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ABSTRACT
Asymmetric multi-core architectures have recently emerged as a
promising alternative in a power and thermal constrained environ-
ment. They typically integrate cores with different power and per-
formance characteristics, which makes mapping of workloads to
appropriate cores a challenging task. Limited number of perfor-
mance counters and heterogeneous memory hierarchy increase the
difficulty in predicting the performance and power consumption
across cores in commercial asymmetric multi-core architectures.
In this work, we propose a software-based modeling technique that
can estimate performance and power consumption of workloads for
different core types. We evaluate the accuracy of our technique on
ARM big.LITTLE asymmetric multi-core platform.

1. INTRODUCTION
Asymmetric multi-cores, also known as single-ISA heteroge-

neous multi-cores [16], are emerging as a promising solution that
can achieve power-performance trade-off essential in high perfor-
mance, energy constrained embedded systems such as tablets, smart-
phones, automotive telematics, and others. Asymmetric multi-cores
integrate high performance, power hungry complex cores (“big"
cores) with moderate performance, power efficient simple cores
(“small" cores) on the same chip. The characteristic that distin-
guishes asymmetric multi-cores from heterogenous multiprocessor
system-on-chips (MPSoC) prevalent in embedded platforms is that
both the core types implement the same instruction-set architecture
(ISA); that is, the same binary executable can be scheduled to run
on either the big or the small core. Examples of commercial asym-
metric multi-cores include ARM big.LITTLE [5], integrating high
performance out-of-order cores with low power in-order cores and
NVidia Kal-El [4], consisting of four high performance cores with
one low power core. An instance of the former integrating quad-
core ARM Cortex-A15 (big core) and quad-core ARM Cortex-A7
(small core) appears in the Samsung Exynos 5 Octa SoC driving
high-end Samsung Galaxy S4 smart-phones.

A fundamental challenge in exploiting asymmetric multi-cores
for power-performance trade-off arises from scheduling the work-
load to the appropriate core type. Initial proposals [7, 15, 18]
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employed a simple strategy of scheduling memory-intensive work-
loads on the small core and compute-intensive workloads on the
big core. Recently [22] has shown that this strategy may lead to
sub-optimal mappings and it is imperative to accurately estimate
the power-performance characteristics of a workload on different
core types.

The Performance Impact Estimation (PIE) mechanism proposed
in [22] is a dynamic technique that collects profile information
while executing the application on any one core type, and estimates
the performance on the other core type. This estimation allows
the scheduler to make appropriate adjustments to the application-
core mapping at runtime. However, the PIE mechanism [22] has
few shortcomings that renders it difficult, if not impossible, to be
deployed on real hardware. First, the estimation is based on a
number of simplifying assumptions such as the presence of iden-
tical cache hierarchy and branch prediction on both core types,
which are unrealistic for commercial asymmetric multi-cores. Sec-
ond, the PIE mechanism requires profile information, such as the
inter-instruction dependency distance distribution, that cannot be
collected on existing cores and requires specialized hardware sup-
port. Third, power estimation is completely missing as [22] focuses
on throughput oriented server workload. Finally, and most impor-
tantly, the mechanism is evaluated using simulator where one has
complete flexibility in choosing the core configurations.

In this work, we develop power-performance model for commer-
cial asymmetric multi-core: ARM big.LITTLE. While an applica-
tion is executing on ARM Cortex-A7 (alternatively ARM Cortex-
A15), we collect profile information provided by hardware coun-
ters, and estimate power and performance characteristics of the
same application on ARM Cortex-A15 (alternatively ARM Cortex-
A7). We evaluate the accuracy of our estimation on real ARM
big.LITTLE hardware platform.

Our modeling and estimation on real hardware are challenging
in many ways. First, the big core and the small core are dramat-
ically different, not just in the pipeline organization, but also in
terms of memory hierarchy and the branch predictor — a reality
that is ignored in all previous works [22, 15, 21]. These differences
render the power, performance estimation from one core type to
another considerably more difficult. Second, we are constrained by
the performance counters available on the cores and their idiosyn-
crasies; for example, while the big core provides the L2 cache write
access counter, it is unavailable on the small core. More impor-
tantly, in contrast to simulation based modeling work, we cannot
rely on additional profiling information, such as inter-instruction
dependency [22], that can only be collected by introducing extra
hardware.

We overcome the challenges outlined above using a combina-
tion of static (compile time) program analysis, mechanistic model-



ing [13, 14], which builds analytical model from an understanding
of the underlying architecture, and empirical modeling [17, 12],
which employs statistical inferencing techniques like regression to
create an analytical model.

Our performance model for any core centers around the CPI (cy-
cles per instruction) stack that quantifies the impact of different
architectural events (such as data dependency, cache miss, branch
misprediction etc.) on the execution time. While we can obtain
information about certain events (e.g., cache miss, branch mispre-
diction) from the hardware counters, other information such as data
dependency are not readily available. We rely on compile time
static program analysis technique to capture the data dependency
information and its impact on pipeline stalls.

Once we develop the CPI stack based performance model for
each core, we proceed to estimate the CPI stack of the second core
given the CPI stack of the first core. We employ regression mod-
eling to estimate the architectural events (cache miss, branch mis-
prediction) on the second core given information about the archi-
tectural events on the first core. These estimates of architectural
events can be plugged into the CPI stack model of the second core
to derive the CPI value and hence the performance estimate. Fi-
nally, our power model uses the CPI value along with additional
information, such as instruction mix, memory behavior etc., to es-
timate the power behavior of the core.

Our concrete contributions in this work are the following.

• We propose a combination of static program analysis, analyt-
ical modeling, and statistical techniques to model the perfor-
mance of individual cores and estimate power, performance
across different cores on single-ISA heterogeneous multi-
core platforms.

• Ours is the first work towards performance estimation across
asymmetric cores on real hardware. Estimation on real hard-
ware is challenging compared to simulation based studies [22]
due to distinctly different configurations of the cores, mem-
ory hierarchy, and unavailability of some of the required hard-
ware counters.

• Ours is the first work to model CPI stack on real out-of-
order and in-order cores. [11] is the only existing work that
models CPI stack for commercial out-of-order processors;
but does not consider in-order processors. We demonstrate
that our CPI stack model is more accurate as we combine the
strengths of static program analysis and runtime analytical
modeling.

• Ours is the only work to derive power estimation on the sec-
ond core solely based on the execution profile on the first
core. Existing works [9] require execution of the application
on both cores to estimate power, an assumption that is unre-
alistic when migration cost from one core type to another is
relatively high, as is the case in our setting.

2. RELATED WORK
Considerable number of prior works [8, 11, 14] have developed

analytical performance models for processors. The two predom-
inant approaches employed in building performance models are
mechanistic modeling and empirical modeling. Mechanistic mod-
els are purely based on the insights of the target processor archi-
tecture. In [13, 14], the authors developed a simple interval based
mechanistic model for out-of-order cores that assumes a sustained
background performance level, which is punctuated by transient
miss-events. The models from [13, 14] was further improved in

[10] by weighing the dispatch stage in detail. Eyerman et al. [8]
propose mechanistic model for superscalar in-order processors. In
empirical modeling, the performance model is considered as a black
box and typically inferred using statistical/regression techniques.
Joseph et al. [12] use non-linear regression performance model-
ing. In [17], the authors employ spline-based regression model-
ing for performance and power across different micro-architectural
configurations. The authors in [11] propose hybrid mechanistic-
empirical modeling for commercial processor cores with few sim-
plistic assumptions. However, our technique uses the combina-
tion of compile-time analysis, mechanistic modeling and empirical
modeling to construct performance models for both out-of-order
and in-order cores with better accuracy on a real platform.

Asymmetric multi-cores pose significant challenges in schedul-
ing [16, 9]. The online scheduling in heterogeneous multi-cores
can be improved significantly by estimating performance across all
the core types [22]. Craeynest et al. [22] propose a performance
model to estimate the CPI stack across the big and small cores. Our
power-performance model for asymmetric multi-cores has the fol-
lowing advantages over [22]: (a) our model was developed using
real hardware (i.e., not any assumptions of the presence of addi-
tional counters mentioned in [22]), (b) we do not assume uniform
memory hierarchy, and (c) we extend our performance model to
estimate power consumptions. Cong et al. [9] propose an energy
estimation technique on Intel’s QuickIA heterogeneous platform.
In [9], the estimation of energy-delay product requires the execu-
tion of the applications in all the core types. In comparison, our
technique can estimate the power (also energy-delay product) with-
out having to profile in all the core types.

3. ARM BIG.LITTLE ARCHITECTURE
We first describe the micro-architectural features of the ARM

big.LITTLE asymmetric multi-core that we model for power, per-
formance estimation. The single-ISA heterogeneous architecture
consists of high performance Cortex-A15 cluster and power effi-
cient Cortex-A7 cluster, as shown in Figure 1. The evaluation plat-
form we use in this work contains a prototype chip with two Cortex-
A15 cores and three Cortex-A7 cores at 45nm technology. All the
cores implement ARM v7A ISA. The Cortex-A15 is complex out-
of-order superscalar core that can execute high intensity workloads,
while Cortex-A7 is a power efficient in-order core meant for low in-
tensity workloads. While each core has private L1 instruction and
data caches, the L2 cache is shared across all the cores within a
cluster. The L2 caches across clusters are kept seamlessly coherent
via the CCI-400 cache coherent interconnect.

L2 
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Core 

Cache Coherent Interconnect 

Cortex-A15 
Core 

Cortex-A15 
Core 

Cortex-A7 
Core 

Cortex-A7 
Core 

DRAM 
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Figure 1: ARM big.LITTLE asymmetric multi-core.

Table 1 summarizes the micro-architectural parameters of Cortex-
A15 and Cortex-A7, obtained from publicly released data. It should
be evident that the cores are genuinely asymmetric in nature. The
2-way issue in-order pipeline of A7 containing 8-10 stages is dra-
matically different from the 3-way issue out-of-order pipeline of
A15 containing 15-24 pipeline stages. Moreover, even the cache
configurations and branch predictors are distinctly different in A15



Parameter Cortex-A7 Cortex-A15

Pipe-line In-order Out-Of-Order
Issue Width 2 3
Fetch Width 2 3

Pipeline Stages 8-10 15-24

Branch Predictor
512-entry BTB 2K-entry BTB

2-way 2-way
L1 I-cache 32KB/2-way/32B 32KB/2-way/64B
L1 D-cache 32KB/4-way/64B 32KB/2-way/64B

L2 Unified-cache 512KB/8-way/64B 1MB/16-way/64B

Table 1: Architectural Parameters of Cortex-A7 and Cortex-A15

compared to A7. Most previous works [22, 15, 21] assume that the
memory parameters are identical across different core types.

The architecture provides DVFS feature per cluster. The A7
cluster provides eight discrete frequency levels between 350MHz
– 1GHz, while the A15 cluster also provides eight discrete fre-
quency levels between 500MHz – 1.2 GHz. Note that all the cores
within a cluster should run at the same frequency level. Moreover
an idle cluster can be powered down if necessary. As our focus is on
power, performance estimation across core types, we conduct the
experiments by setting the same voltage (1.05 Volt) and frequency
(1 GHz) for the two clusters. Estimating power, performance for
different frequency levels is left as future work. We also consider
execution of a sequential application on either A7 or A15, that is,
we only use one core at a time and the idle cluster is powered down.

The heterogeneous cores exhibit different power and performance
characteristics across workloads. Figure 2 shows the performance
speedup, energy consumption ratio, and EDP (Energy-Delay prod-
uct) ratio for 15 selected benchmarks on A15 in comparison to A7.
Clearly, A15 has significant performance improvement compared
to A7 (average speedup of 1.86); more importantly, the speedup
varies significantly across benchmarks from 1.45 to 2.30. In terms
of power, it is expected that A7 has lower average power com-
pared to A15 for all the benchmarks. While average power on
A7 is 1.44Watt, the average power on A15 varies from 4.20Watt
to 5.15Watt. Even though A7 has worse performance, it can com-
pletely make up for it in terms of power to achieve far superior
energy efficiency compared to A15 (1.78 times lower energy on
average). A7 is also more energy efficient for all the benchmarks.

But in embedded systems, especially in interactive systems such
as smartphones, we are more interested in the combination of en-
ergy and delay to decide on workload-to-core mapping because
both battery life and response time are equally important. This
metric is captured as Energy-Delay product (EDP). Interestingly,
in terms of EDP, there is no clear winner: A15 is more efficient
than A7 for 8 benchmarks due to faster execution that overcomes
the power inefficiency, while A7 is superior for the remaining 7
benchmarks due to lower power consumption. Thus, the scheduler
needs both power and performance behavior on a core type to de-
cide on the appropriate mapping.

As observed in [22] and validated in our experiments, it is im-
possible to predict the power, performance characteristics of an ap-
plication on different core types based on simple metrics such as
memory access intensity. We also observe that the average migra-
tion cost across clusters is quite high: 2.10ms to move a task from
A7 to A15, and 3.75ms to move from A15 to A7. This renders
it unrealistic to first execute a workload on each cluster separately
and then make the workload-core mapping decision as proposed in
[9]. Thus it is essential to accurately estimate the CPI for perfor-
mance and use the CPI to estimate power. We do so through power,
performance modeling in the next section.
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Figure 2: Performance improvement, energy consumption ratio and
EDP ratio of A15 in comparison to A7.

4. PERFORMANCE MODELING

collect runtime 
performance counters

arch.
param. Build intra-

core CPI 
stack model

perf.
counters

Build inter-
core miss 

events 
model

Build intra-
core power

model

perf.
counters

𝑓𝑃′

𝑔𝑥
𝑃→𝑃′

ℎ𝑝𝑜𝑤𝑒𝑟
𝑃′

miss
events

𝑚𝑖𝑠𝑠𝑥
𝑃

𝑚𝑖𝑠𝑠𝑥
𝑃′

arch.
param.

𝐶𝑃𝐼𝑃′

𝑔𝑥
𝑃→𝑃′

ℎ𝑝𝑜𝑤𝑒𝑟
𝑃′

𝑓𝑃′

𝑝𝑜𝑤𝑒𝑟𝑃′

runtime scheduler

𝐶𝑃𝐼𝑠𝑡𝑒𝑎𝑑𝑦
𝑃′

𝐶𝑃𝐼𝑠𝑡𝑒𝑎𝑑𝑦
𝑃′

Training benchmarks Real-world applications

Operating System

Figure 3: Inter-core performance, power estimation from P to P ′.

The aim of performance modeling is to estimate the performance
of an application on a second core type (small/big) given its exe-
cution profile on the first core (big/small) type. Our model cen-
ters around CPI stacks. The basic observation behind the model
is that the CPI follows a sustained background level performance
CPIsteady punctuated by miss events that show up as temporary
peaks. CPIsteady captures the cycles spent in the architectural
events tightly coupled to the pipeline such as data dependency among
instructions and structural hazards, while CPImisses represents
the cycles spent due to the external events such as cache miss and
branch mispredicton.

CPI = CPIsteady + CPImiss (1)

The performance estimation framework shown in Figure 3 com-
prises of three major steps. The first step is an off-line procedure
where we build intra-core CPI stack model for each core type.

While CPImiss can be expressed in terms of miss events and
their latencies, computing CPIsteady requires presence of elabo-
rate hardware mechanisms [22] that can collect inter-instruction de-
pendencies and are not available in existing processors. We avoid
additional hardware mechanism by observing that CPIsteady is
an intrinsic characteristics of a program on a core type and is sta-
ble across different program inputs, whereas CPImiss is highly
dependent on the program inputs. For example, Figure 4 shows
the estimated CPIsteady and CPImiss values of bzip benchmark
for different program inputs on A7 and A15. Note that expectedly
CPIsteady is higher on A7 than A15 because A15 with out-of-
order execution engine can better exploit instruction-level parallel-
sim in the presence of data dependencies and structural hazards.
The estimated CPI is the summation of the estimated CPIsteady
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Figure 4: Estimated CPIsteady and CPImiss of different inputs
for the same benchmark on A7 and A15.

and CPImiss. For reference, we have also plotted the measured
CPI. Our assumption that CPIsteady of an application on a core
type is stable across different program inputs is validated here as
the variation in CPI has been captured accurately only through vari-
ation in CPImiss.

We exploit this observation to estimate CPIsteady of a program
on both core types at compile time (see Section 4.1) and encode this
information with the binary executable. In other words, we estimate
bothCPIbigsteady andCPIsmallsteady for a program at compile time. For
applications with distinct phases, i.e., multiple computation kernels
with different behavior, we estimate separate CPIsteady value for
each phase.

To build the CPI stack on a core P , we collect the execution pro-
files of a set of training benchmarks through the hardware counters.
We then combine analytical modeling with linear and non-linear re-
gressions to derive the CPI stack model that accurately captures the
contributions of the different events to performance. The CPI stack
model can thus be expressed as the function fP where

CPIP = fP (CPIPsteady,miss
P
X , latency

P
X) (2)

where missPX and latencyPX are the number of occurrences and
latency of each occurrence of the miss event X on processor P .

The second step is another offline procedure where we develop
regression models that estimate the occurrence of different miss
events on processor P ′ given the frequency of the miss events on
processor P . These inter-core miss event estimation models are
built by collecting and correlating corresponding miss events on
both cores using a set of training benchmarks. The inter-core esti-
mation model from P to P ′ for an event X can be expressed by a
function gP→P ′

X where

miss
P ′

X = gP→P ′
X

(
missPX

)
(3)

where missP
′

X is the predicted occurrence of miss event X on P ′1.
At runtime, when a new application is running on core P , the

operating system collects the counter values at regular intervals to
get information about the miss events on P . For each miss eventX ,

it uses inter-core miss event estimation model to predictmissP
′

X on
core type P ′. Finally, it plugs in the estimated miss event counter

values in the CPI stack model of P ′ to predict CPI
P ′

.

CPI
P ′

= fP
′
(CPIP

′
steady,miss

P ′

X , latencyP
′

X ) (4)

4.1 CPIsteady estimation
Computing the CPIsteady value of a program on real hardware

is challenging due to limited information that is exposed through
1We useM to indicate the estimated value of a metric across cores.

the performance counters. While [22] proposes hardware coun-
ters that can count dynamic data dependencies and structural haz-
ards for this purpose, the overhead of such counters is quite high
due to the increased amount of book-keeping. An alternative is
to simply assume CPIPsteady = 1/D where D is the dispatch
width of processor P [11]. This assumption only holds true for
perfectly balanced pipelines where the number of functional units
for each type of operation is equal to the dispatch width and hence
there is no structural hazards. It is not realistic as commercial
processors do have unbalanced number of functional units. More
importantly, the assumption completely ignores the dependency
of CPIPsteady on the characteristics of the program, in particular,
inter-instruction data dependencies. We sidestep this problem by
computing CPIPsteady of a program on core P at compile time.
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Figure 5: Estimation of steady state CPI of a program using gcc.

Most modern compilers have an optimization pass that takes
care of instruction scheduling based on the hardware description
of the processor pipeline. We use gcc compiler, where instruc-
tion scheduling optimization pass is performed twice, before and
after register allocation pass (see Figure 5). When scheduling in-
structions, the algorithm uses a detailed description of the target
processor pipeline. At this stage, the compiler is aware of the data
dependencies among instructions and the structural hazards due to
the limited number of the functional units in the processor pipeline.

We include our CPIsteady estimation pass after the second in-
struction scheduling pass. For each basic block B of the applica-
tion, we extract the estimated number of cycles cyclePB , number of
instructions instrB , and the estimated frequency freqB . Tradi-
tionally, the frequency values are obtained by profiling the applica-
tion across different inputs but when the profile information is not
available, the compiler can predict the behavior of each branch in
the program using a set of heuristics and can compute estimated
frequencies of each basic block by propagating the probabilities
over the control graph. This estimate is used in our equation and it
captures rather an average behavior of the application regardless of
the input.

We define CPIPsteady of an application A on core P as

CPIPsteady

∣∣∣∣
A

=

∑
B freqB · cycles

P
B∑

B freqB · instrB

∣∣∣∣
A

(5)

Note that only cyclesPB depends on the core type and leads to differ-
ent steady state CPI values for different core types. TheCPIsteady
values thus computed for the small and big core are embedded into
the application binary.

4.2 CPI stack model of big core
We extensively employ linear and non-linear regression models

in our performance and power estimation framework. Our CPI
stack model for the big core extends and adapts the mechanistic-
empirical model proposed in [11] to Cortex-A15 core. Our model
estimates the total number of clock cycles C required to execute an
application on the big core as:



Cbig = β0 ·N · CPIsteady +missL1I · cL2

+missbr · (cbr + cfe) + dmissL2 ·
cmem
MLP

(6)

Once the total number of cycles are estimated, the CPI value can
be easily computed by dividing the cycles by the total number of
instructions N .

CPIbig =
Cbig

N
(7)

This parameterized model sums the number of cycles consumed
due to internal and external events. The first term, CPIsteady is
converted into the corresponding number of cycles by multiplying
it with the total number of instructions N . The βi parameters are
unknown and are fitted through non-linear regression.

The next term represents the miss event cycles due to the instruc-
tion misses in first level of cache. The penalty paid for an instruc-
tion miss in L1 cache is cL2 and represents the number of cycles
spent to access L2 cache and is micro-architecture dependant.

The next term of the equation quantifies the cycles spent during
the branch misprediction events. The branch misprediction penalty
is a function of the front-end length of the pipeline cfe and the
back-end of the processor where the branch is resolved in a branch
resolution time cbr . The branch resolution time represents the num-
ber of cycles spent between the arrival time of the mispredicted
branch in the dispatch queue and the moment when the branch is
actually resolved in the execution unit. The branch resolution time
is dependent on inter-instruction dependency, long-latency instruc-
tions and L1 data misses.

The next term of the Equation 6 represents the cycles spent due
to the misses in the last level of data cache. The big core is an
out-of-order core which takes advantage of the memory level par-
allelism such that part of an L2 cache miss latency overlaps with
other independent L2 cache misses. Thus, we reduce the overall
penalty by a factor MLP which is described as follows:

MLP = β1 ·
(
dmissL2

N

)β2
This equation assumes that the L2 data misses are uniformly dis-

tributed and the amount of parallelism that can be extracted has a
power law relation with the window of misses per instruction from
which the parallelism is to be extracted.

We recommend the reader to consult the work in [8] for more
details about the intuition behind the presented equations.

4.3 CPI stack model of small core
Modeling the CPI stack for the small in-order core is simpler.

We start from Equation 6 and remove the terms that are specific to
out-of-order processors. The total number of cycles for the small
core can be modeled using linear regression as follows:

Csmall = β3 + β4 ·N · CPIsteady +missL1I · cL2

+missbr · cfe + dmissL2 · cmem
(8)

CPIsmall =
Csmall

N
(9)

In case of in-order processor, the branch resolution time in the
back-end pipeline is not relevant because there is no reorder buffer
structure present in an in-order processor. Once there is branch
misprediction, the entire pipeline has to be drained. Similarly, the
MLP correction factor is not used as cache missses cannot overlap.

Parameter Var Cortex-A15 Cortex-A7
name

Pipeline front-end cfe 4 13
L2$ access cL2 19 13
Main memory

cmem 140 100
access

Table 2: Estimated latency in cycles for miss events on A15 and A7

Parameter Var Cortex-A15 Cortex-A7
name

Cycles C X X
Instructions N X X
Branch instr Nbr X X
Branch misses missbr X X
Load instr Nld X X
Store instr Nst X X
Integer instr Nint X X
Float instr Nfp X X
L1I$ access accessL1I X X
L1D$ access accessL1D X X
L1I$ misses missL1I X X
L1D$ misses missL1D X X
L2$ data miss dmissL2 X X
L2$ write access dwaccessL2 X
L2$ write back WBL2 X X
Power sensor Power X X
Energy sensor Energy X X

Table 3: Hardware Performance Counters on A15 and A7

4.4 Latency of miss events and performance counters
The performance models for both big and small core use a num-

ber of hardware performance counters and the latencies correspond-
ing to each individual miss event. Table 3 enumerates all the per-
formance counters that are used in our work and their availability
on A7 and A15 cores.

While information about the pipeline structure and memory hi-
erarchy configurations of A7 and A15 are available from publicly
released data as well as processor internal registers, the cache miss
and memory access latencies are not released. To estimate the ac-
cess latencies to L2 cache and main memory we use the lmbench
[19] micro-benchmark. Table 2 summarises the penalties in cycles
for the different miss events used in our models for A7 and A15.

4.5 Contribution of CPI stack components

0

1

2

3

4

5

6

A15 A7 A15 A7 A15 A7 A15 A7 A15 A7 A15 A7

texture gzip.r cactusADM wupwise GemsFDTD equake

C
P
I

CPI steady L2D miss CPI branch miss CPI L1D miss CPI L1I miss CPI

Figure 6: Estimated CPI stack components on A7 and A15 for a
subset of benchmarks.

The miss events used in both the models are branch mispre-
diction, L1 and L2 cache miss. We chose only these events as
they contribute most to the overall CPI of a processor. In order



to support our claim we conducted several experiments on a set of
benchmarks that expose different computational behaviour. Figure
6 plots the estimated CPI stack on both small and big cores. We
chose two compute intensive benchmarks (texture and gzip.r), two
average compute intensive benchmarks (cactusADM and wupwise),
and two memory bound benchmarks (GemsFDTD and equake).
The benchmarks were selected from Vision [23], SPEC2000 and
SPEC2006 [3] benchmark suits. In case of the memory bound ap-
plications, the impact of misses in L1 and L2 caches on the overall
CPI is considerably higher compared to the compute intensive ap-
plications for which the CPIsteady and branch mispredictions are
impacting the CPI mostly. Note that branch misprediction impacts
A15 substantially more than A7, because A15 has an aggressive
back-end pipeline that suffers more from squashing of instructions.
We also observe that the speedup on A15 compared to A7 is depen-
dent on a lot of factors, such as CPIsteady , branch misprediction
cost, and cache miss cost.

5. INTER-CORE MISS ESTIMATION
The real challenge in inter-core performance and power estima-

tion on asymmetric cores is that the memory hierarchy and the
branch predictors may not be identical across different core types,
as is the case in ARM big.LITTLE (see Table 1). The small cores
are connected to a simpler cache system in order to increase the
power efficiency, while the big cores are connected to a more com-
plex memory that supports higher memory throughput, which in-
creases the overall performance. Recent related works [22] as-
sumed that the asymmetric systems have identical memory hierar-
chy. The innovation in our approach is that we develop mechanistic-
empirical models that can predict the occurrences of miss events
missP

′
X on processor P ′, given their occurrences missPX on P

obtained through hardware performance counters.
In order to predict the CPI value of core P ′ while running on

core P , we need to predict the values of the performance counters
used in Equation 6 and Equation 8 depending on whether we are
predicting the CPI of big core or small core, respectively. These
counters are: number of first level data and instruction cache miss
(missL1D,missL1I ), number of last level cache miss (missL2)
and the number of branch mispredictions (missbr).

Inter-core branch misprediction estimation. The big core A15
has significantly more aggressive branch predictor compared to A7
to ensure sustained supply of instructions to the high-throughput
back end. We observe that the branch misprediction rate on P ′ (big
or small) is correlated to three metrics on P : the branch mispre-
diction rate, the CPI, and the number of branches per instruction.
The last metric signifies the rate of branch prediction — the higher
the rate, the more is the benefit from a complex predictor. Simi-
larly, the higher the instructions per cycle (or lower the CPI), the
more is the need for aggressive branch predictor. Thus we define
the inter-core branch misprediction estimation model as follows:

missP
′

br = β5 + β6 ·missbr +
(

1

CPI

)β7
+ β8 ·

(
Nbr
N

)β9 ∣∣∣∣
P

Inter-core L1 instruction cache miss estimation. The L1 instruc-
tion caches on both cores have the same size and associativity. But
the line size on A15 is 64 bytes, while the line size on A7 is 32
bytes. Thus A15 can exploit more spatial locality leading to re-
duced cold miss. But A7 has twice the number of sets compared
to A15, which may lead to reduce conflict miss in A7. As we do
not have information about cold and conflict miss, we attempt to

estimate them. We assume that the number of cold misses cold on
processor P is the code size divided by the line size. To predict
cold miss on P ′, the cold miss obtained from P is scaled by the
average size of basic blocks N

Nbr
. The rationale is that the larger

the basic block size, the more likely the cache benefits from larger
line size due to spatial locality. Thus, our inter-core L1 instruction
cache miss estimation model is

missP
′

L1I = β10 + β11 · cold ·
(
N

Nbr

)β12
+ β13 · conflict

∣∣∣∣
P

cold =
codesize
linesize

∣∣∣∣
P

; conflict = missL1I − cold
∣∣∣∣
P

Inter-core L1 data cache miss estimation. The L1 data cache
has the the same size but different associativity on A7 and A15.
However, across a large range of benchmarks, we observe that there
is very little difference between the number of L1 data cache miss
on A7 and A15. So we employ a simple linear regression model
for inter-core miss prediction of L1 data cache.

missP
′

L1D = β14 + β15 ·missL1D

∣∣∣∣
P

Inter-core L2 cache miss estimation. The L2 is a unified data
plus instruction cache on both A7 and A15. Even though both L1I
and L1D miss filter down and access the unified L2 cache, the in-
struction accesses have higher spatial and temporal locality leading
to negligible miss rate for instruction accesses in L2. Thus instruc-
tion miss in L2 does not influence the CPI stack on either A7 or
A15 and can be safely ignored. This is fortunate because both A7
and A15 provide performance counters for only L2 data access miss
and not L2 instruction access miss. We denote L2 data access miss
as dmissL2 and it has significant influence on CPI stack as shown
in Figure 6. Thus for accurate inter-core performance and power
estimation, it is absolutely essential to predict dmissL2 correctly.

For our architecture, L2 cache is distinctly different in A15 com-
pared to A7. Not only the L2 in A15 has twice the associativity
of A7 (16-way versus 8-way); but also the size is doubled in A15
(1MB compared to 512KB). This also implies that the number of
sets (1024) in L2 is exactly the same for both A7 and A15 and A15
is likely to have significantly less conflict miss due to higher as-
sociativity, whereas cold misses should be similar because the line
size is identical.

How do we determine the number of conflict miss for L2 data
access? We use the number of write backs to estimate conflict miss
in L2. A write back indicates conflict miss because a memory line
is being evicted from the cache due to conflict with another memory
line. But not all conflict miss are captured via write backs. If the
memory line being replaced in the cache is clean (i.e., contains
read data), we cannot observe the conflict in terms of write back.
We make the assumption that the rate of conflict miss is the same
for both read data and write data. Thus we scale the write back by
the fraction of write access to estimate the conflict miss conflict.

conflict =
WBL2

(wfracL2)
β16

∣∣∣∣
P

; cold = dmissL2 − conflict
∣∣∣∣
P

While predicting L2 data miss from the big core (A15) to the
small core (A7), we have measured value for wfrac from per-
formance counters: number of L2 access (which is same as the
sum of L1D and L1I miss) and number of L2 data write access



(dwaccessL2). Thus

wfracL2 =
dwaccessL2

missL1I +missL2D

While predicting from the small core to the big core, however, we
are challenged by the lack of performance counters for write ac-
cess. So we estimate L2 write access as the L1D miss scaled by the
fraction of store instructions over total memory instructions.

wfracL2 =

Nst
Nst+Nld

·missL1D

missL1I +missL2D

We are now ready to predict dmissL2 across cores. We use lin-
ear regression of cold miss and conflict miss on P to predict the
total miss on P ′. We observe that while L2 instruction access miss
is negligible, if the number of instruction access in L2 is high com-
pared to total L2 access, there is higher chance of instructions evict-
ing data through conflict in unified cache. Thus we scale the con-
flict miss by L2 instruction access fraction to obtain more accurate
inter-core conflict miss prediction.

dmissP
′

L2 = β17 · conflict ·
missL1I

missL1I +missL1D
+ β18 · cold

∣∣∣∣
P

Inter-core CPI estimation. Once we have estimated the miss events
on coreP ′, given the miss event information on coreP , it is straight-
forward to obtain CPI estimate on P ′. We simply need to compute
CPIP

′
miss by plugging in the estimated miss event values in the CPI

stack of P ′ as defined by Equation 6 or Equation 8.

6. POWER MODELING
We now describe our modeling technique to estimate power on

asymmetric multi-core. Unlike performance modeling, which re-
quired a combination of mechanistic and empirical modeling, power
can be modeled purely based on regression analysis. We used a
simple linear regression model to estimate the power consumption
in terms of available performance counters.

Modeling power of small core. In big.LITTLE platform, the small
cores are superscalar in-order, power efficient Cortex-A7 proces-
sors. We observe that the average power consumption of the small
core is quite similar across all the benchmarks. The min and max
power consumption measured across training benchmarks (from
Table 4) are 1.385 watts and 1.506 watts respectively. Thus, there
is no need to model power for the small cores.

Modeling power of big core. While power consumption on the
small A7 core is stable across benchmarks, the big core (power-
hungry, out-of-order A15) shows significant variation in power con-
sumption within (due to phase behavior in programs) and across
benchmarks. The observed min and max power consumption on
A15 across training benchmarks (from Table 4) are 4.535 watts
and 5.155 watts respectively. This is because complex out-of-order
cores exhibit different access profiles of various micro-architectural
components across the benchmarks. Thus, it is imperative to model
application-specific power consumption on A15.

The power consumption of A15 depends on the pipeline behav-
ior and the memory behavior of the application. In particular, the
instruction mix of an application is expected to influence the ac-
cess profile of different architectural components such as ALU,
floating-point unit, branch predictor etc, which in turn, determines
the power consumed in the pipeline. The power consumption in
the memory hierarchy is determined by the number of L1I, L1D,

L2, and memory access. So we are looking for the function hP in
Figure 3 that models the power consumption

PowerP = hP (NX ,miss
P
X , CPI

P )

where NX is fraction of instructions of type X in instruction mix.
Given a set of training benchmarks, we first collect the perfor-

mance counter values on A15 that captures the instruction mix and
the access at different levels of the memory hierarchy. We also mea-
sure the power consumption on A15 (power measurement setup
will be presented in Section 7). Next we employ correlation anal-
ysis to identify the important performance counter that are most
related to power consumption. The total power consumption of the
big core can be expressed in terms of the following linear regres-
sion model:

Power = β19 + β20 ·
Nint
N

+ β21 ·
Nfp
N

+ β22 ·
1

CPI

+β23 ·
accessL1D

N
+ β24 ·

accessL2

N
+ β25 ·

dmissL2

N

(10)

The first three terms capture the power consumption in the pipeline,
which is influenced by the proportion of integer instructions (Nint),
the proportion of floating point instructions (Nint), and the instruc-
tions per cycle IPC (the inverse of CPI).

The power consumption is also linearly related to the rate of ac-
cess to the various levels of the memory hierarchy, which is cap-
tured using the next three terms. Notice that we do not include
L1 instruction cache access here because it is already included in
terms of CPI. The higher the CPI, the lower the rate of access to L1
instruction cache.

Estimating power of big core from small core. The major chal-
lenge in estimating the power consumption of an application on the
big core while running it on the small core is that we have to predict
the access profile. In Equation 10, the instruction mix (N ,Nint and
Nfp) remains unchanged across cores. The inter-core miss event
prediction model given in Section 5 estimates CPI , dmissL2,
missL1D , missL1I on the big core from the corresponding val-
ues on the small core (see also in Figure 3). We can then define

access(L2) = missL1D +missL1I

These estimated values can be plugged into Equation 10 to estimate
the power consumption on the big core.

7. EXPERIMENTAL EVALUATION
We now evaluate our power, performance estimation framework

for asymmetric multi-core. We first present the experimental setup,
followed by fitting errors of our model on training benchmarks, and
finally a validation of our models within and across cores for a new
set of test benchmarks.

Experimental setup. We use the Versatile Express development
platform [5] comprising of a motherboard on which the big.LITTLE
prototype chip is mounted as part of a daughter board. The moth-
erboard handles the interconnection between the daughter board
and the peripherals using an FPGA bus interconnection network.
The board boots Ubuntu 13.02 Linaro with the Linux kernel re-
lease 3.7.0 for Versatile Express [6]. The platform firmware runs
on an ARM controller, which is embedded on the motherboard.
The Linux file system is installed on the Secure Digital (SD) card
where all our benchmark applications are located.

We collect the hardware performance counter values using ARM
Streamline gator kernel module and daemon [1]. We compile and
configure Linux kernel to support the gator driver. The gator driver



is a dynamic kernel module that interrupts the core at periodic in-
tervals to collect the performance counters. The average CPU uti-
lization of gator daemon is less that 0.5%, which indicates that the
overhead of running gator daemon in the background is minimal.
We use Matlab [20] to develop our regression models offline.

The prototype big.LITTLE chip consists of one A15 cluster and
one A7 cluster at 45nm technology. The individual clusters are
equipped with sensors to measure the frequency, voltage, current,
power and energy consumption at the cluster level and not at the
core level. Moreover, we can only power down a cluster; but not in-
dividual cores within a cluster. In our experiments, we utilize only
one A15 core and one A7 core. The remaining cores in the clusters
are logically turned off using system calls, such that no tasks are
scheduled on them. Finally, we set the voltage and frequency for
both the clusters at 1.05V and 1GHz, respectively.

Training Benchmarks

ammp, cactusADM, equake, gcc
GemsFDTD, gzip.s, gzip.l, gzip.r, milc

namd, sift, sixtrack,
texture, wupwise, zeusmp

Test Benchmarks

apsi, calculix, gamess, gzip.p
gzip.g, h264, lbm, leslie3d,
mcf, mgrid, mser, omnetpp

parser, swim, tonto

Table 4: Training and Test Benchmarks
Compiler setup. We implement our CPIsteady estimation pass
in the GCC Linaro version 4.7.3. The GCC instruction scheduler
[2] uses a very efficient pipeline hazard recognizer to estimate the
possibility of issuing an instruction on a given core in a given cy-
cle. The processor pipeline descriptions can be expressed in terms
of a deterministic finite automaton, which in turn is used to gener-
ate pipeline hazard recognizer. The latest version of Linaro GCC
compiler includes the processor pipeline descriptions for Cortex-
A7 and Cortex-A15 cores. We exploit the hazard recognizer to es-
timate the data dependencies and structural hazards for a program
on A7 and A15, which leads to the steady state CPI estimate as
presented in Section 4.1.

We compile all the benchmarks with -O2 optimization flag. This
ensures that the instruction scheduling optimization pass and the
CPIsteady estimation pass are invoked. We disable both the hard-
ware and the software prefetcher in all our experiments. The Cortex-
A15 cores comprise of Level 2 hardware prefetcher, while Cortex-
A7 contains Level 1 data cache hardware prefetcher. All the hard-
ware prefetcher are disabled by writing to the CP15 auxiliary con-
trol register. All the benchmarks are compiled with -fno-prefetch-
loop-arrays flag to disable software prefetching.

Training and Test benchmarks. For our experiments, we use Vi-
sion [23], SPEC CPU2000 and CPU2006 [3] benchmark suites
with reference inputs. Table 4 lists the set of benchmarks used
in our training and tests set. We categorize all the benchmarks
into three types based on the memory behaviour: memory inten-
sive benchmarks, compute intensive benchmarks and intermediate
benchmarks. The fraction of L2 miss per instruction is given by
fracL2 = ( dmissL2

N
· 100). For memory intensive benchmarks,

we chose the fracL2 > 1.5%, while the compute intensive bench-
marks have fracL2 < 0.5% and the remaining are classified as in-
termediate benchmarks. We randomly select five benchmarks from
each category to capture diverse behavior in our training set. The
training set is used to develop our regression models for power and
performance, while the test set is used to cross-validate the model.
As shown in Table 4, we keep the test benchmark set consisting of
15 benchmarks completely disjoint from the training set.

7.1 Performance estimation accuracy
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Figure 7: Intra-core model validation accuracy using CPIsteady
obtained through compile-time analysis compared to the accuracy
assuming CPIsteady = 1/D

We validate our performance and power estimation models using
three sets of experiments. In the first experiment, we compute the
fitting error for our regression models on the training benchmarks.
It is important to get a good fitting in order to build an accurate
model. However, with over-fitting, we run at the risk of large errors
for new applications, for which the model was not trained. Thus,
our second experiment computes error in intra-core performance
and power estimation for the test benchmark set using the model
derived from training benchmarks. This shows the robustness of
the model, i.e., how well the model behaves for new applications.
Finally, we validate the accuracy of our inter-core estimation mod-
els on test benchmarks. This challenging task requires both accu-
rate CPI stack models and inter-core miss event estimation models
to achieve good accuracy.

Fitting error in regression for training benchmarks. In Fig-
ure 8, the benchmarks are numbered in the same order as it is enu-
merated in Table 4. Figures 8a and 8d show the measured and
estimated CPI for small and big core, respectively, on the training
set. The average fitting errors observed are 8.2% for small core and
10.1% for big core, respectively. A7 CPI stack model has better ac-
curacy because it is easier to build the CPI stack for in-order cores
in comparison to complex out-of-order cores.

Given an application, we obtain CPIsteady on big and small
core at compile time. This is in contrast to the technique proposed
in [11] that assumes CPIsteady to be equal to 1

D
, where D is the

dispatch width of the core (D = 2 for A7 and D = 3 for A15).
In other words, the model in [11] completely ignores the impact
of program characteristics on steady state CPI. Figure 7 shows the
advantage of compile-time estimation on CPI prediction for both
A7 and A15. Our technique reduces the prediction error by 33.3%
on A7 and 8.1% on A15, on an average, in comparison to [11].

Intra-core validation for test benchmarks. In order to further
evaluate the accuracy and robustness of our intra-core CPI stack
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Figure 8: CPI stack model fitting error on training benchmarks, intra-core model validation error using test benchmarks and inter-core CPI
estimation error for Cortex-A7 (top row) and Cortex A-15 (bottom row).

model, we compare the measured CPI and the estimated CPI for
a completely new set of benchmarks (i.e., test benchmarks) from
Table 4. From Figures 8b amd 8e, we observe that the average
intra-core prediction errors are 12.7% for small core and 14.6% for
big core, respectively. For both small and big cores, 80% of all
test benchmarks have prediction error less than 25%. The error
increases slightly compared to the fitting error, which is expected
given the diverse characteristics of our test benchmarks. The intra-
core validation with test benchmarks confirms that our CPI stack
model is robust and we have avoided over-fitting.

Inter-core validation for test benchmarks. It is challenging to
estimate the CPI for one core type, while executing on the other
core type. The estimation is further exacerbated by the presence
of highly dissimilar cache hierarchy. We perform Inter-core vali-
dations using the test benchmarks. For this set of experiments, we
execute each test benchmark on A7 (alternatively A15), collect the
execution profile, and estimate its CPI on A15 (alternatively A7)
using our regression models explained in Section 4. We then com-
pare the predicted CPI on the target core with the measured CPI to
evaluate the accuracy of our estimation.

Figure 8c shows the measured CPI and the estimated CPI on
small core using the performance counters from big core. The av-
erage Inter-core validation error in predicting small core CPI from
big core is 13.4%; the maximum error is 43.2%. The comparison
between the measured CPI and the estimated CPI on big core using
the performance counters from small core is shown in Figure 8f.
We observe average Inter-core validation error in predicting big
core from small core is 16.7% and the maximum error is 41.3%. As
inter-core estimation depends on both CPI stack model and inter-
core miss event estimation models, this experiment validates the
accuracy of both the models.

7.2 Power estimation accuracy
Similar to the evaluation of our performance modeling, we evalu-

ate the power modeling in terms of fitting error, intra core validation
and inter core validation. As discussed earlier, we do not need to
build a power model for the small core due to insignificant variance
in power consumption across the benchmarks. Figure 9a shows the
measured and estimated fitting power for the training set on big
core. Similarly, Figure 9b and 9c compare the measured and esti-
mated power for intra-core and inter-core validation on test bench-
marks. The average prediction error is fairly low even for inter-core
validation (3.9%) (y-axis is scaled to capture the small difference
between the measured and estimated values). The power estima-
tion across cores rely more on memory access behavior, which we
predict fairly accurately leading to high acuracy.

7.3 Case Study
So far we have shown the accuracy of our power and perfor-

mance estimation models for whole benchmarks. In reality, some
benchmarks exhibit phase behavior in their execution. We envision
that our estimation framework can be used in such contexts to con-
tinuously monitor the execution profile on one core and estimate the
power, performance on the other core. This will allow the sched-
uler to migrate the task back and forth between the cores depending
on which phase the program is currently in and the appropriate core
type for that phase.

We conduct a case study experiment with astar benchmark to
evaluate the accuracy and robustness of our model in detecting
phase changes and accurately predicting the behavior on the target
core for each phase. Figure 10 shows the estimated power, perfor-
mance on A15 predicted from executing the application on A7. For
references, we also show the measure power, performance on A15.
The X-axis shows the number of committed instructions as time
progresses. We set our sampling interval at 500ms, which roughly
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Figure 9: Power model fitting error on training benchmarks, intra-core model validation error using test benchmarks and inter-core power
estimation error for Cortex-A15.

corresponds to 500 million instructions on A7 at 1GHz. The ap-
plication demonstrates clear phase behavior. Our estimations are
fairly close to the measured values. Thus we can track the phase
changes accurately and present performance speedup and energy
efficiency on A15 compared to A7 for each phase. How the sched-
uler can exploit this information depends on various policies and is
not within the scope of this work.
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Figure 10: Contiuous CPI and power estimation from A7 to A15
for astar benchmark.

8. CONCLUSION
In this paper, we develop accurate models to estimate the power

and performance on asymmetric multi-core architectures. Our aim
is to predict, at runtime, the power, performance behavior of an
application on a target core, given its execution profile on the cur-
rent core, where the cores share the same ISA but has heteroge-
nous micro-architecture. We overcome the challenges of distinctly
different micro-architecture, memory hierarchy, and branch predic-
tor on commerical asymmetric multi-cores through a combination
of compile-time analysis, mechanistic modeling, and linear/non-
linear regressions. One of the key contribution of our work is an
accurate model that estimates the cache miss and branch mispredic-
tion rates on the target core, solely from the information available
on the current core. Unlike almost all previous modeling works, we
design and evaluate our estimation framework on a real asymmetric
multi-core – ARM big.LITTLE.
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