C
compiler to generate the LLVM bitcode[10] for each annotated
loop. The extracted loop body is analyzed for dependencies
and then we generate the DFG.
4.1 DFG Generation

In the context of CGRAs, the control flows within the loop
are handled via predication [6] that can be broadly classified
as (a) partial predication and (b) full predication.

In partial predication, all the computations in the differ-
ent control paths are allowed to execute but the results from
only one of the control paths are committed based on the
outcome of the control instructions. Thus partial predication
favors generic CGRAs by reducing unnecessary serialization
in the presence of control dependencies as generic CGRAs
allocates scheduling slots for all the control paths anyway.
Full predication, on the other hand, only allows execution of
the instructions along the correct path based on the control
flow outcomes and hence serializes execution in the presence
of control dependencies. For 4D-CGRA, full predication is
required to guarantee the selection of the correct path.
4.2 Place and Route Mapper

Given a DFG and a CGRA, the loop mapping is performed
through modulo scheduling. We first determine the lower
bound on Initiation Interval (II), denoted by Minimum II (MII),
as the maximum of the resource minimum II (ResMII) and
recurrence minimum II (RecMII). The compiler attempts to
map the loop starting with II set to MII and iteratively incre-
ments II by one until a feasible schedule is obtained. For each
II value, we create a time-extended (II cycles) resource graph
of the CGRA, known as Modulo Routing Resource Graph
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(MRRG[11]). Note that the CGRA resources include the com-
pute elements as well as the configurable data-paths inside
(e.g., ALU to register file) and outside (PE-PE links) of the
PEs.

Figure 7 illustrates the mapping of the fragment of a DFG in
the upper left corner. Basic blocks BB1 and BB2 are mutually
exclusive while BB3 is the join node. N4 and N8 are both
mapped in PE0 in cycle 0, but in two different branch planes.
Only one of them will be executed and send the data to N6
mapped on PE1. During execution, there are two possibilities
in cycle 1 for PE1; either the output of N4 or N8 will appear in
its west input port from PE0, sharing the routing links between
N4 and N8.

Problem Definition. Given a fully-predicated DFG D=(VD,ED)
and a CGRA, the problem is to construct a minimally time-
extended MRRG of the CGRA HII = (VH ,EH) consisting of
two type of nodes: PEs (V F

H ) and ports (V P
H ), for which there ex-

ists a mapping φ = (φV ,φE) from D to GII = (VG,EG), where
GII is branch extension of HII for which each MRRG node will
contain contain multiple bins (V F

G,bi
⊆VG and V P

G,bi
⊆VG), one

for each branch outcome bi. However, the usage of such bins
is restricted to the nodes of the same iteration. For the next
steps, we define a function λ : VG→VH , that maps each of the
branch-extended bins back to the spatio-temporal resource.

The modulo scheduling enables wraparound edges allow-
ing a resource in the MRRG to be used in dL/IIe different
timesteps where L is the schedule length. Therefore, any de-
pendent node that include wraparound edges from the parent
nodes, execute concurently with the nodes of the next iteration.
Similiarly, two mutually exclusive instructions, with and with-
out wraparound edges from the parent nodes, belong to two
different loop iterations. Thus, the mutual exclusion no longer
holds. Therefore, the bins of a branch plane bi, correspond-
ing to resources that are already mapped with instructions of
another iteration in the branch plane b j where i 6= j, are to be
blocked.

In the mapping function, a DFG node v ∈ VD mapped to
a bin of a MRRG node φ(v) ∈VG,bp ⊆VG is associated with
a timestep R(v) = T (φ(v)) ∗ τ where τ ∈ [0,dL/IIe] is the
modulo loop iteration and T (φ(v)) ∈ [0, II− 1] is the cycle
count (scheduling cycle) of the MRRG node. Two mutually
exclusive DFG nodes u and v can be mapped to the same
MRRG node, i.e., λ (φ(u)) = λ (φ(v)) only if R(u) = R(v).
The same criterion applies to ports that are used to route the
data produced by the DFG nodes.

Mapping Algorithm with Branch Dimension. First, we ex-
tract the sub-DFGs, Dpi = (VDpi ,EDpi ), for every possible
execution path pi in the loop body. We sort the set of sub-
DFGs based on the number of nodes |VDpi | in decreasing order.
We map each sub-DFG independently starting with the largest

Algorithm 1: 4D-CGRA Compiler Mapping Algo-
rithm

1 DFG : D = (VD ,ED) , CGRA : C = (VC ,EC )

2 (P,DP) = getSubDFGs(D) ; Sort((P,DP)) ; {PM ,DP
M} = Largest({P,DP});

3 II = max( RecII(D),ResII(DP
M ,C) )

4 VA ← mapped nodes ; EA ← mapped edges ; B = {(b,ob )} = getBranch(D);
5 while !success do
6 G = 4D_MMRG(C,II,B)

7 foreach (Pi ,D
P
i ) = (VDi

,EDi
) in (P,DP) do

8 ∆DP
i = (VDi

−VA ,EDi
−EA)

9 if 4D_MAP(∆DP
i ,G) then

10 VA ←VA ∪VDi
; EA ← EA ∪EDi

; success = 1 ;

11 else
12 success = 0 ; break;
13 II++

14 Function 4D_MAP(∆DP
i ,G)

15 let ∆DP
i = (V∆ ,E∆) ; TopologicalSort(V∆ ) ;

16 while !success OR !MaxIterations do
17 foreach v∆ in V∆ do
18 (bv∆

,obv∆
) = get_IDOM(v∆ )

19 G(bv∆
,obv∆

) = (VGb
,EGb

) = getBranchPlane((bv∆
,obv∆

))

20 foreach vg in VGb
do

21 if !checkR(va ,vg ,λ ) then
22 continue;
23 foreach vp in Parents(v∆ ) do
24 L[vg ] = L[vg ]∪LeastCostPath(φ(vp),vg)
25 (vl , pl ) = min(L) ; assign(vl , pl );
26 if Cl = oversubscribe(G) is empty then
27 success = 1
28 else
29 IncreaseCosts(Cl ) ; success = 0;
30 return success ;

sub-DFG DpM . This is because the largest sub-DFG will likely
require the longest II value for successful mapping. After map-
ping the first, DpM , for the rest of the sub-DFGs Dpi , we only
map the unmapped nodes – ∆Dpi = (VDpi ,EDpi ). Therefore,
each of the nodes of ∆Dpi will be utilizing new branch-planes
that are mutually exclusive to previously mapped nodes.

We follow an iterative approach for mapping. Each node
of the sub-DFG u ∈V∆Dpi is mapped to a bin of the PE node
of MRRG vF ∈V F

G such that it utilizes the ports vP ∈V P
G , that

results in the least accumulated cost, when routing data from
the parent nodes of u. The bin is selected based on the branch
outcome that defines the execution of the node u. We employ
Dijkstra’s shortest path algorithm in establishing such routes
and allow the ports to be over-subscribed if necessary. At the
end of one iteration of mapping, the cost of the over-subscribed
ports vP ∈V P

G are increased for future iterations (inspired by
SPR [12]). The main intuition behind increasing the cost is to
encourage the data to be routed through alternative routing re-
sources; when the mapping converges, the resources with most
demand are likely to be used for mapping the dependencies
with fewer options for routing compared to the competitors.
In subsequent iterations, the placement of node u ∈V∆Dpi may
change to avoid over-subscribed resources from the previous
iteration. We deem the mapping of the sub-DFG Dpi a success
where none of the resources are over-subscribed.

Furthermore, the nodes of V∆Dpi are the new set of nodes
that are executed because of the path pi. They must hence be
mutually exclusive to already mapped nodes of other paths
: VA. The branch outcome that determines the execution of
a given node is determined by finding the terminating con-
ditional instruction of the immediate dominator basicblock
(get_IDOM() in Algo. 1). Therefore, that instruction (along
with the outcome) is used to obtain the subset of MRRG re-
sources corresponding to the branch plane (getBranchPlane()
in Algo. 1).

For each branch outcome bp that is mutually exclusive
to branch outcome bq of VA, the bins vbp ∈ VG,bp that has
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λ (φ(vbp)) = λ (φ(vbq)) for vbq ∈VG,bq could be used to map
nodes in V∆Dpi if R(vbp) = R(vbq) (checkR() in Algo. 1). This
allows overlapping of the MRRG resources for mutually exclu-
sive nodes of the DFG. If a constituent execution path cannot
be mapped after a fixed number of attempts, the MMRG is
time-extended by one more cycle and we start mapping again
from the largest sub-DFG.
4.3 Shard and instruction generation

After the place and route of the DFG on the MRRG, we have
a spatio-temporal schedule with mutually exclusive instruc-
tions possibly mapped to the bins of the same spatio-temporal
resources. For each PE (space dimension), the compiler then
collects all the nodes in the schedule along each branch plane
and creates a shard corresponding to each basic block. The
shards from the different basic blocks mapped to a PE are
placed in the control memory one after another, while the in-
structions within a shard are placed sequentially in the same
temporal order as in the schedule. Morever, NOPs are only
inserted if routing is required in the absense of any compute
instruction. In the control memory, each instruction includes
a pointer (NCA) to the next instruction from that shard; the
terminating instruction of a shard points to the first instruction
of the linked shard in case of control flow join or simply re-
leases the control register. The first instruction of each shard
is denoted as the header and its address is placed in HPs.

5. RELATED WORK
The compilers for CGRAs [11] exploit loop-level paral-

lelism through modulo scheduling, with modern graph-based
scheduling algorithms [1, 13, 14, 15] modeling the CGRA as a
resource graph that captures both the spatial and the temporal
dimensions. However, statically scheduled CGRAs handle the
control-flow through partial predication (Figure 8) by execut-
ing all branch paths concurrently and performing a selection
at the end using a select instruction. This leads to shorter
runtime but resource and power wastage[6]. There are only a
few efforts in the literature to support complex control flows in
CGRAs. BrMap[16] in Figure 8 uses a dual-issue PE architec-
ture allowing the PE to issue two instructions belonging to two
mutually exclusive execution paths together. However, in the
presence of complex conditionals (e.g., nested if-else), there is
a need to merge multiple execution paths. TrMap[17] presents
a mapping approach for statically scheduled CGRAs where
each PE can issue instructions from the control memory based
on received tokens. Performing such token matching in hard-
ware with a fully-associative search for all instructions incurs
huge power overhead. TrMap combines the instructions that
are parents of the select instruction to be merged as one during
compilation, prior to P&R. Moreover, the instructions in the
divergent paths might require data inputs from instructions
that are in common (i.e., common to all paths) basic blocks
(blue arrows in Figure 8). Hence, if the merged instructions
are to be placed in the spatio-temporal schedule, all depen-
dencies need to be routed to that PE resource in the MMRG.
This creates congestion which affects the schedule adversely,
because the merging is done without considering the routabil-
ity. In constrast to prior approaches, the 4D-CGRA compiler
utilizes the architecture-enabled branch dimension to perform
routing-aware merging of mutually exclusive instructions.

6. EVALUATION
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Figure 8: The state-of-the-art approaches of handling control-
flow divergence in statically-scheduled CGRAs

We compare 4D-CGRA against several baselines: (1) A
generic CGRA with completely static scheduling, with a PC
(program counter) that points to the next instruction to be
executed based on the compiled schedule and wraps around
after II cycles, (2) BrMap [16], a CGRA with dual-issue based
partial predication support, and (3) TrMap[17] that provides
high-overhead complex control flows at the granularity of
instructions (see Section 5).

We implemented all the above architectures in Verilog HDL
and synthesized onto a commercial 40nm process using Syn-
opsys Toolchain. We implement the PEs of each architecture
to have similar configuration except for the control registers.
Each PE contains a register file with four registers, two read
ports, and two write ports, a second register file to hold up
to eight constants with a single read/write port[18], a control
memory that holds up to 32 instructions, a typical ALU, and a
crossbar switch to provide the ALU with data. The PEs in the
left-most column of the CGRA are connected to an on-chip
4KB scratchpad memory.

Benchmarks. We use two benchmark suites, Mediabench[19]
and Cortexsuite[20] that contain computationally heavy loops
suitable for CGRA acceleration. We observe that 55% and
73% of the most compute intensive loops consist of at least
one if-else structure within the loop body, in Mediabench and
Cortexsuite, respectively. This motivates the need for CGRAs
to handle loops with complex control divergence. Not all
the loops can be mapped onto CGRAs due to factors such
as dynamic memory allocation, which are beyond the scope
of this work. Therefore we include two other kernels from
MachSuite[21] and WaveLib[22] to cover more domains.

Table 1 shows the kernels used in our evaluation. The
main criteria for the selection of the kernels is the presence of

Benchmark
(Suite) Domain

Instructions
including
SELECT

Max
Ins. executed
per iteration

Conditional Structure

dwt
(Wavelib)

Signal
Processing 113 58 (51.33%)

1) if-elseif-elseif-elseif{if-else}-
elseif-elseif{if-else}

taylor
(CortexSuite)

Linear
Algebra 75 59 (78.67%)

1) if-elseif-else
2) if-elseif-else

g721
(Mediabench)

Speech
Processing 57 27 (47.37%)

1) if-else{if {if-else}
- else {if-else}}

gsm
(Mediabench) Communications 87 36 (41.38%) 1) if-elseif-elseif-else

nw
(Machsuite)

Dynamic
Programming 68 39 (57.35%) 1) if-elseif-else

mpeg2enc
(Mediabench)

Video
Compresion 157 54 (35.06%)

1) if {if-else} - elseif {if - else} -
elseif {if - else} - else {if - else}

mpeg2dec
(Mediabench)

Video
Compression 149 48 (32.21%)

1) if {if-else} - elseif {if - else}-
elseif {if - else} - else {if - else}

word2vec
(CortexSuite)

Machine
Learning 147 65 (44.22%)

1) if { if - else } - else
2) if { if - else } - else

superres
(CortexSuite)

Computer
Vision 74 59 (79.73%)

1) if-elseif-else
2) if-elseif-else

Table 1: Benchmark characteristics
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Kernel Rec.
II

Mapped II (Res. II) Compilation Time
Generic BrMap TrMap 4D Generic BrMap TrMap 4D

dwt 5 10 (8) 8 (6) 11 (5) 5 (4) 35m 32m 342m 13m
taylor 4 7 (5) 5 (4) 8 (5) 5 (4) 2m 9m 30m 41m
g721 2 5 (4) 5 (3) 5 (3) 3 (2) 0.3m 96m 17m 11m
mpeg2enc 9 14 (10) 14 (10) 14 (10) 12 (4) 30m 30m 30m 36m
superres 4 5 (5) 5 (4) 5 (4) 5 (4) 0.3m 5m 2m 44m
nw 11 16 (5) 15 (4) 16 (3) 12 (3) 2m 14m 12m 3m
mpeg2dec 9 13 (10) 13 (10) 13 (10) 12 (3) 31m 31m 31m 12m
word2vec 13 17 (10) 16 (6) 13 (5) 17 (5) 9m 14m 175m 21m
gsm 1 7 (6) 7 (5) 8 (5) 3 (3) 0.3m 63m 156m 35m

Table 2: Initiation Intervals for 4x4 CGRAs

control divergence (if-then-else, multiple conditionals, nested
conditionals, switch statements, etc.) in the loop body. The
third column shows the number of instructions that would be
scheduled in a generic CGRA (including SELECT instruc-
tions to handle divergent paths). In 4D-CGRA, the number
of instructions to be scheduled is reduced as select operations
are no longer needed. The fourth column shows the number
of instructions in the longest execution path that should be
scheduled (and most likely determine the II) in the case of
4D-CGRA. We observe that this can vary between 32% to
79% (Average 52%) compared to the number of scheduled
instructions of generic CGRA, because of control divergence.
This motivates 4D-CGRA to utilize the branch planes to share
the same spatio-temporal resources among mutually exclusive
instructions. The last column indicates the type of control
divergence present within the loop.
RTL power and area estimates. Figure 9 shows the area and
power breakdown of the four architectures (same area, power
for generic and BrMap). The generic CGRA consumes lowest
area/power and TrMap consumes highest area/power, while
4D-CGRA falls in-between. It should be noted that BrMap[16]
takes up the same area and power as Generic CGRA, because
it employs dual-issue of two mutually exclusive instructions,
and thus can be implemented with the same amount of con-
figuration memory, but at double-width and half-height. For
4D-CGRA, the addition of control registers (CR) leads to 26%
and 29% overhead in area and power, respectively, w.r.t. a
generic CGRA. TrMap has much higher area and power over-
heads: 60% and 78% over that of a generic CGRA, respec-
tively, due to the complex token matching hardware required.
By leveraging static scheduling within shards, 4D-CGRA can
achieve much lower power and area costs with its reduced
scope of triggering, down from the number of instructions to
the number of shards.

Throughput comparison. We first target 4x4 instances
of the four architectures. Table 2 shows the recurrence II,
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Figure 9: Area and power breakdown of 4x4 CGRA architec-
tures

achieved II through mapping the kernels to four different ar-
chitectures and the compilation time. The resource II changes
for the four architectures because of the variation in the degree
of sharing among execution paths. The BrMap merges instruc-
tion pairs from various execution paths and the TrMap merges
parents of SELECT operations. 4D-CGRA needs to schedule
at least the largest execution path in the best case (assuming
the rest of the paths are able to share resources with the largest
execution path). 4D-CGRA has the least II value for all the
benchmarks, resulting in highest throughput.

Figure 10 shows the throughput of each kernel, normal-
ized to that of 4x4 Generic CGRAs. On average, 4D-CGRA,
BrMap, and TrMap achieve 54%, 5%, to 4% performance
gain compared to a generic CGRA. BrMap’s performance
suffers because it can only merge two instructions, and the
merging ignores routing resources. TrMap’s lower perfor-
mance is because it indiscriminately merges parents of SE-
LECT operations prior to P&R. 4D-CGRA presents a new
paradigm to CGRA mapping by proposing the new branch
dimension to be used in both computation and routing of mu-
tually exclusive nodes, leading to resource-aware merging of
multiple mutually exclusive instructions. The benchmarks
dwt, taylor,g721,gsm,nw perform much better for 4D-CGRA
compared to the other kernels.

The poor performance of word2vec and superres is due to
4D-CGRA using fully predicated DFGs whereas the others
use partially predicated DFGs. When creating fully predicated
DFGs, the calculation required to perform the branching de-
cision is carried out prior to the execution of the instructions
belonging to the branch-dependent basic blocks. Therefore
calculation of the branching decision and instruction in the
subsequent basic blocks are serialized. However, in partially
predicated DFGs, the instructions of the subsequent basic
blocks are allowed to execute unless they encounter a SE-
LECT operation that require the output of the branching de-
cision. Thus, at that point, the branch outcome will select
one of the paths and disregard the rest. Therefore, given suffi-
cient resources in the CGRA, partially predicated DFGs may
perform better compared to the fully predicated DFGs, but at
the cost of wastage of power/resources executing false paths.
word2vec and superres are two kernels that exhibit the serial-
ization penalty over the gains of sharing of resources. As for
mpeg2enc and mpeg2dec, they perform only marginally bet-
ter on 4D-CGRA than the baselines because they are already
affected by the higher recurrence II present in the kernels, thus
hitting a ceiling in the performance in 4D-CGRA.

Iso-Area comparison At 4x4 CGRA size, the three archi-
tectures have different area footprints. Therefore, we use
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Figure 10: Throughput analysis (normalized to 4x4 Generic
CGRA instance) of selected control-intensive kernels
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Figure 11: Iso-area performance w.r.t. generic 4x4 CGRA.
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Figure 12: Iso-area performance w.r.t. generic 2x4 CGRA.

different array sizes across the different architectures to equal-
ize their area overhead. We evaluate two iso-area configu-
rations equivalent to 16-PE (4x4) generic CGRA and 8-PE
(2x4) generic CGRA. The approximately area-equivalent array
sizes for TrMap and 4D-CGRA are shown in Table 3. We
observe that the area-equivalent configurations also consume
approximately the same power.

Figures 11 and 12 show iso-area performance comparison
w.r.t. 4x4 and 2x4 generic CGRA. On average, the 4D-CGRA
performs 1.44x better, whereas BrMap and TrMap could only
achieve 1.05x and 0.85x performance, respectively, compared
to the 4x4 Generic CGRA, that consumes similar power and
area. Moreover, performance/watt comparisons are identical
to the performance comparisons because all the configurations
are consuming about the same amount of power (1.44x, 1.05x
and 0.85x normalized performance/watt gains for 4D-CGRA,
BrMap and TrMap, respectively).

We next compare 4D-CGRA’s performance against that of
an iso-area 2x4 Generic CGRA in Figure 12. On average, 4D-
CGRA performs 37% better with respect to generic CGRA,
while BrMap and TrMap could only achieve 1.15x and 0.83x
performance of the 2x4 generic CGRA. The highest perform-
ing g721 in Figure 11 is now affected by the reduction of
resources. g721 was performing better due to higher degree
of sharing of resources among mutually exclusive paths. How-
ever, instructions in a given mutually exclusive path, might
have dependencies from instruction that are not unique to the
path. Thus, such dependencies are unable to share routing re-
sources. The reduction of fabric size also results in a reduction
of possible routing paths which affects the routability of such
dependencies. Therefore, g721’s degree of sharing reduces

Generic BrMAP TrMAP 4D-CGRA
Config. 1 4x4(1.00) 4x4(1.00) 3x3(0.95) 3x4(0.96)
Config. 2 2x4(1.00) 2x4(1.00) 2x3(1.20) 2x3(0.98)

Table 3: Iso-area architectures corresponding to two baseline
generic CGRA configurations 4x4 and 2x4. The parenthesized
values indicate area normalized to generic CGRA.

in lower fabric size resulting in low normalized performance.
The benchmarks dwt, taylor,gsm,nw exhibit approximately
the same normalized performance gain compared to generic
CGRA at 2x4 iso-area configuration. However, mpeg ker-
nels experience better normalized performance in 2x4 iso-area
configuration because their 4D-CGRA performance are not af-
fected by the constrained resources, unlike the generic CGRA.
The word2vec and superres kernels are impacted more by
constrained resources, because they were already suffering
from the penalties of using full predication.

7. CONCLUSION
The novel 4D-CGRA brings a new architecture-enabled

branch dimension that creates multiple planes for the same
spatio-temporal resources to be used by the instructions from
mutually-exclusive control paths. The architecture handles
complex control divergence at very low-overhead by introduc-
ing the notion of shards, a sequence of instructions belonging
to a basic block on a PE, and by lifting activation due to con-
trol flows at the granularity of shards rather than individual
instructions. 4D-CGRA achieves up to 2.33X performance
improvement (average 1.44X) compared to a generic CGRA
with the same area/power budget.
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