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ASCENT: Communication Scheduling for SDF
on Bufferless Software-defined NoC

Vanchinathan Venkataramani, Bruno Bodin, Aditi Kulkarni Mohite, Tulika Mitra and Li-Shiuan Peh

Abstract—Bufferless software-defined Network-on-Chip (NoC)
is a promising alternative to conventional dynamic routing as
it offers predictable data movement with real-time guarantees.
Existing Time-Division Multiplexing (TDM)-based mechanisms
for predictability assume the worst-case communication pattern
(e.g., all-to-all) and compute a fixed schedule wherein the
cores can only communicate during the allocated time-slots.
These approaches lead to low application throughput as they
cannot adapt to application characteristics. In this paper, we
present an application-specific, non-TDM based communication
scheduling mechanism for bufferless software-defined NoCs. We
choose Synchronous Dataflow (SDF) model-of-computation to
represent the input streaming applications. We propose ASCENT,
a novel offline approach that takes the SDF-specified streaming
application and the NoC architecture as input, exploits the task
interactions and the timing information in the SDF, and generates
the task-to-core mapping and communication schedule that is
represented compactly in hardware. ASCENT achieves 5.8x better
performance on average than existing TDM-based NoCs and
manages to achieve the performance of an ideal dynamically
routed NoC, yet ensuring predictability.

Index Terms—Time-predictability, Many-core architecture,
Synchronous dataflow.

I. INTRODUCTION

Conventional Networks-on-Chip (NoCs) are usually packet-
switched, with routers that dynamically multiplex on-chip traf-
fic at run-time to deliver high bandwidth. The dynamic router
consists of multiple pipeline stages, multiple buffer queues
per port or virtual channels (VC), making it heavyweight. The
run-time routing and flow control also imply that the NoC
is unpredictable, making it challenging to provide real-time
guarantees. Yet, the last decade has seen an increase in the
demand for architectures that provide real-time guarantees,
due to domains like robotics, autonomous vehicles, etc. [1]. To
ensure real-time guarantees, just like how scratchpads replace
caches [2], [3], [4], bufferless software-defined NoCs can
take the place of dynamically-routed NoCs to meet real-time
application constraints.

In bufferless software-defined NoCs [5], a static scheduler
completely orchestrates the NoC traffic. First, the scheduler
needs to ensure that the packets reach the correct destinations.
Second, as there is no logic to perform routing or flow
control in hardware and no buffer to store the packets, the
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scheduler must guarantee contention-free routing and flow
control. Finally, the scheduler also needs to make sure that
the application throughput requirements are maximized or at
least satisfied.

Several architectures containing general-purpose processors
connected using a bufferless software-defined NoC [6] with
zero or more additional dynamically routed NoCs have been
proposed to support diverse applications and meet the timing
guarantees, e.g., T-Crest [7], Æthereal [8], SPECTRUM [5],
etc. Most of these works utilize Time Division Multiplexing
(TDM) in which the cores can only communicate periodically
in the allocated time-slots. The scheduler takes the worst-case
communication pattern as input (e.g., all-to-all), determines
the packet routes, and stores them in slot tables within the
router [9], [10]. Computing the TDM slot table in bufferless
NoCs is challenging as consecutive time slots need to be
allocated in adjacent routers along the path. Additionally, a
time-slot is allocated to only one flow conservatively even
when contention may not happen at run-time. The NoC
topology also restricts the number of concurrent flows that
can be supported. Theoretically, for n cores, with one ejection
port to the NoC, only n − 1 time-slots should be required
for communicating with the remaining n− 1 cores (one time-
slot per destination core), assuming that there is no network
contention. However, in [10], the optimum minimum slot table
could be tractably calculated for only up to 5x5 mesh size with
34 slot table entries (instead of the theoretical lower bound
of 24). For larger mesh size, the slot table size has to be
determined by greedy heuristics [9]. Moreover, as the cores
can only communicate in the time-slots allocated to them,
TDM-based approaches lead to poor network and application
throughput especially when the total number of time-slots is
large.

In this paper, we move away from the application-agnostic
worst-case behavior based TDM approaches to application-
aware communication scheduling for bufferless NoCs starting
with the commonly used Synchronous Dataflow (SDF) [11]
model-of-computation for representing streaming applications.
The execution time of the tasks and inter-task communication
is represented accurately in the SDFs. Thus, static analysis of
the SDF can generate a deterministic schedule of the tasks
and the packets, making them a preferred model especially
in real-time systems [12]. The scheduling information gives
us a notion of time corresponding to each data packet that
is sent in the application. In this paper, we argue that the
determinism and timing information of data flows available in
the SDFs can be leveraged to perform packet transfers at the
precise time compared to core-based TDM mechanisms that
rely on time-slots. We resolve conflicts statically because the
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SDFs expose the periodic run-time behavior of the application.
This improves the utilization of the NoC links by supporting
cycle-by-cycle scheduling of the NoC instead of relying on
time-slots. We are also able to store the schedule compactly
within routers by performing periodic scheduling of the SDF
application.

We propose ASCENT, a task-to-core mapping and commu-
nication scheduling mechanism that is entirely done offline.
ASCENT determines the packet flows through offline task
scheduling and ensures that contention never happens on the
NoC links (router is bufferless) and packets reach appropriate
destinations. We achieve this using static analysis of the
SDFs that contain precise timing information of task execution
and data flows. This communication schedule will then be
loaded into the software-defined NoC routers compactly before
applications execute. These routers are called software-defined
as they can be programmed at run-time. An underlying control
logic uses this schedule and re-configures switch connections
to move packets appropriately over the NoC.

Our concrete contributions are the following:
• We propose ASCENT, an offline approach which

takes in an SDF-specified application and a bufferless
software-defined NoC topology as input and performs
application-specific task-to-core mapping and communi-
cation scheduling that exploits the precise timing infor-
mation.

• The generated schedule can be succinctly encoded and
stored within routers with limited memory. At run-time,
the routers are reconfigured to realize the switch con-
nections based on this schedule with the aid of Finite
State Machines. We describe the changes required in the
router micro-architecture to efficiently store and perform
this schedule.

• ASCENT achieves better performance than TDM-
based mechanisms, approaching the throughput of ideal
dynamically-routed NoCs, yet ensuring predictability.

II. BACKGROUND ON REAL-TIME NOCS

NoCs such as the asynchronous MANGO NoC [13],
SoCBus [14] and the synchronous ÆThereal [8], dAElite
[15], S4NoC [10] that provide real-time guarantees have
been proposed in the past [6]. Most of these approaches
perform communication scheduling on bufferless software-
defined NoCs using TDM, where each core can only send
data in its allocated time slots.

Apart from handling general-purpose all-to-all traffic, prior
works have also explored tailoring TDM schedules to the
specific application’s communication demands. For instance,
[16] uses the packet flow information between tasks to allo-
cate multiple slots to match application bandwidth require-
ments using constraint programming. However, the constraint
programming-based scheduling, due to its complexity, may
not generate a feasible TDM schedule or may produce an
extremely large slot table in order to match the exact band-
width requirements. A recent real-time TDM NoC proposal
DCFNoC [17] routes each flow such that the latency is
always that of the worst-case route, thereby simplifying the

TDM scheduling and allowing it to approach the ideal TDM
throughput.

Inherently, any task in a TDM NoC needs to wait for the
slot allocated to the core on which this task is executing, to
inject a packet. Hence, TDM-based scheduling leads to under-
utilization of resources, higher latency, and lower throughput
than dynamic packet-switched NoCs, which can deftly inter-
leave packets on links on a cycle-by-cycle basis.

Non-TDM statically scheduled NoCs. In Tilera
TILEPro64 many-core (successor of MIT RAW [18]),
dynamically routed networks are used as a backup to support
the software-defined NoC when the system faces unknown
traffic patterns. The work in [5] eliminates the need for TDM
slots, but it targets a specific class of application, baseband
processing, and cannot generalize to diverse flows.

ASCENT eliminates time slots by configuring routers to
match the periodicity of the application’s communication
patterns and the cycle-by-cycle scheduling allows it to achieve
better throughput than existing TDM-based methods, ap-
proaching that of the ideal dynamic NoCs.

III. SYNCHRONOUS DATA FLOW GRAPHS

Streaming applications with throughput requirements typ-
ically contain a set of cooperating tasks that execute pe-
riodically. The Synchronous Data Flow (SDF) [11] model-
of-computation comprehensively represents these applications
with concurrent tasks and dependencies among the tasks. Static
analysis of the SDF can generate a deterministic schedule of
the tasks, making SDF a preferred model especially in real-
time systems. Several DSP and multimedia applications have
been represented as SDF [12].

A. Models and notations

An SDF defines an application as a set of tasks T commu-
nicating through a set of buffers B. Whenever a task t ∈ T
is executed, it consumes a fixed number of data packets
(known as tokens in SDF parlance) in its input buffers, has an
execution time (Et), and produces a fixed number of tokens
in output buffers. Each buffer b = (ti, tj) ∈ B has one input
task ti ∈ T and one output task tj ∈ T . The production rate
of ti in b ∈ B is inb: the number of tokens produced in b
when ti is executed. The consumption rate of tj in b is outb:
the tokens consumed when tj is executed. For example, in
Figure 1, when task A fires it consumes 8 tokens, executes
for EA = 1 time units and produces 2 tokens that in turn
will be consumed by task B. The buffer bAB between the two
tasks A and B has inbAB

and outbAB
as 2 and 2, respectively.

B. SDF Scheduling

An important aspect of SDFs is that they can be scheduled
at compile-time taking system specifications and application
objectives into account. In the context of SDF, meeting the
application throughput requirements is a commonly targeted
objective. Scheduling algorithms can generate the maximal
throughput schedule of an application by choosing the start
times of the tasks appropriately.
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Fig. 1: SDF containing three tasks and different associated K-
Periodic schedules. The periodicity vector used for the top,
middle and bottom K-Periodic schedules are K = [1, 1, 1],
[1, 1, 2], and [3, 3, 4] respectively. For example, in the middle
figure, we can see the first execution of the task A starts at
0 with a period of 2 units of time, while the task C has two
starting times (at 3 and 4) with a period of 3.

A common approach to SDF scheduling is As Soon As
Possible (ASAP) scheduling of the tasks wherein a task is
scheduled as soon as its input tokens are available. This
scheduling representation is composed of a transitory phase
followed by a steady-state phase. The transitory phase is
known to be of finite size, and the steady-state phase is mod-
eled by an execution pattern that is infinitely repeated. ASAP
schedule is optimal in the absence of resource constraints [19].
However, the length of an ASAP schedule can be exponential
in the number of SDF tasks in the application.

An alternative is to build a K-Periodic schedule [20] with
a periodicity vector K as well as a set of periods P . For any
task t, the value Kt is its periodicity factor and Pt is its period.
The schedule of any task t (t ∈ T ) is modeled by a sequence
of Kt start times and a period Pt ∈ P .

The pattern representing the start times of initial instances:
St
1, St

2, · · · , St
Kt

is repeated every Pt time units. Figure
1 shows three different K-Periodic schedules for the SDF
presented on the top. For the schedule in the middle sub-
figure, we observe that task C with kC = 2 has two continuous
execution instances (SC

1 = 3, SC
2 = 4) repeating every three

time units (PC = 3).
Importantly, it has been shown that there always exists a

periodicity vector K for which the schedule reaches maximal
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Fig. 2: ASCENT communication scheduling Overview

throughput [21]. We consider the scheduling methodology pro-
posed in [21] as it obtains optimal throughput while keeping
the values of K as low as possible, leading to a compact
schedule which is critical in software-defined NoCs as the
schedule has to be stored in hardware routers.

C. Related works on SDF Scheduling.

A number of frameworks have been developed to compile
dataflow models and perform task mapping on many-cores
and heterogeneous architectures [22], [23]. However, most of
these tools optimize task scheduling while communications are
offloaded to the targeted hardware (i.e., dynamic NoC, shared
memory). Existing works on compile-time communication
scheduling using Constraint Programming [24] or ILP (Integer
Linear Programming) [25], [26] not only have long compute
run-time but also create schedules that are too large to fit in the
router memory. While [27] uses periodic scheduling to reduce
the schedule size, the authors only consider dynamic NoCs and
do not take communication patterns into account. Although
communications are factored in [28], [29] using Time Division
Multiple Access (TDMA), they are limited by the maximal
throughput achievable with a fixed and small number of time
slots.

Applying existing SDF scheduling algorithms to com-
munication scheduling requires a complete rethink of how
the resources are modeled. The cycle-by-cycle interleaving
supported by non-TDM software-defined NoCs leads to an
explosion in the search space and can result in a bulky
schedule that cannot be realized in hardware. To the best
of our knowledge, this is the first work that models NoC
resources using appropriate SDF graph transformations and
exploits periodic scheduling of tasks and communications to
configure a software-defined NoC. This approach leads to
better throughput, while still ensuring a statically generated
schedule that easily fits in hardware.

IV. ASCENT : COMMUNICATION SCHEDULING
MECHANISM

We present ASCENT, a scheduling strategy that takes in
as input an application specified as SDF, a specification of
the bufferless NoC architecture, and generates a task mapping
and a communication schedule (Figure 2). We first rely on a
generic task-to-core mapping with associated communication
routing (Section V-A). Next, a series of graph transformation
operations are applied on the SDF to model resources con-
straints and hardware features (Sections V-B and V-C). The
novelty of our approach is that the application schedule is
used and refined all along to direct these transformations,
making sure that the final schedule remains K-Periodic and
contention-free (Section IV-B). Importantly, the periodicity in
our approach enables a compact representation of schedules
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that can easily be stored in hardware. This schedule is finally
used to configure the NoC to support communications between
cores.

Algorithm 1 ASCENT Algorithm

Input: SDFG G and NoC Architecture A
Output: Configuration of NoC Routers C

1: R←MapAndRoute(G,A) // (Section V-A)
2: G′ ←ModelNetwork(G,R) // (Section V-B)
3: X ← FindConflict(G′) // (Section V-C)
4: while ∃ x ∈ X do
5: G′ ←MergeTasks(G′, x) // (Section V-C)
6: X ← FindConflict(G′) // (Section V-C)
7: end while
8: S ← KPeriodicSched(G′) // (Section IV-B)
9: C ← RouterConfigs(S) // (Section V-D)

10: return C

A. ASCENT Router Micro-architecture

As previously discussed, a key goal of the ASCENT’s
methodology is to produce periodic and very compact sched-
ules that can easily fit in NoC routers’ memory.

In Figure 3, we propose a micro-architecture for such a
router. Since the software scheduler takes care of routing and
ensures contention freedom (no two incoming ports will simul-
taneously use the same outgoing port), the router hardware
does not need any routing, flow control logic, or buffering.
However, it needs efficient hardware mechanisms to store and
realize the software schedule every cycle. If we use slot tables
like in TDM, the table size can be large, as ASCENT sup-
ports cycle-by-cycle configuration by the software scheduler.
Instead, we support software-defined scheduling through finite
state machines that set the crossbar muxes.

Finite State Machine

N S E W Core

+ 4X16-bit Counters
+ 4X8-bit Counters

(16 + 16 + 8 + 1) = 41 bits

4 entry Config. Table

Start Period Duration Valid
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M
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M
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M

U
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Fig. 3: ASCENT router micro-architecture
Each router comprises of five 4:1 multiplexers. A finite state

machine (FSM) controls the select bits of the muxes. Each
FSM is defined in hardware as four registers of size 41 bits.
Data is written to the FSM only once at the beginning of the
execution of the schedule. At any given time, only one of the
four incoming links is connected to the output. For example,
for an outgoing link in the North direction, we can only have
packets from one of the four incoming links (no U-turns):
South, East, West and Core. There are thus four corresponding

entries per port and a total of 20 entries across 5 ports (N, S,
E, W, Core) of a mesh buffer.

The software scheduler sets up 4 fields for each entry: Start,
Period, Duration, Valid. For example, if an entry corresponding
to the North → South connection is configured with the
value Start=20, Period=10, Duration=5 and the East → South
connection is configured with value Start=35, Period=20,
Duration=2, then the North→ South connection is established
in cycles (20-24), (30-34), (40-44) and the East → South
connection is established in cycles (35-36), (55-56), (75-76)
and so on.

A 16-bit Period counter is associated with each of the 20
entries, initialized to 0. In each cycle, the counter is increased,
and the specific input-output port is connected (mux select
signal is set) when the counter reaches the Period value. The
counter is then reset to 0 once the Period value is reached.
Another 8-bit counter is set to Duration and decremented each
cycle, disconnecting the mux when it hits 0.

B. Scheduling
To limit the size of the schedule so that it can fit in the

router’s memory, our strategy relies on K-Periodic scheduling.
K-Periodic scheduling assigns to each task a set of initial
starting times and a period that will repeat these executions. In
most SDF graph use-cases, only one starting time is needed per
task. This makes this class of scheduling extremely compact,
while still reaching the maximal throughput performance of
an application [21].

The main principle of the K-Periodic scheduling technique
from [21] is to solve a Linear Program made of multiple
constraints corresponding to execution dependencies of tasks
connected by any channel in the graph. More specifically,
a valid schedule is found when for every channel b in the
SDF graph G, Equation 1 is satisfied. We recall that Su

i is
the starting time of the ith execution of the task u, Eu the
execution time of u, PS the global period of the graph, and
delayb(i, j) is a constant value that models the precedence
constraints between the ith execution of the task u and the
jth execution of the task v where channel b = (u, v).

Sv
j − Su

i ≥ Eu + PS × delayb(i, j) (1)

Then the objective of the linear program solver is to minimize
PS , the global period of the system, while satisfying all the
precedence constraints induced by the channels as modelled
in Equation 1.

However, this scheduling technique does not support re-
source constraints. In ASCENT NoCs, where the hardware
does not handle contention, the software scheduler has to
ensure resource constraints are met. In other words, the
software schedule has to make sure that at any point in time, a
communication link is only used by one flow. Thus, to enable
this scheduling technique to work over ASCENT’s software-
defined bufferless NoC, we have made two major extensions to
the original work: bufferless channels and initialization phases.

1) Bufferless channels: First, we integrate the notion of
bufferless channels as the original SDF models defined buffers
as boundless FIFOs. We require the notion of bufferless chan-
nels as the data produced needs to be immediately consumed
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as they cannot be stored. To introduce this feature, we include
additional constraints between execution times of every pair
of tasks connected by buffers.

2) Initialization phases: To model resource constraints, we
propose to merge multiple SDF tasks into one (Section V-C).
Such transformation can induce extra constraints to the graph
and pose a risk in introducing deadlocks. For the merged tasks
to perfectly match the original graph, we will produce Cyclo-
Static Dataflow Graphs with initialization phases. Cyclo-Static
DataFlow Graphs or CSDFG [30] is a commonly used model
wherein a single task can have multiple phases. Each phase
has a particular consumption and execution pattern. However,
initialization phases are much less common, and model phases
are executed only once. We can also find an example of
initialization phases with the Lucy-n language by Mandel and
Plateau [31].

From a periodic schedule, we can naturally obtain the ‘Start’
and ‘Period’ information required by the ASCENT routers. In
Section V, we describe the step-by-step workflow of ASCENT
that obtains the router’s configurations from a given SDF
graph.

V. ASCENT WORKFLOW

In this section, we describe the ASCENT framework using
Algorithm 1.

A. Task-to-core Mapping and Routing

In this first step indicated as the MapAndRoute function
in Algorithm 1, we map each SDF task to a core and establish
communication routes between them, similar to the approach
proposed in [32]. We obtain a path with the shortest NoC
latency using XY routing and minimal NoC link contention
by considering all the tasks mapped before this step.

First, the set of tasks T is sorted topologically. In case of
cycles within the graph, we randomly remove one feedback
edges to break the cycle. Next, we iterate through the tasks t ∈
T and perform the task-to-core mapping. In each iteration, we
consider placing the task t in each of the unallocated cores and
finally map the task on the core that has the least routing cost.
Section V-A1 below describes the procedure for finding the
NoC path between communicating tasks while Section V-A2
defines the routing cost when t is mapped to an unallocated
core c.

Fig. 4: A simple SDF graph with six tasks.

1) NoC Path: Let T ′ ⊆ T denote the set of previously
mapped tasks that receive/send data from/to t. Let t′ denote
a task in T ′ that is mapped to core c′. Using XY routing
with shortest NoC latency, multiple paths may exist between
c and c′ . Let s0, s1, . . . , sn denote the number of flows
that use links l0, l1, . . . , ln in a given path between c and c′.
Let Sharing Degree(t, t′) = max(s0, s1, . . . , sn) denote the
sharing degree of this path. We iteratively consider each task
t′ ∈ T ′ and choose the path between t and t′ that has the least
sharing degree using Dijkstra’s algorithm [33]. In case of a
tie, we randomly pick one among all the paths that have the
least sharing degree.

2) Routing Cost: Let t, t′ denote two tasks in T that
are mapped to cores c and c′ respectively. NoCLat(t, t′)
denotes the shortest latency using XY routing between c and
c′. The routing cost is defined as the sum of the cost due
to the NoC latency (Costlat) and the cost due to the NoC
link contention (Costcont). We define Costlat as the sum
of NoCLat between t and t′,∀t′ ∈ T ′ divided by the total
number of communicating tasks (|T ′|) as stated in Equation
2.

Costlat =

∑
t′∈T ′ NoCLat(t, t′)

|T ′|
(2)

We define Costcont as the maximum sharing degree be-
tween t and t′,∀t′ ∈ T ′ as stated in Equation 3.

Costcont = maxt′∈T ′(Sharing Degree(t, t′)) (3)

We map t on the unallocated core with the least routing
cost and store the chosen path between t and t′, ∀t′ ∈ T ′

(obtained using Dijkstra’s algorithm as described before).
Figure 4 shows an SDF graph containing six tasks and Figure
5a is its corresponding task-to-core mapping and NoC routing
on 3x3 2D-Mesh.

In this example, the tasks are first ordered topologically,
E,B,A,C,D, F . The first three tasks can be mapped to any
core as they do not share any communication (the cost is null).
In this example, E is mapped to 0, B is mapped to 8, A is
mapped to 7. No routing is required yet. Next, tasks C and D
are mapped one after another, while limiting contention and
NoC Latency, i.e. the number of router hops. The algorithm
goes through all available cores, considers only paths with
shortest NoC Latency and selects the path with lowest sharing
degree. Task C is mapped in such a way that it is close to
tasks A and B, while task D on the other hand is mapped
by taking the mapping of tasks C and E into consideration.
When the task F has to be mapped contention becomes larger.
Thus, by placing F closer to the task D in the core 2, we are
able to achieve low contention and NoC latency.

B. Graph Transformations: Modelling Network Links

The second stage of ASCENT is the ModelNetwork
function that models network communications. While network
modelling is common [34], we diverge from previous works as
we consider a particular kind of channel where token lifetime
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(b) NETWORK MODELLING: Each net-
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(c) CONSTRAINTS MODELLING: Con-
flicting tasks are merged. For example,
Routers 1 and 4 only have two tasks as-
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in the final schedule as depicted in Figure
8.

Fig. 5: This figure represents the three major steps of the ASCENT framework. Figure 5a represents the mapping and routing
of the SDF. Figure 5b shows how the network devices are modeled. Figure 5b presents how conflicting tasks are merged after
multiple iterations of scheduling.
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Fig. 6: For C to communicate with D as per the specification in Figure 5a, data has to transit through three different links
(C4R4, R4R1, and R1C1) and two different routers (CN4, SC1). The result of this transformation is shown in Figure 5b.

must be equal to zero. These channels are used to model
bufferless NoC communication.

Each buffer involved in network communications can be
replaced by a series of additional tasks representing the
different network devices used and the cost of communication
along the routes previously determined. Precisely, we perform
the following transformations:

• Any link in the network traversed by the communication
between two tasks is modeled by a “link” task t that
consumes and produces PktSizet tokens (the packet
size) with an execution time of Et (the hop latency). To
match the NoC architecture we target, we set a packet
size of PktSizet = 1 and a hop latency of Et = 1 for
every link t.

• Any router traversed by communication is modeled as
a “router” task t that also consumes and produces
PktSizet tokens with an execution time of Et. To match
the NoC architecture we target, we set PktSizet = 1 and
Et = 0 for every link t.

• The execution time of routers is zero as within a sin-
gle clock cycle a packet can traverse a router and the
following link. Additionally, the data cannot be stored
between two network tasks; when data is produced by a
“link” task, it must be consumed by the “router” task.
For this reason, all buffers between network devices are
considered bufferless.

These artificial tasks are used to collect the number of times a
router needs to be activated. Ultimately this information will
be used to configure the NoC routers.

For example, in the SDF presented in Figure 5a, task C is
mapped to core 4, while task D is mapped on core 1 in a
3x3 mesh. The buffer between the tasks C and D will thus be
replaced by the proposition in Figure 6. As the route from C
to D goes through routers 4 and 1, we replace the buffer bCD

by a series composed of two “router” tasks and three “link”
tasks. First, the “link” task C4R4 connects the Core 4 (C4)
to Router 4 (R4). Second, the “router” task CN4 connects the
Core (C) to the North (N) of Router 4. It is followed by a
“link” R4R1 from Router 4 to Router 1, a “router” task SC1
(South to Core 1), and finally a “link” R1C1 from Router 1
to Core 1.

The result of this transformation is depicted in Figure 5b.
We denote an important number of “router” tasks associated
with the same routers (i.e., routers 1 and 4). This happens
when multiple communications go through the same router
and thus instantiate different “router” tasks. It is also important
to note these “router” tasks might or might not be compatible
in the sense of scheduling at the same time. For example,
NW1 and CS1 can be scheduled simultaneously, while CS1
and CW1 cannot. To ensure the absence of this contention, we
will transform the graph and serialize communications that
would conflict otherwise: this is the modelling of resource
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Two tasks A and B must be merged. They are part of a 
bigger SDF graph, their schedule is pictured on the right.  

Task A
Task B

If we merge these two tasks using the CSDF model while 
considering their original repetition vectors, a solution 
would be the task AB as followed. This different schedule 
implies a risk of deadlock.  

[3,3,0]

[0,0,4]

[0,0,5]

[2,2,0]

Task ABAB

The previous solution cannot match the original sequence 
of execution and in some case could prevent the system 
from working. In ACSENT we consider ICSDF model instead, 
where some initialization phases can be defined.

3,[3,3,0]

0,[0,0,4]

0,[0,0,5]

2,[2,2,0]

Task ABAB

TWO TASKS MUST BE MERGED

USING CSDF

ASCENT/USING ICSDF

Fig. 7: Merging SDF tasks into a single node can decrease
performance or even generate deadlock situations. Simply
turning SDF tasks into CSDF tasks can be problematic. Our
solution creates ICSDF where CSDF tasks can have initializa-
tion phases.

constraints.

C. Graph Transformations: Modelling Resource Constraints

This third stage will iteratively look for contention (with
FindConflict) and sequentialize the “router” tasks that can-
not be executed at the same time (with MergeTasks).

1) FindConflict: A conflict is defined by two “router”
tasks (for example CS1 and CW1) that are scheduled at the
same time while they should not be (CS1 and CW1 both
need to use the C1R1 entry link). To identify conflicts, we
schedule the system using the K-Periodic scheduling strategy
(previously defined Section IV-B) and we note the incompati-
ble “router” tasks scheduled at the same time. Once a conflict
is identified we perform the merge operation described below.

2) MergeTasks: Given two tasks, the MergeTasks
function merges them into a single SDF task. To obtain the
required granularity, the merged tasks will be modeled by
Cyclo-Static tasks as defined in the Cyclo-Static Dataflow
(CSDF) model [30]. The CSDF tasks can have multiple phases,
such that each of these phases can have different production

and consumption rates. In our case, each phase of the CSDF
task would correspond to one of the tasks that will be merged.

We show how two tasks in an SDF graph will be merged in
Figure 7. Task A consumes 2 tokens and produces 3 tokens in
each of its execution, and the task B consumes 4 tokens and
produces 5 tokens every time it executes. When scheduled,
these tasks requires two executions of A for one execution of
B. To merge these tasks, the most common strategy would be
to produce a CSDF task, i.e., a task with multiple phases where
each phase can either model the execution of A or B. In this
example, the task AB mimics the execution of A two times
followed by B. This pattern will repeat forever. The CSDF
notation [v1, v2, · · · ] in Figure 7, denotes the consumption
rate and production rate for each phase. For example, [2, 2, 0]
means that for two phases, task AB will consume 2 tokens
from the top left buffer, while the third phase will consume
none.

However, the execution order of the tasks diverges from
the original schedule. By simply specifying such phases when
merging two tasks, we risk degrading the performance of an
application or even creating a deadlock. This is demonstrated
with the schedules in Figure 7.

In our solution, we define initialization phases that are
executed only once at the start of the scheduling. This allows
us to accurately match the original schedule and thus avoid
deadlock. We note initialisation phases before the periodic
phases of a CSDF task; i1, i2, · · · , [v1, v2, · · · ] denotes that
the initial phases i1, i2, · · · will be executed first, then the
periodic pattern v1, v2, · · · will repeat forever. Precisely, from
the Initialized CSDF (ICSDF) in Figure 7, task AB has
one initial phase where it consumes and produces data only
from the right buffer, next followed by a standard periodic
pattern. From experimental evaluations, we observe that this
methodology does not degrade performance in most cases.

D. Generating NoC switch configuration

We have obtained a conflict-free version of our application
that can lead to a valid schedule (see Figure 8). The application
was simple enough that the obtained schedule is 1-Periodic,
there is only one starting time defined per task. The starting
times are SA

1 = SB
1 = SE

1 = 0, SC
1 = 5, SD

1 = 9, and
SF
1 = 13. The periods for every task are the same, P = 2.
The final step is to reuse the final schedule to populate

the routers’ configurations. Indeed, the generated schedule
consists of multiple starting times and a period per task. It
is then used to generate the task schedule and crossbar switch
configurations of the NoC. In addition, given the K-Periodic
nature of the scheduler we used, the size of schedules can
be controlled to fit hardware limitations, while maximizing
throughput.

For example, two tasks are responsible for Router 1’s sched-
ule. To program Router 1, we need to enumerate each periodic
activation of these tasks. The result of this configuration is
shown in Figure 9. From these tasks, we found four different
configurations that start at cycles 3, 5, 7, and 8 with an
execution period of 2 cycles.
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Fig. 8: Cycle-by-cycle application schedule after modelling
resource constraints depicted in Figure 5c. Highlighted execu-
tions are the task starting times defined by the schedule.

0 2 4 6 8 10 12 14 16 18

R1

Fig. 9: Router 1 configuration after modelling resources con-
straints depicted in Figure 5c.

VI. EXPERIMENTAL EVALUATION

In this section, we compare the throughput attained in
ASCENT with respect to the state-of-the-art TDM-based NoCs
and an ideal dynamically-routed NoC.

Benchmarks. We utilize five Digital Signal Processing
(DSP) benchmarks: BufferCycle, H263Decoder, Modem, MP3,
SampleRate from the SDF3 benchmark suite [12]. These
benchmarks are executed on 4x4 cores connected using a
2D mesh network, with one-to-one task-to-core mapping. We
chose 4x4, the lowest number of cores that can fit all these
applications.

Methodology. We run ASCENT offline scheduler for each
application to obtain the router configurations and exact
scheduling. At run-time this information is loaded into the
router. We compare this result with different techniques in
terms of performance and hardware resources requirement. We
assume that the NoC link hop latency is one cycle across all
mechanisms. We choose TDM OPT as it provides the best
performance with the lowest slot-table entries amongst other
TDM-based approaches. In TDM OPT [10], the minimum
number of time-slots and their NoC configurations are deter-
mined for a worst-case scenario in which a core communicates
with every other core in the system, i.e., all-to-all communica-
tion. We also simulate an ideal dynamically-routed NoC where
packets take the shortest paths and are never blocked within
the router due to unlimited buffering and virtual channels. The
task-to-core mapping in each technique is determined using
the approach explained earlier in Section V-A, i.e., the same
task-to-core mapping is used for different communication
scheduling mechanisms. Thus communication scheduling can
be fairly compared across different mechanisms.

Simulation. The SDF graph contains precise timing in-
formation on task execution time and data flows between
tasks. The offline mapping and scheduling algorithm is able
to compute a deterministic task and communication schedule.
We are also able to find the set of task executions and
packet transfers that repeats itself (called hyper-period in
SDF parlance). We are able to determine the application
throughput from this schedule. We also generate a packet trace

TABLE I: Throughput in ASCENT with respect to TDM OPT
[10] and Ideal dynamic routing

Benchmark Throughput in ASCENT w.r.t.
Ideal Dyn. Routing TDM OPT [10]

BufferCycle 1 10.80
H263Decoder 1 4.28

Modem 1 6.70
MP3 1 1.00

SampleRate 1 6.00

with timing information for this entire period. We faithfully
model software-defined ASCENT routers connected along a
2D-Mesh that takes packet flows, task mapping and router
configurations as input and performs packet routing on the
NoC based on the communication schedule. We use this
simulator to verify that the data packets reach the destination
without NoC link contention.

Performance. ASCENT, the offline communication sched-
uler proposed in this work consumes less than 1 minute to
compute the communication schedule for all the benchmarks
evaluated in this work.

We compare the throughput of the different benchmarks
while using different communication scheduling algorithms in
Table I. For TDM OPT and ideal dynamically-routed NoCs,
tasks are executed using As Soon As Possible execution
strategy (ASAP) where tasks can execute immediately after the
required data are available in their buffers. ASCENT follows
the mechanism explained earlier in Section IV. From this table,
we observe that ASCENT achieves better performance with an
average of 5.8× improvement over the TDM-based approach
for the benchmarks. This is because the packets no longer need
to wait till their allocated time-slot. Besides, ASCENT also
takes packet timing information into account for better com-
munication scheduling. In MP3, TDM OPT attains the same
throughput as ASCENT because it is not a communication-
intensive benchmark. ASCENT is able to obtain the same
throughput as that of an ideal dynamically-routed NoC as our
communication scheduler interleaves packets cycle-by-cycle
on the links just like dynamic NoCs.

We define run-time as the end-to-end execution time of an
application that includes SDF initialization. When K-Periodic
scheduling is utilized, application throughput requirements can
be achieved. However, it could lead to poor application run-
time due to initialization overhead. Hence, we analyse the run-
time speedup of ASCENT with respect to TDM OPT [10] in
Figure 10. From this figure, we observe that with smaller input
sizes ASCENT may achieve lower performance improvements.
For instance, in SampleRate with small input size, the run-
time is dominated by the initiation phase in ASCENT leading
to poor runtime compared to TDM OPT. However, as the
input size increases, the runtime improvement approaches the
throughput improvement.

Scalability. ASCENT’s micro-architectural structures per
core for supporting cycle-by-cycle software scheduling (FSMs,
counters) scale with the router specification, i.e., the number
of possible flows between incoming and outgoing links, rather
than with the number of cores. In ASCENT, each of the five
ports (North, South, East, West, Core) are connected to four
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Fig. 10: Application run-time speedup in ASCENT with re-
spect to TDM OPT [10].

TABLE II: Slot table size for different mechanisms.

Mesh
Config.

TDM Lower
Bound [10]

TDM
OPT [10]

TDM
Heur. [9] ASCENT

4x4 15 18 59 20
5x5 24 34 112 20
8x8 63 N.A. 481 20

links (excluding self). Hence, the number of slot table entries
remains unchanged at 20 even for a large 100x100 mesh. This
is unlike the slot table overhead of TDM-based approaches.

Table II shows the slot table size of several state-of-the-art
TDM techniques. In the TDM techniques, the slot table entries
are determined assuming all-to-all communication, i.e. every
core communicates with all the remaining cores in the system.
In TDM Lower Bound [10], we present the theoretical least
number of slots required to realize an all-to-all communication
pattern. A n core system will require n− 1 slots per router as
each core communicates with n−1 cores. This is a theoretical
slot allocation mechanism that may not be feasible. TDM OPT
[10] represents the optimal number of slot size with a feasible
schedule. Note that though TDM Lower Bound requires 15
slot entries for 4x4 mesh, we need a minimum of 18 entries
for achieving a feasible schedule. TDM OPT determines the
schedule and slot table size using Integer Linear Programming
(ILP). Thus, it is not possible to obtain the optimal number of
time slots for meshes larger than 5x5 due to an exponential
increase in the problem-solving run-time. Thus, we compare
with TDM Heur. [9], a heuristics-based approach for TDM
NoCs. Although this mechanism provides a feasible schedule,
there is a huge increase in the slot table sizes between TDM
OPT and TDM Heur [9] as mesh size increases. ASCENT is
not only scalable in terms of the number of slot table entries
but also provides at least 5.8X better average throughput when
compared to the existing TDM based approaches like TDM
OPT and TDM Heur.

RTL Design and Synthesis. The ASCENT NoC router
described in Section IV-A has been implemented in RTL and
synthesized using Synopsys Design Compiler. A NoC router
consumes 4.9 mW at 1.1 GHz on a commercial 40 nm process
at 0.0142 mm2 area. In particular, the FSMs form the bulk
of the router (nearly 90% of the total area) as there is no
buffering and they only contain wires. This trend is similar to
the TDM NoC where significant area is taken up by the slot

tables. Compared to a 4x4 mesh TDM NoC with 18 slot table
entries, ASCENT’s counters and FSMs lead to only 19.5%
area overhead while consuming 2.3X less power. Though
there is slight area overhead, we achieve significant power
savings. The reduction in power arises as the ASCENT router
only needs to change the connections periodically, leading to
significantly reduced dynamic power. However, TDM NoC
needs to change the router connections every cycle and hence
consumes more dynamic power. ASCENT router consumes
more area as counters are required to manage the periodic
connections. As 4.9 mW power is rather low (it is only
4.3% of core power in [5]), we leave further optimization
of the ASCENT NoC router for future work. For instance,
the counters and FSMs can be obviated by embedding the
schedule within the packet header instead, similar to source-
routed NoCs. At each NoC router, the hardware looks at
the header bits to determine which output port a flit will be
connected to and sets the mux select signals appropriately.
Hardware-wise, the tradeoff is header overhead vs. router
overhead. Embedding the schedule in the header will require
more wires to transmit the header, but this is amortized over
multiple flits of a packet anyway, just as in dynamic NoCs.
Software-wise, this requires the scheduler to handle multi-flit
packets when reserving network resources.

VII. CONCLUSION AND FUTURE WORK

We propose ASCENT, a scheduling mechanism that exploits
the inherent periodicity in SDF applications to perform task-to-
core mapping and task-/communication- scheduling on buffer-
less software-defined NoCs. ASCENT provides 5.8x better
throughput on average for the applications in the SDF3 bench-
mark suite compared to existing TDM-based mechanisms and
matches the performance of an ideal dynamically-routed NoC
while ensuring predictability.

In this work, we evaluated the proposed mechanism only on
2D-mesh as it is commonly used in many-core architectures.
This approach could be used to schedule communication
on other regular and irregular NoC topologies like torus,
hybrid mesh-star, etc. as long as the NoC network can be
expressed using a directed graph. Sophisticated mechanisms
and evaluation would be required to attain the best schedules
for various NoC topologies. We would like to explore this as
a future work.

The proposed work is focused on the scheduling and
assumes a specific microarchitecture and topology of the
NoC hardware. A future research direction would be to co-
design the NoC architecture in conjunction with the scheduling
method. For example, the proposed work considers a small
and homogeneous NoC design. But we could also explore
heterogeneous designs where router sizes could gradually
increase depending on their location. This direction could
potentially lead to even smaller design, while still maintaining
guarantees for the type of application it supports.
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