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Abstract
Current generation GPUs can accelerate high-performance, compute-
intensive applications by exploiting massive thread-level paral-
lelism. The high performance, however, comes at the cost of in-
creased power consumption. Recently, commercial GPGPU archi-
tectures have introduced support for concurrent kernel execution
to better utilize the computational/memory resources and thereby
improve overall throughput. In this paper, we argue and experimen-
tally validate the benefits of concurrent kernels towards energy-
efficient execution. We design power-performance models to care-
fully select the appropriate kernel combinations to be executed
concurrently, the relative contributions of the kernels to the thread
mix, along with the frequency choices for the cores and the mem-
ory to achieve high performance per watt metric. Our experimental
evaluation shows that the concurrent kernel execution in combi-
nation with DVFS can improve energy-efficiency by up to 34.5%
compared to the most energy-efficient sequential execution.

1. Introduction
Current generation GPUs are well positioned to satisfy the com-
putational requirements of high-performance applications. Starting
from fixed-function graphics pipeline to a programmable massive
multi-core for advanced realistic 3D graphics [6] and accelerators
for general purpose applications, the performance of GPUs has pro-
gressed at a phenomenal rate in the past two decades exceeding the
projection of Moore’s Law [13]. For example, NVIDIA GeForce
GTX TITAN Z GPU has a peak performance of 8 TeraFLOPS [2]
and AMD Radeon R9 has a peak performance of 11.5 TeraFLOPS
[1]. The high performance of the GPUs comes at the cost of high
density of computational resource on a single chip. With the failure
of Dennard Scaling [7], the power density and total power con-
sumption of GPUs have escalated rapidly. Hence, power manage-
ment of GPUs have become increasing important.

There are many different approaches to power management of
GPUs, starting from circuit/architecture level all the way to the
software level. In the commercial space, AMD and NVIDIA have
included power management of the GPUs in recent years. AMD
uses PowerPlay to reduce the dynamic power consumption. Based
on the utilization of the GPU, PowerPlay puts the GPU into low,
medium and high power states accordingly. Similarly, NVIDIA
uses PowerMizer to reduce power. Dynamic Voltage and Frequency
Scaling (DVFS) is the most widely used mechanism for power
management due to its ease of implementation and significant pay-
off in terms of energy-efficiency. DVFS can be exploited in soft-
ware layers in various ways. For example, Lee et al. [11] and Jiao
et al. [10] attempt to change the frequency of the GPU core and
the memory based on the compute- and memory-intensity of the
computational kernel running on the GPU.

The new generation of GPUs, such as NVIDIA Fermi and Ke-
pler series GPUs, support concurrent kernel execution. A single
kernel may not be able to utilize all the resources available in a
GPU. Concurrency enables the execution of multiple kernels si-
multaneously in the GPU. If the cohabitant kernels are comple-
mentary in nature in terms of their compute- and memory-intensity,
then concurrent execution of the kernels leads to better utilization
of the resources and improved throughput. For example, Zhong et
al. [16] exploit the kernel features to select kernels with comple-
mentary memory and compute intensity to run concurrently, so as
to improve the GPU throughput. Moreover, the under-utilization of
the resources during execution of a single kernel leads to unneces-
sary wastage of power. The better utilization of the resources with
concurrent kernels combined with improved throughput can poten-
tially lead to significantly better energy-efficiency (see the motivat-
ing example in Section 2). However, to the best of our knowledge,
currently there does not exist any work that attempt to exploit the
concurrency to improve the GPU energy efficiency. In this paper,
we explore a combination of concurrent execution of kernels and
DVFS to improve the performance-per-watt behavior compared to
the default sequential model of execution.

Even through current generation GPUs support concurrency,
their scheduling policies allow only minimal overlap in execution
among the kernels [14] and degenerates to almost sequential exe-
cution of the kernels in most cases. We overcome this restriction
by applying a software-level approach called kernel slicing [16] to
enable true concurrency among the kernels. Each participating ker-
nel is partitioned into slices (consisting of a number of blocks) and
the slices from the different kernels are interleaved in the CUDA
program to force the GPU to execute them in a concurrent manner.

In order to extract the maximum benefit from the concurrent
execution, we need to (a) select the subset of kernels that should
execute together, (b) determine the proportion of each kernel in the
mix, and (c) tune the core and memory clock frequency settings
appropriately so as to obtain the maximum performance-per-watt
benefit. We develop accurate power-performance estimation mod-
els to help us make these design choices at runtime quite efficiently.
A greedy scheduling algorithm takes advantage of these estima-
tion models to choose appropriate kernel combinations to execute
from a waiting pool of kernels. Our experimental evaluation on a
contemporary GPU platform reveals up to 34.5% improvement in
performance per watt due to concurrent execution.

This rest of the paper is organized as follows. We present a mo-
tivating example to impress the importance of concurrent execu-
tion towards energy-efficiency in Section 2. We describe our ex-
perimental setup in Section 3. The concurrent execution of kernels
through kernel slicing is presented in Section 4 followed by the
scheduling algorithm in Section 5. The heart of our approach is the
power-performance estimation model, which appears in Section 6.
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We evaluate our approach in Section 7 and present related work in
Section 8. Finally we conclude in Section 9.

2. Motivating Example
In this work, our goal is to optimize the performance per watt met-
ric through concurrent kernel execution and DVFS. As our target
applications contain a mix of integer and floating point operations,
we use GOPS (Giga Operations Per Second) instead of FLOPS
(FLoating Point Operations Per Second) as the performance met-
ric. We use GOPS/Watt as the metric for energy efficiency that
captures the computational capability for every Watt of power con-
sumed by the GPU.

Let us now proceed to illustrate the energy-efficiency benefits of
concurrent kernels and DVFS through a simple motivating exam-
ple. For this example, we choose two benchmark programs Hotspot
and Mergehist. The details of the experimental setup will be pre-
sented in Section 3.

Execution scenario GOPS/Watt
Concurrent optimal block ratio 3:5, optimal freq 247
Concurrent optimal block ratio 3:5, max freq 217
Concurrent block ratio 4:4, optimal freq 219
Concurrent block ratio 4:4, max freq 206
Sequential optimal freq 177
Sequential max freq 166

Table 1: Impact of concurrency, frequency setting, and block ratio
on energy efficiency

Traditionally, the kernels will be executed sequentially. We
make two different choices regarding the frequency level of the
GPU and the memory during the sequential execution of the ker-
nels: (a) run both the kernels at the maximum frequency level of
the GPU and the memory, (b) tune the GPU, memory frequencies
for each individual kernel to achieve optimal GOPS/Watt during
the execution of that kernel. In the second scenario, the two kernels
might run at different frequency levels as each kernel runs at its
optimal frequency.

The concurrent execution of the kernels we employ in this work
involves executing blocks from all the kernels in parallel in a fixed
ratio. We call the proportion of each kernel in this kernel mix
as the block ratio. For example, a block ratio of 3:5 for kernels
Hotspot and Mergehist implies that 3 blocks of Hotspot execute
in parallel with 5 blocks of Mergehist at any point in time. We
identify the block ratio of the two kernels to achieve the optimal
energy-efficiency through exhaustive search. The optimal block
ratio for our example kernels is Hotspot:3, Mergehist:5. Similar to
the sequential execution, we first run the concurrent kernel with the
optimal block ratio at maximum frequency level. Next, we identify
the most energy-efficient frequency for the concurrent kernel with
optimal block ratio and run it at that frequency.

Table 1 shows the GOPS/Watt of the sequential and concurrent
execution of the two kernels. The concurrent execution improves
the energy efficiency by 39% over the sequential execution. Fur-
thermore, the figure confirms that running the concurrent kernel at
the maximum frequency setting does not achieve the best energy
efficiency. The concurrent execution at the highest frequency set-
ting has a lower 217 GOPS/Watt compared to 247 GOPS/Watt at
the optimal frequency setting. To conclude, we make two impor-
tant observations from this example: (a) concurrent execution can
improve energy efficiency significantly over sequential execution,
and (b) tuning the GPU, memory frequency is crucial to achieve
the best energy efficiency.

Clearly, improving energy efficiency involves finding the opti-
mal block ratio and the optimal frequency setting. A natural ques-
tion that arises is the choice of the block ratio for different objec-

tives. For example, whether the block ratio with performance as
the objective is the same as the block ratio for energy efficiency as
the objective. To answer this question, we first identify the optimal
block ratio for highest performance and it turns out to be Hotspot:4,
Mergehist:4. Running the concurrent kernel at 4:4 ratio and highest
frequency results in 206 GOPS/Watt (see Table 1). We further opti-
mize this execution to 219 GOPS/Watt by running it at the optimal
frequency for energy efficiency. Still the energy efficiency at 4:4
block ratio is much lower than 247 GOPS/Watt at 3:5 block ratio.
Clearly, the selection of the block ratio needs to take performance
per watt objective into account rather than performance alone. This
observation differentiates our work from the performance orien-
tated GPU work in terms of choosing kernel combination. More-
over, this experiment also establishes that the appropriate block ra-
tio selection is imperative to optimal energy efficiency.

3. Experiment Setup
Before we proceed further, it is important to introduce our experi-
mental setup in this section.

3.1 Experimental Platform

Core Clock (MHz) Memory Clock (MHz)
562 324
705 400
836 480
967 550

1097 625
1228 710

Table 2: Core and memory clock frequency levels

We conduct all our experiments and analysis on NVIDIA
GeForce GT 640 graphics card. GeForce GT640 features Kepler
GPU architecture, the most widely used GPU architecture at this
point. This particular version of the graphics card consists of two
SMX (Streaming Multiprocessors) and 2GB DRAM memory. Each
SMX contains 192 CUDA cores. Both the core and the memory
clock can be set to six discrete frequency levels. Table 2 shows the
frequency settings. Therefore, there are 36 pairs of core and mem-
ory frequency combinations. Increasing the clock speed of the core
improves the processing capability, while increasing the memory
clock speed improves the memory bandwidth. On the other hand,
increasing both the core and the memory clock speed has negative
impact on power. We change the frequency setting using third-
party software EVGA PrecisionX 16. The voltage is kept constant
at 1.012V for all the experiments.

We use NVIDIA Visual Profiler for performance measurement
and to obtain detailed performance counter information from the
GPU. We use National Instrument SC-2345 DAQ (Data Acquisi-
tion) system along with PCI EXPRESS Bus Extender for power
measurement of the entire GPU platform. We plug in the PCI ex-
tender in the original PCI slot for the GPU and then plug in the
GPU in the PCI extender. This ensures that the power supply for
the GPU goes through the PCI extender. The current difference be-
tween two specific points of the PCI extender is be the current con-
sumed by the GPU. As we know the supply voltage and the resistor
parameter, we can compute the GPU power consumption. National
Instrument SC-2345 is used to measure the current difference be-
tween the specified points.

Note that the high-end GPUs will contain more SMX compared
to GeForce GT 640. If a GPU contains more SMX, we expect to
save more energy for memory-intensive kernels with concurrency
(as more computation become available through concurrency). In
general, for any GPU platform, different kernel combinations have



different energy efficiency improvements. Therefore, we can al-
ways expect kernel combinations enabled by concurrent execution
will have significant energy efficiency improvement over sequential
executions irrespective of the GPU platform.

3.2 Benchmarks

Kernel GOPS Memory bandwidth No of blocks
(Gbytes/sec)

Pathfinder 7.9 1.9 1300
Bitonic 4.6 19.3 5000

Bt 10.1 0.1 500
Hotspot 7.7 0.5 10000
Layer 9.2 1.8 3600

Samplerank 4.0 17.5 3000
Srad 5.3 19.5 5000

Matrix 9.9 0.6 500
Time step 2.8 18.8 16000
Mergehist 4.2 0.8 5000
Transpose 7.7 13.9 16000

Table 3: Benchmark kernels’ characteristics at highest frequency

We choose 11 real-world kernels with various compute- and
memory intensity as benchmarks for our experiments. The kernels
Bitonic, Samplerank, Matrix and Mergehistogram are selected from
CUDA Sample 5.5. The rest of the benchmarks are selected from
Rodinia Benchmark suite 2.4 [4]. The characteristics of these ker-
nels while running at the highest core and clock frequency levels
are shown in Table 3. The table presents the compute requirements
of the kernels as GOPS (Giga Operations Per Second), while the
memory bandwidth requirement in Gbytes/sec (Gigabytes per sec-
ond). The input size of the kernel is determined by the number of
blocks present in the kernel. As we can see from the table, some
kernels are compute intensive (e.g., Bt), some are memory inten-
sive (e.g., Time step), and some others require both compute and
memory in equal measures (e.g., Transpose).

4. Concurrent Kernel Execution
In this section, we detail the mechanisms for concurrent kernel ex-
ecution. We employ NVIDIA Kepler architecture as the represen-
tative GPU platform for execution of concurrent kernels. The GPU
in Kepler architecture consists of several powerful SMX (Stream-
ing Multiprocessor) that share an L2 cache and the main memory.
Each SMX contains 192 single-precision CUDA cores, 64 double-
precision units, 32 special function units, and 32 load/store units.
The CUDA cores and the other function units within an SMX share
64 KB on-chip memory that can be configured as shared memory
or L1 cache and 65,536 entry register file.

In CUDA, a computational kernel comprises of hundreds or
thousands of threads operating on different data in parallel. The
threads are organized into warps and blocks. Every 32 threads are
organized into one warp. Warps are further grouped into blocks.
GPU block scheduler dispatches blocks to the different SMX. The
number of blocks that could be dispatched into an SMX depends
on the resource usage of the blocks, such as the number of warps,
shared memory size and register usage. Warp is the scheduling unit
within SMX. Each SMX features four wrap schedulers that can is-
sue four wraps simultaneously to the CUDA cores each cycle. All
the threads within a warp execute simultaneously processing dif-
ferent data elements. The block and warp scheduling policies de-
termine the order of execution of the threads in concurrent kernels.

Block scheduler: The block scheduler allocates the blocks to dif-
ferent SMX in a balanced way. When a block is ready to be sched-
uled, the block scheduler first calculates the available resources on

each SMX, such as free shared memory, registers, and number of
warps. The block is then scheduled to the SMX with the maximum
available resources. The current GPU scheduler employs leftover
policy for concurrent kernels [14]. Leftover policy is essentially
equivalent to sequential execution. In this policy, the scheduler first
dispatches all the blocks from one of the kernels, say K1, in the
mix. If there are available resources in an SMX after all the blocks
from the kernel K1 have been dispatched, then the blocks from the
following kernel K2 are dispatched and this results in concurrent
execution of the two kernels. That is, concurrent execution may
only happen in the overlapping region at the end of a kernel and the
beginning of the next kernel. Therefore, we use kernel slicing [16]
to accomplish true concurrency among multiple kernels in com-
mercial GPU architecture.

Warp scheduler: The Kepler architecture supports different ker-
nels running concurrently within one SMX. After the block sched-
uler schedules the blocks to the SMX, an SMX may contain blocks
from different kernels. Unfortunately, the inner working of the warp
scheduler in the Kepler architecture is not available from the liter-
ature. Therefore, we use micro-benchmarks to verify that the four
warp scheduler within an SMX can indeed schedule warps from
different kernels in the same cycle.

We first create a simple CUDA kernel consisting of only integer
operations. The kernel consists of 16 blocks and each block com-
prises of only one warp. During the execution of the kernel, the four
warp schedulers within the SMX dispatch four warps per cycle to
the CUDA cores to fully utilize the computational resources.

Next we create 16 CUDA kernels, each consisting of only one
block identical to the blocks in the single-kernel version and the
block comprises of only one warp. In other words, the total com-
putation for both single-kernel and multi-kernel versions are iden-
tical. Clearly, under the leftover policy, different kernels will be
dispatched to each SMX to fully exploit the available resources.
If the four warp schedulers cannot schedule warps from different
kernels per cycle, then only one warp can execute per SMX at any
point in time and the performance of the multi-kernel version will
be much worse than the performance of the single-kernel version.
However, we observe that the runtime of multi-kernel version is
almost the same as that of the single-kernel version. This experi-
ments substantiates the claim that the warp schedulers can indeed
schedule warps from different kernels in the same cycle.

Kernel slicing: As mentioned earlier, although GPUs support
concurrent kernel execution, the leftover policy of block schedul-
ing only allows minimal overlap among the blocks from differ-
ent kernels. Therefore, we choose to use kernel slicing [16] and
CUDA streams to accomplish concurrency under the leftover block
scheduling policy. Kernel slicing divides the thread blocks of a ker-
nel into multiple slices. The concept of kernel slicing is easy to
illustrate with an example code.

The code fragment in Algorithm 1 shows the default CUDA
code for execution of two kernels K1 and K2. Each kernel consists
of 100 blocks where each block has only one warp. Figure 1 shows
the scheduling of the blocks from the two kernels under leftover
policy. Each SMX can support 16 blocks of K1 at any point in
time. In the end, we are left with 4 blocks of K1. Hence the
leftover policy starts scheduling blocks of K2 to utilize the leftover
resources. As we can see from Figure 1, the overlap of execution
between the two kernels is quite minimal in the default policy.

Algorithm 1 Default CUDA code for two kernels
K1 <<<100, block size,streams[0] >>> (function parameters);
K2 <<<100, block size,streams[1] >>> (function parameters);



Algorithm 2 CUDA code for kernel slicing
K1 <<<6, block size,streams[0]>>> (function parameters);
K2 <<<10, block size,streams[1]>>> (function parameters);
K2 <<<10, block size,streams[2]>>> (function parameters);
K1 <<<6, block size,streams[3]>>> (function parameters);
K2 <<<10, block size,streams[4]>>> (function parameters);
. . .

Now suppose we have identified K1 : 6 K2 : 10 as the optimal
block ratio for the execution of the two kernels. In kernel slicing,
the number of blocks per kernel slice is determine by this block
ratio. Therefore, we have to create 6-blocks kernel slices forK1 and
10-blocks kernel slices forK2. The information about kernel slices
are communicated to the GPU through CUDA streams. Algorithm
2 shows the CUDA code with kernel slicing. Our goal is to execute
6 blocks from K1 concurrently with 10 blocks from K2. This
is easy to achieve in the beginning. However, the blocks from
K2 finish execution earlier. Then we need to feed the SMX with
blocks from K2 to keep the block ratio at 6:10. Thus in the CUDA
code, there are two consecutive calls to process kernel slices of
K2 before a call to process kernel slice of K1. Figure 2 shows the
scheduling of the blocks from the two kernels with kernel slicing.
Note that we may need to change the block index in the kernel
function to support kernel slicing as shown in previous studies [14].
Partitioning a kernel into multiple slices will cause the CPU to
issue more system calls to the GPU. However, compared to the
block running time (mostly at millisecond or microsecond level)
this system call overhead can be ignored as we observed in our
experiments. Still our experimental results include the overhead of
these additional system calls for concurrent execution.

It is straightforward to generate the CUDA code with kernel
slicing from the default code. In our experiment, we first measure
the execution time of each kernel block. Then Algorithm 3 is used
to automatically generate the correct slice order. We estimate the
kernel slice that will complete execution first based on its block
execution time and the number of blocks in the block ratio. We
simply dispatch another slice of that kernel to the GPU. Once all the
blocks of a constituent kernel have been processed, the concurrent
kernel no longer has all its members and hence we do not allow
the concurrent kernel to proceed further. The incomplete kernels in
the concurrent kernel mix will proceed execution presumably with
a different mix of kernels.

Figure 1: Kernel execution under leftover policy.

Figure 2: Concurrent kernel execution with kernel slicing.

5. Concurrent Kernel Scheduling
The goal of our work is to schedule multiple kernels on the GPU
concurrently so as to improve the energy-efficiency of the execu-

Algorithm 3 Kernel Slice Order
Ti := block execution time of Ki; // input.
ni := No of blocks per kernel slice of Ki; // input.
for each kernel do

ETi := ni × Ti ; //end time of kernel slice from Ki

end for
while true do

Find the kernel Kj with minimum ETj

if there are more kernel blocks from kernel Kj then
Run kernel slice from kernel Kj ;
ETj = ETj + nj × Tj ;

else
break; //this concurrent kernel is done

end if
end while

tion. We assume that there exist multiple kernels waiting to be pro-
cessed at any point in time. Traditionally, these kernels will be pro-
cessed in some sequential order on the GPU. But we have already
established that concurrent execution of kernels with complemen-
tary features (such as memory-intensive and compute-intensive ker-
nels) can significantly improve the energy-efficiency compared to
the sequential execution. Therefore, we select an appropriate sub-
set of the kernels to be scheduled together and then tune the core,
memory clock frequency for the fused kernel so as to achieve the
most energy-efficient execution. As we will show later, combining
more than two kernels does not provide enough benefit to warrant
the complexity — both in selection and execution. Therefore, we
restrict ourselves to two-kernel combinations in most of this work.
However, our approach can be easily extended to concurrent exe-
cution of more than two kernels with minimal modification.

Our approach to kernel scheduling has three components: (a) an
offline model for energy-efficiency estimation of concurrent exe-
cution of a pair of kernels with a specified block ratio, and (b) an
offline model for energy-efficiency estimation of sequential execu-
tion of a pair of kernels, and (c) an online scheduling algorithm that
picks an appropriate pair of kernels to schedule on the GPU from
the waiting pool of kernels. The offline estimation models will be
presented in Section 6. In this section, we assume that the estima-
tion models can provide us with the necessary information and we
focus only on the online scheduling algorithm.

The online scheduling algorithm is invoked when either (a) a
new kernel is added to the waiting pool, or (b) a kernel com-
pletes execution. The algorithm performs the following steps to
identify the kernel pair with the maximum improvement in energy-
efficiency through concurrent execution compared to sequential ex-
ecution.

1) For every pair of kernels in the waiting pool, we consider all
possible block ratios. The Kepler architecture can support at
most 16 blocks per SMX. Therefore, we only need to consider
all possible 2-part integer partitions of 16 (1+15, 2+14, . . . ) to
cover the different block ratios. As there are 16 such partitions,
it is feasible to exhaustively estimate the energy-efficiency of
all block ratios.

2) For every pair of kernels and block ratio, we estimate its optimal
GOPS/Watt and the corresponding frequency. This step also
gives us the optimal block ratio and frequency for the kernel
pair and the corresponding GOPS/Watt.

3) For every pair of kernels, we estimate its optimal GOPS/Watt if
the kernels execute sequentially.

4) Comparing optimal GOPS/Watt between concurrent and se-
quential execution, we estimate the performance per watt im-
provement for each kernel pair through concurrency.



5) We sort the kernel pairs in descending order of GOPS/Watt
improvement through concurrency over sequential execution.

The end result in a table similar to Table 4 that captures the opti-
mal GOPS/Watt improvement for concurrent execution of each ker-
nel pair (compared to sequential execution) and the corresponding
optimal block ratio and the optimal core, memory frequency set-
tings. This table is updated when a new kernel joins the pool or an
existing kernel completes execution. Assuming we have n kernels
in the beginning, we have to perform the estimation for

(
n
2

)
kernel

pairs. Given that each kernel pair can have 16 possible block ratios,
the total number of estimations is 16n(n−1)

2
. However, note that this

computation is only done once in the beginning and we expect n to
be quite small. Later on, as a new kernel joins the pool, we only
need to make 16n estimations to incrementally update the energy-
efficiency improvement table where n is the number of existing
kernels in the waiting pool. Our experimental evaluation confirms
that the overhead is indeed negligible.

Kernel
Pair

Block
Ratio

(Core, Memory)
Frequency MHz

GOPS/Watt
Improvement

K1,K2 5:3 (836, 324) 30%
K2,K3 4:5 (705, 400) 25%
. . . .

Table 4: Energy-efficiency improvement for kernels pairs.
Once the energy-efficiency improvement table is updated in

the event of a new kernel joining the pool or an existing kernel
completing execution, we employ a greedy scheduling algorithm.
We dispatch the concurrent kernel pair with the highest energy-
efficiency improvement to the GPU. When one of the running ker-
nels completes its execution, we remove this kernel completely
from the energy-efficiency improvement table. Then we again se-
lect the most energy-efficient kernel pair from the modified table
and dispatch them to the GPU. In some cases, concurrent execu-
tion of a kernel pair might perform worse than sequential execution
specially if both kernels are similar in nature (compute-intensive
or memory-intensive). If there exists no kernel pair with positive
improvement, then we choose to execute the remaining kernels in
sequential order using FIFO policy. During sequential execution of
the kernels, a new kernel may join the pool. If this new kernel can
pair up with an existing kernel to offer improvement in performance
per watt, then we postpone the execution of the currently running
kernel and instead dispatch the concurrent kernel pair.

Illustrative Example We now use a simple example to illustrate
the scheduling algorithm. In this example, there are four kernels
and each kernel has 100 blocks waiting to be processed. For sim-
plicity of exposition, we assume that all the kernel blocks have the
same execution time and they all arrive at the same time. We first
compute the energy-efficiency improvement for each kernel pair as
shown in Table 5. Note that the table does not contain all possi-
ble kernel pairs. This is because the remaining kernel pairs result
in degradation of energy-efficiency through concurrent execution
compared to the sequential execution.

We dispatch the kernel pairs {K1,K2} first with block ratio 5:3
and core, memory frequency setting at (836 MHz, 324 MHz). For
this concurrent kernel, 100 blocks of K1 needs 60 blocks of K2 to
maintain the 5:3 block ratio. As the execution time of a block of
K1 is identical to that of a block of K2, the kernel K1 completes
execution first because it has larger share in the concurrent kernel
mix. At this point, we still have 40 blocks of K2 to process. If the
block execution time were different for different kernels, then the
number of remaining blocks might be different. This concurrent
execution of {K1,K2} improves the energy-efficiency by 30%
compared to the sequential execution. As K1 has completed its

execution, we remove all entries with K1 from the table. The
updated table is shown in Table 6.

Table 5: Initial kernels and energy-efficiency improvement

Kernel Available blocks
K1 100
K2 100
K3 100
K4 100

Concurrent
Kernel

Block Ratio Frequency GOPS/Watt
Improvement

K1,K2 5:3 (836, 324) 30%
K2,K3 4:5 (705, 400) 25%
K3,K4 3:5 (967, 710) 20%
K1,K4 2:6 (836, 324) 15%

Table 6: Updated information after K1 in {K1,K2} completes

Kernel Available blocks
K2 40
K3 100
K4 100

Concurrent
Kernel

Block Ratio Frequency GOPS/Watt
Improvement

K2,K3 4:5 (705, 400) 25%
K3,K4 3:5 (967, 710) 20%

Table 7: Updated information after K2 in {K2,K3} completes

Kernel Available blocks
K3 50
K4 100

Concurrent
Kernel

Block Ratio Frequency GOPS/Watt
Improvement

K3,K4 3:5 (967, 710) 20%

Table 8: Updated information after K3 in {K3,K4} completes

Kernel Available blocks
K4 17

Concurrent
Kernel

Block Ratio Frequency GOPS/Watt
Improvement

Now we run concurrent kernel {K2,K3} in block ratio 4:5 and
core, memory frequency setting at (705 MHz, 400 MHz). In this
case, 40 blocks of K2 and 50 blocks of K3 run concurrently to
maintain the block ratio. As K2 had only 40 blocks, it completes
execution first and we are still left with 50 blocks of K2. The im-
provement for this concurrent execution compared to the sequential
execution is 25%. We now remove K3 from the table and Table 7
shows the updated kernel information and efficiency improvement.

Now we will run the concurrent kernel {K3,K4} at block ratio
3:5 and core, memory clock speed (967MHz, 710 MHz). In this
case, 50 blocks of K3 need 83 blocks of K4 to maintain the block
ratio. After K3 completes execution, only 17 blocks of K4 are
left. Table 8 shows the current kernel information and efficiency
improvement after K3 completes execution.

Now there is onlyK4 left. So we run it alone at its most energy-
efficient frequency. This completes the execution of all the 400
blocks from the four kernels. The exact energy-efficiency improve-
ment compared to the sequential execution depends on the number
of blocks per kernel and the relative execution time of the kernels.



6. Performance-Power Estimation
In this section, we present our power-performance estimation mod-
els. Given a concurrent kernel pair and a specified block ratio, our
goal is to estimate the optimal performance per watt (GOPS/Watt)
by varying the frequency settings. We subsequently also need to
find the optimal performance per watt for sequential execution of
the kernels by choosing appropriate frequency setting for each ker-
nel. Therefore, we first present the model to estimate the optimal
frequency setting for a single kernel. A concurrent kernel pair can
then be treated as a fused kernel and we will show the estimation
approach for a fused kernel.

6.1 Frequency Selection for Single Kernel
This section introduces the model to estimate the frequency setting
that results in optimal performance per watt for a single kernel.
As mentioned before, the underlying platform provides 36 possible
frequency pairs for core, memory clocks. In next-generation plat-
forms, the number of discrete frequency levels per component can
be even higher. Hence, it is not feasible to execute the kernel at each
possible frequency pair setting to identify the optimal one. Instead
we employ a neural network model for this problem. The input to
our estimation model are the features of the kernel at the highest
frequency pair. The output of the model are the optimal GOPS/Watt
and the corresponding frequency setting. We first introduce the fea-
ture selection and then we present the neural network model.

6.1.1 Kernel Feature Selection
We choose the kernel features that cover the main GPU components
and also impact the performance of the kernel. We select a subset
of features from the NVIDIA Profiler [3]. The profiler provides a
number of metrics; however, we observed that some of them have
minimal impact on power and performance. After filtering out these
irrelevant features, we are left with the features in Table 9.

A memory request may involve several transactions. For a co-
alesced memory request, it would cause less transactions and thus
has higher energy efficiency. Therefore, we include the number of
memory transactions in addition to the throughput information.

Feature GPU Components
Single-precision FLOPS

Compute unitsDouble-precision FLOPS
Special FLOPS
Arithmetic unit utilization

L1/Shared memory utilization L1/Shared memoryShared memory throughput GB/s
Shared load/store per second

Texture transactions per second Texture Cache

L2 write/read per second L2 CacheL2 throughput GB/s

Dram write/read per second DRAMDram throughput GB/s

Giga instructions issued per second (GOPS) General information. They
imply the usage of all GPU
components.

Issued Load/Store instruction per second
Global Load/Store transactions per second

Table 9: Selected features and the corresponding GPU component

6.1.2 Neural Network
We use neural network to build an estimation model. In order to
build a robust model and avoid over-fitting, we use a large number
of micro-kernels and real-world kernels in the training set. We
create 190 micro-kernels each stressing the compute and memory
components of the GPU at varying capacity. Besides the micro-
kernels, we include another 25 real-world kernels from Rodinia
benchmark suite [4] and CUDA samples to the training set. In

an offline process, we run each of the 215 training kernels at
all 36 different frequency setting and find out the most energy-
efficient frequency setting and the corresponding GOPS/Watt. We
also measure the features of each training kernel at the highest
frequency setting. Now with the input being the kernel’s features
at the highest frequency setting, and the output being the optimal
frequency setting and the corresponding GOPS/Watt, we have 215
samples. We then use these samples to train the neural network.
The neural network consists of two layers with the hidden layer
having 21 neurons. We use Neural Network Toolbox in MATLAB
to create and train the neural network.

The model needs to estimate GOPS/Watt and the corresponding
core and memory frequencies. Neural networks cannot estimate a
vector accurately. Therefore, we use three models in our estimation
approach. The first model estimates the optimal GOPS/Watt given
the features of the kernel at the highest frequency as input. This
estimated optimal GOPS/Watt along with the feature vector are
input to the core model and the DRAM model to generate the
appropriate core and memory frequency setting, respectively. Thus
these three models are actually correlated, and can be viewed as one
model that outputs a vector with three elements: GOPS/Watt, core
frequency, and memory frequency. Figure 3 shows the relationship
among the three models.

Figure 3: The relationship among the estimation models
6.1.3 Estimation Accuracy
We evaluate the accuracy of our estimation model using 28 test
kernels from Rodinia benchmark suite [4] and CUDA samples.
These test kernels are completely disjoint from the set of training
kernels. For each test kernel, we input the feature vector at the
highest frequency level to our neural network model and obtain
the estimated optimal GOPS/Watt and the corresponding frequency
setting. In order to obtain the actual optimal GOPS/Watt, we run
each test kernel at 36 different frequency setting and identify the
optimal GOPS/Watt and the frequency setting. The average error
for GOPS/Watt estimation across these 28 test kernels is only
3.61%. The maximum GOPS/Watt estimation error is less than
12%.

Note that estimating the optimal frequency setting is more chal-
lenging. This is because the GPU operates at discrete frequency
levels. Therefore, we round up or round down the frequency value
obtained from the neural network model to the nearest discrete fre-
quency level. Figure 4 plots the estimation accuracy of the core and
memory frequency for the 28 test kernels. The X-axis is the kernel
ID (1–28), while the Y-axis plots the actual and estimated optimal
frequency. We estimate the core and memory frequency level cor-
rectly for 22 and 23 benchmarks, respectively. Even when the esti-
mation does not match accurately, the estimated frequency is only
one level away from the actual optimal frequency.
6.2 Performance per Watt Estimation for Concurrent

Execution
So far we have shown how to estimate the optimal GOPS/Watt and
the corresponding frequency setting for a single kernel given its
features at the highest frequency level. Our aim now is to estimate
the optimal GOPS/Watt and the corresponding frequency setting



Figure 4: Accuracy of optimal frequency estimation for single
kernel using neural network model.

for a concurrent kernel pair at a specified block ratio. We note that
a concurrent kernel pair can be treated as a single fused kernel.
Therefore, if we can estimate the feature vector of the concurrent
kernel pair, we can use the same neural network model presented
earlier to obtain the performance per watt and the frequency setting.
In this section, we introduce the methods to estimate the features of
a concurrent kernel pair and evaluate the estimation accuracy.

Let us consider a kernel pair {Ki,Kj}. LetNi be the maximum
number of blocks of kernel Ki that can be accommodated in each
SMX. The value of Ni for a kernel is determined by many factors,
including number of warps per block, register and memory usage
per block among others. Let ni : nj be the specified block ratio of
the kernel pair Ki,Kj . In other words, we would run ni blocks of
Ki in parallel with nj blocks of Kj .

Similar kernels Let Xi represent the feature vector of kernel Ki

at the highest frequency level running with Ni blocks. Further, let
GOPSi represent the GOPS feature of Ki when Ki is running
by itself with maximum number of blocks Ni in each SMX. The
GOPS represents the instruction issued per second; the higher the
value, the more is the compute intensity of the kernel. The kernels
with similar GOPS value have similar compute or memory inten-
sity. We observe that given two kernels Ki,Kj with similar GOPS
value and ni : nj block ratio, the features of the concurrent kernel
Xij can be accurately estimated using the following equation.

Xij =
ni
Ni

·Xi +
nj
Nj

·Xj (1)

We simply take the weighted sum of the two kernels for each
feature. For example, suppose two kernelsKi,Kj can each execute
at most 8 blocks in parallel per SMX. If the block ratio of the two
kernels is 5:3, then the features of the concurrent kernel pair can be
estimated as 5

8
Xi +

3
8
Xj .

Kernels with different compute intensity If the kernel pair
has vastly different compute intensity as captured by the GOPS
feature, then we cannot use Equation 1 to estimate the feature
vector of the concurrent kernel as it results in high inaccuracy.
When a high compute-intensive kernel runs concurrently with a
low compute-intensive kernel, we observe that the block execu-
tion time of the compute-intensive kernel becomes shorter. This

is because the compute-intensive kernel now has access to more
compute resources running alongside the lightweight kernel. On
the other hand, the features like GOPS and various utilizations for
the kernel becomes greater. Thus we add a scaling factor αi to the
weighted feature equation, as shown in Equation 2.

Xij =
ni
Ni

·Xi · αi +
nj
Nj

·Xj · αj (2)

where

αi = max

 GOPSi

ni

Ni
·GOPSi +

nj

Nj
·GOPSj

, 1


αj = max

 GOPSj

ni

Ni
·GOPSi +

nj

Nj
·GOPSj

, 1


The warps are the scheduling unit within an SMX. The higher

the GOPS value, the more is the number of ready warps. The
fraction

ni

Ni
· GOPSi estimates the number of ready warps if

we only put ni blocks of kernel Ki in each SMX. When we add
nj blocks of kernel Kj , the total number of ready warps can be
estimated as

ni

Ni
·GOPSi +

nj

Nj
·GOPSj .

If this sum is smaller than GOPSi, the warps of ni blocks
from Ki now have higher chances to be scheduled compared to
them running with more blocks from Ki (as is the case when Ki is
running by itself). Thus the ni blocks from Ki will finish faster,
and the features like utilization and bandwidth will be greater.
Therefore, αi is greater than 1 for Ki.

If
ni

Ni
·GOPSi +

nj

Nj
·GOPSj is greater than GOPSi, then

we simply set αi = 1 as we find this to be more accurate than
setting αi < 1. This may be caused by the improved function unit
utilization for mixed operations from the concurrent kernel.

Figure 5: Finding N for kernel Samplerank

Memory-bound kernels For memory bound kernels, we observe
that as we increase the number of blocks in SMX, the performance
remains constant after a point. For example, Figure 5 plots the
GOPS for the kernel Samplerank with increasing number of blocks
in SMX. The kernel already reaches the DRAM bandwidth limit
with five blocks even though the SMX can accommodate maximum
eight blocks for this kernel. Thus the feature vector obtained from
running eight blocks in each SMX is identical to the feature vector
with five blocks per SMX. If the DRAM had unlimited memory
bandwidth, the features like GOPS should have been 8/5 = 1.6
times higher.

If we now run Samplerank with a compute-intensive kernel,
they will be affected by the bandwidth limitation according to their



memory bandwidth requirements. We setNSamplerank to 5 instead
of 8 to accurately capture the memory bandwidth limitation of
the kernel. By changing the N value for memory-bound kernels,
we can make the kernel compute-bound instead and hence can
calculate the features of the concurrent kernels more accurately
using scaling factor α.

As the scaling factorα can be greater than 1, while we setN to a
smaller value for memory bound kernels, Equation 2 may produce a
feature vector that exceeds the DRAM bandwidth limitation. Thus
we add another scaling factor β.

Finally, for two kernelsKi,Kj running concurrently with block
ratio ni : nj , the feature vector of the concurrent kernel at the
highest frequency can be estimated using the following equation.

Xij =

(
ni
Ni

·Xi · αi +
nj
Nj

·Xj · αj

)
· β (3)

where

β = min

1,
MB

ni

Ni
·Bi +

nj

Nj
·Bj


MB is the maximum memory bandwidth supported by the

underlying platform and Bi is the memory bandwidth required by
kernel Ki.

Estimation accuracy Given a kernel pair and a specified block
ratio, we can now compute the feature vectors for the concurrent
kernel at the highest frequency setting. Given these feature vectors
for the concurrent kernel, we can use the neural network model
to obtain the optimal GOPS/Watt for the concurrent kernel and
the corresponding frequency setting. Among the 15 input features,
GOPS has the highest correlation with GOPS/Watt. Thus we eval-
uate the feature estimation accuracy for the concurrent kernel by
considering the estimation accuracy of the feature GOPS. For ker-
nel pair with similar features, like Matrix and BT, the estimation er-
ror is the smallest. In order to stress our model, we consider the ker-
nel pair with the largest difference in GOPS value from the bench-
mark kernels in Table 3, namely Time step and Bt. Even for this
kernel pair, the estimation error for GOPS is within 5%.

Finally, using the estimated features, we estimate GOPS/Watt
and frequency settings of a concurrent kernel through our neural
network model. For all the concurrent kernel pairs tested, the av-
erage and maximum error for GOPS/Watt estimation are 4.8% and
15% respectively. We show the relative errors between the mea-
sured and estimated GOPS/Watt of four selected kernel pairs in
Figure 6 at five different block ratio.

Figure 6: GOPS/Watt estimation accuracy for concurrent execu-
tion. (1) {Matrix, Bitonic}: Average error 4.7% (2) {BT, Srad}:
Average error 5.1% (3) {Pathfinder, Bitonic}: Average error 7.2%
(4) {Layer, Samplerank}: Average error 3.5%.

6.3 Performance per Watt Estimation for Sequential
Execution

The choice of kernel pair for scheduling depends on the GOPS/Watt
improvement compared to the sequential execution. Therefore, we
also need to estimate the GOPS/Watt for sequential execution of
a kernel pair. We use an analytical model to estimate the optimal
GOPS/Watt for sequential execution of the kernel pair {Ki,Kj}.

Let us assume that the kernel pair {Ki,Kj} when executing
concurrently uses a block ratio of ni : nj . Let us further assume
that during concurrent execution of the kernels, we can process
insti and instj instructions corresponding to the kernels Ki,Kj

in unit time. The values of insti and instj depend on the block
ratio as well as the processing time for each block (which can be
different for different kernels). The ratio insti

instj
can be computed as

follows. Ni is the maximum number of blocks of Ki that can be
accommodated per SMX. For memory-bound kernels, the compu-
tation of Ni has been presented previously. Then

insti
instj

=

ni
Ni
·GOPSi

nj

Nj
·GOPSj

Our goal is to compute the performance per watt for sequential
execution of the two kernels where we process insti instructions
of Ki and instj instructions of Kj running each kernel at its most
energy-efficient frequency setting.

Let Pi represent the power consumption and Gi represent the
GOPS of kernel Ki at its most energy-efficient frequency setting.
Then the execution time of kernel Ki represented as ti is

ti =
insti
Gi

The energy consumed during the execution of the two kernels

E = ti · Pi + tj · Pj

Finally, we can express the GOPS/Watt of the sequential execu-
tion Sij as:

Sij =
insti + instj

E

After simplification, the equation becomes:

Sij =
1

Pi · insti
Gi · (insti + instj)

+
Pj · instj

Gj · (insti + instj)

So how can we estimate Sij given the information available

to us?
Pi

Gi
is simply the reciprocal of the optimal GOPS/Watt for

kernel Ki and can be estimated using the neural network model
presented in Section 6.1.

Figure 7 shows the accuracy of the GOPS/Watt estimation for
sequential execution of four selected kernel pairs. The results for
the other kernel pairs are similar and are not shown due to space
constraints. The results show that our estimation is generally quite
accurate. For all the kernel pairs we tested, the maximum error is
only 10.1%.

6.4 Putting it all together
To summarize, our framework has an offline component that builds
the estimation model for a given platform using a set of micro-
benchmarks and real-world kernels. This model is built only once
for each platform.

The online scheduler for concurrent kernel execution and DVFS
requires the following offline information for each kernel: (a) the
features of the kernel at the highest frequency level, which only



Figure 7: GOPS/Watt estimation accuracy of sequential execution.
(1) {BT, Srad}: Max error 6.1% (2) {Pathfinder, Bitonic}: Max
error 9.9% (3) {Matrix, Bitonic}: Max error 5.3% (4) {Hotspot,
Mergehist}: Max error 6.1%.

requires one execution of the kernel, and (b) the maximum number
of blocks Ni that can be supported per SMX for the kernel. It is
easy to estimate Ni given the features of the kernel and does not
require additional execution of the kernel.

At runtime, given the features of each kernel, the estimation
model can compute the optimal GOPS/Watt for both sequential and
concurrent execution of a kernel pair. The scheduler can then iden-
tify the pair that has maximum performance per watt improvement
through concurrent execution, the corresponding block ratio, and
the frequency setting. If none of the kernel pairs is suitable for con-
current execution, then the scheduler simply proceeds with sequen-
tial execution of the kernels in the waiting pool, each at its most
energy-efficient frequency setting obtained through the estimation
model.

7. Experiment Evaluation
In this section, we evaluate our approach with the experimental
setup presented in Section 3.

We first study the quality of the solutions returned by our ap-
proach based on estimation compared to the actual optimal solu-
tion. In particular, given a kernel pair, our algorithm can quickly
determine the optimal GOPS/Watt achievable by this kernel pair
through concurrency and the corresponding block ratio and the fre-
quency setting by using the power-performance estimation models.
We also exhaustively run each kernel pair with all possible block
ratio (16 different block ratio) and frequency settings (36 different
frequency setting) for a total of 16× 36 = 576 design points. This
exhaustive search provides us with the actual optimal GOPS/Watt
for the kernel pair.

Figure 8 compared our estimation based approach with the op-
timal one for eight different kernel pairs. The trends are the same
for the remaining kernel pairs and are not shown here due to lack
of space. The X-axis shows the kernel pairs while the Y-axis corre-
sponds to the GOPS/Watt improvement with our approach and the
optimal one (through exhaustive search) compared to the sequen-
tial execution. Clearly, the improvement strongly depends on the
complementary nature of the kernels in a pair. More importantly,
the results confirm that our estimation based approach can produce
near-optimal solutions. The difference between our approach and
the optimal solution is less than 5% across all kernel pairs. The
advantage of our approach is the significantly reduced runtime to
obtain the solution. The exhaustive search takes around a day to
obtain the optimal solution, while our approach takes few micro-
seconds to produce a solution that is quite close to the optimal one.

Notice that our algorithm selects the block ratio and the fre-
quency setting for a kernel pair that is expected to produce the

optimal GOPS/Watt. We now run the kernel pair with this block
ratio and the frequency setting to obtain the actual GOPS/Watt im-
provement. This is the real improvement in performance per watt
we observe from concurrent execution of the kernel pair. Table 10
presents the actual GOPS/Watt improvement using the estimated
block ratio and frequency settings for 15 kernel pairs. As mentioned
before, we use 11 benchmark kernels shown in Table 3 for this ex-
periment. These 11 benchmarks result in 55 different kernel pairs.
Table 10 shows the results for the top 15 kernel pairs that improve
the performance per watt significantly through concurrency. As can
be seen from Table 10, all the top energy-efficient concurrent ker-
nel pairs are composed of one compute-intensive kernel and one
memory-intensive kernel. Moreover, the block ratio and frequency
setting vary for different kernel pairs. This confirms that our esti-
mation models are required to tune the runtime kernel settings to
achieve high performance.

So far, we have discussed performance per watt improvement
for each kernel pair. If there are only two kernels in the waiting
pool, the improvement can be significant. For example, the ker-
nel pair {Hotspot, Mergehist} can achieve 34.5% improvement
through concurrency compared to the default execution. We then
put all the 11 benchmark kernels from Table 3 in the waiting pool
with the given input size (number of blocks) and let our concurrent
kernel scheduling algorithm dispatch the kernels in pairs to obtain
the best energy efficiency. The overall GOPS/Watt improvement in
this case is 20.3% by using our scheduling algorithm compared to
the default execution.

Kernel Pair Block
Ratio

(Core, Memory)
Frequency MHz

GOPS/Watt
improvement

Hotspot,
Mergehist

2:6 (1228, 324) 34.5%

Pathfinder,
Bitonic

3:5 (1097, 324) 29.8%

Samplerank,
Hotspot

4:4 (1228, 625) 28.5%

Samplerank,
BT

5:3 ( 562, 400) 28.4%

Mergehist,
Matrix

7:1 (1228, 324) 26.0%

Hotspot,
Transpose

4:4 (1228, 400) 23.4%

Matrix,
Bitonic

3:5 ( 836, 324) 23.2%

Layer,
Time step

4:4 (1228, 480) 23.1%

Layer,
Bitonic

5:3 (1228, 400) 22.6%

Hotspot,
Time step

4:5 ( 967, 400) 21.6%

Hotspot,
Srad

5:3 (1097, 400) 20.2%

Hotspot,
Matrix

4:4 (1228, 400) 18.6%

Bt, Srad 3:5 ( 967, 480) 16.0%
Layer,
Pathfinder

2:6 (1097, 400) 14.3%

Matrix,
transpose

7:1 (1228, 400) 13.8%

Table 10: 15 kernel pairs with most performance per watt improve-
ment through concurrency

We now show that the performance per watt improvement due
to our approach does not come at the cost of degraded performance.



Figure 8: Comparison of our approach based on estimation and the optimal solution for different kernel pairs.

Figure 9: Performance impact of energy-efficient concurrent execution compared to sequential execution.

Indeed, in most cases, concurrent execution improves through-
put compared to sequential execution in addition to energy effi-
ciency. To validate this claim, we choose the top 6 kernel pairs
from Table 10. These kernel pairs enjoy maximum benefit from
concurrency. We then run each of these kernel pairs in three dif-
ferent ways: (a) concurrent execution to obtain optimal perfor-
mance per watt, (b) sequential execution to obtain optimal perfor-
mance per watt, and (c) serial execution at the highest frequency
setting. Figure 9 plots the execution time corresponding to these
three approaches. Clearly, concurrent execution improves the per-
formance over energy-efficient sequential execution substantially.
This is mainly due to the better utilization of the resources. More
importantly, concurrency even manages to improve the execution
time compared to the sequential execution at the highest frequency
setting for 4 out of 6 kernel pairs. For the remaining kernel pairs,
the performance loss is minimal, while the performance per watt
improvement is significant to justify concurrency.

Finally, we evaluate the possibility of running more than two
kernels concurrently. Our approach can be easily extended to more
than two kernels. In particular, we consider concurrent execution
of three kernels. Based on Table 10, we observe that there are five

groups of three kernels that have the highest chance of improving
energy efficiency. For each kernel group, we exhaustively search
all block ratios and frequencies to find out the optimal GOPS/Watt
improvement. We plot the results in Figure 10. We also plot the im-
provement when running two kernels from the group concurrently
and leaving one kernel to execute in isolation. As can be seen, the
concurrent execution with three kernels does not produce higher
energy efficiency for any of the kernel groups. Indeed running two
kernels concurrently has higher GOPS/Watt improvement. The rea-
son may be explained as follows. Although a concurrent combi-
nation of three kernels may have more balanced utilization of the
compute units and the memory bandwidth, as the power consump-
tion of the cores and the memory can be reduced by frequency
scaling, a more compute- or memory-intensive kernel could have
higher energy efficiency than this concurrent kernel.

8. Related Work
Recently, using concurrent kernel execution to improve the GPGPU
performance has been studied in many papers. Software solutions
are proposed to enable running multiple GPU kernels concurrently.
Guevara et al. [9] study the concurrent kernel execution through



Figure 10: Performance per watt improvement with three concurrent kernels compared to two concurrent kernels

source code transformation. Two kernels are combined into a single
kernel function using thread interleaving. Wang et al. [15] propose
three methods to run kernels concurrently, which are inner threads,
inner thread blocks and inter thread blocks. Furthermore, Gregg et
al. [8] propose a technique that is similar to thread interleaving to
merge kernels for fine-grained resource sharing.

With hardware support for concurrent kernel execution, more
studies are conducted on modern generation GPUs. Pai et al. [14]
identify that the left over policy is the main reason of inefficiency
when running kernels concurrently on NVIDIA Fermi GPUs. They
propose elastic kernels to address this issue. Adriaens et al. [5] pro-
pose to spatially partition GPU resource for concurrent execution.
Zhong et al. [16] propose an algorithm to combine two suitable ker-
nels with optimized slicing length to improve the GPU throughput.
More recently, Liang et al. [12] utilize concurrent kernel execution
to achieve GPU spatial-temporal multitasking.

However, none of the previous studies considers using the con-
current kernel execution technique to improve energy efficiency. In-
stead, we explore using this technique to improve the performance
as well as achieve better energy efficiency.

9. Conclusion
We improve GPU energy-efficiency for computational kernels
through a combination of concurrent execution and DVFS. To ex-
ploit concurrency, we need to determine the appropriate subset of
kernels to be executed together, the proportion of each kernel in
the mix, and the energy-efficient frequency settings. We develop
a set of analytical and neural network based models to estimate
the power-performance behavior of concurrent and sequential ex-
ecution of kernel pairs accurately and efficiently. The concurrent
execution of kernel pairs can improve performance per watt by
upto 34.5% with either improvement or minimal degradation of
throughput. Given a set of eleven kernels, our concurrent schedul-
ing algorithm in combination with the estimation models improve
performance per watt by 20.3% compared to sequential execution.
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