
Chapter 1
Coarse Grained Reconfigurable Array (CGRA)

Zhaoying Li, Dhananjaya Wĳerathne, and Tulika Mitra

Coarse-Grained Reconfigurable Array (CGRA) is a promising class of spatial accel-
erator that offers high performance, energy-efficiency, as well as flexibility to support
a wide range of application domains. CGRAs can bridge the gap between efficient but
inflexible domain-specific accelerators and flexible but inefficient general-purpose
processors. A CGRA is essentially an array of word-level processing elements con-
nected via on-chip interconnect. Both the processing elements and the interconnect
can be reconfigured per cycle following the on-chip configuration memory content.
Thus the compiler needs tomap the compute-intensive loop kernels of the application
onto the CGRA in a spatio-temporal fashion by setting up the configuration memory.
The simplicity and parallelism of the architecture coupled with the efficacy of the
compiler enable the CGRA to reach the dual goal of hardware-like efficiency with
software-like programmability. We present a comprehensive review of the CGRAs
starting with the historical context, sketching the architectural landscape, and pro-
viding an extensive overview of the compilation approaches.

1.1 Introduction

The history of computing has been dominated by general-purpose processors [1] that
can execute any possible application offering unlimited flexibility. Unfortunately,
such processors suffer from low performance and energy-efficiency due to the high
overhead involved in executing the instructions beyond just the computation (e.g.,
fetching instructions and data from the memory, decoding instructions, respecting

Zhaoying Li
National University of Singapore, Singapore, e-mail: zhaoying@comp.nus.edu.sg

Dhananjaya Wĳerathne
National University of Singapore, Singapore, e-mail: dmd@comp.nus.edu.sg

Tulika Mitra
National University of Singapore, Singapore, e-mail: tulika@comp.nus.edu.sg

1

2 Zhaoying Li, Dhananjaya Wĳerathne, and Tulika Mitra

the data and control dependencies etc.) [2] and extracting parallelism from sequential
instructions stream at runtime. At the other end of the spectrum, we are witness-
ing the emergence of domain-specific hardware accelerators [3] for many popular
tasks such as deep neural networks, image/video processing, cryptography, among
others. These ASIC (Application-Specific Integrated Circuit) accelerators provide
high performance and energy efficiency but zero flexibility as they are tied to one
specific task or application domain. Reconfigurable spatial accelerators present a
compromise between the two extremes by supporting ASIC-like efficiency while
maintaining flexibility through software programmability [4].

Fig. 1.1: A classic 4x4 CGRA (Coarse-Grained Reconfigurable Array).

ACoarse-GrainedReconfigurableArray (CGRA) is a spatial hardware accelerator
with very simple architecture.AgenericCGRAcomprises of a 2Darray of processing
elements capable of performing basic arithmetic, logic, and memory operations at
word level using the functional unit (FU) and a small register file (RF) as temporary
data storage as shown in Figure 1.1. Each processing element is connected to its
neighbors through the switch and can transfer the result of the computation to
selected neighbors for the next cycle. Both the computation performed by each
individual processing element and the routing of the data to the neighbors through
the interconnect can be configured on a per cycle basis. This is achieved by storing
a predetermined sequence of configurations for limited number of cycles in an on-
chip memory (configuration memory). At runtime, the sequence of configurations
is repeated in a cyclical fashion. In other words, the CGRA fabric can be configured
both in the spatial (restricted by the number of processing elements) and the temporal
(restricted by the number of configurations that can be stored on chip) domain. In
addition, a new sequence of configurations can be brought into the CGRA from
external storage, if necessary, at the cost of runtime delay. We will explore the
variations of CGRA architectures in Section 1.3.

The high performance of the CGRA comes from the parallelism offered by the
large number of on-chip processing elements. On the other hand, the simplicity
of the architecture that just faithfully follows the planned computation and rout-
ing (generated by the compiler) without any runtime effort to extract parallelism
from the application leads to significantly improved energy efficiency compared to

1 Coarse Grained Reconfigurable Array (CGRA) 3

the general-purpose processors. At the same time, the word-level (coarse-grained)
reconfigurations supported by the CGRA compared to bit-level (fine-grained) recon-
figurations of the FPGAs (Field-Programmable Gate Arrays) empowers the CGRAs
to achieve higher performance and lower power compared to the FPGAs. Finally, the
per-cycle temporal configuration dimension of the CGRA is a powerful feature that
allows the CGRA to operate with smaller spatial dimensions by time-multiplexing
computation and dataflow as opposed to only spatial dimension in the FPGA. The
reconfiguration in FPGA, while possible, can only happen over a longer time inter-
val similar to bringing in a new sequence of configurations in CGRA. Thus, CGRA
accelerators can have smaller chip area and hence lower power (specially leakage
power) compared to the FPGAs. Obviously, the complexity burden is now transferred
from the architecture to the compiler.

Let us now focus on how the compiler can exploit the spatio-temporal configura-
tion of the CGRA to accelerate application execution. As the CGRA execution re-
peatedly cycles through a limited-length sequence of configurations, the application
loop kernels are the perfect candidates for acceleration. The compiler is responsi-
ble for extracting as much parallelism from the loop kernel as possible (subject to
data dependency constraints) and maximize utilization of the array of processing
elements. This will lead to reduced temporal length of the configuration sequence
and significantly improved runtime of the kernel.

Fig. 1.2: Dataflow graph of the General Matrix Multiply (GEMM) kernel.

The CGRA compiler achieves the mapping by embracing the dataflow computing
model. In this model, the compiler exposes all the computations and the flow of data
between dependent computations from the high-level sequential code fragment of

4 Zhaoying Li, Dhananjaya Wĳerathne, and Tulika Mitra

Fig. 1.3: Spatio-tenporal mapping of a simple dataflow graph on a 2x2 CGRA.

the loop kernel. Figure 1.2 shows a dataflow graph of the General Matrix Multiply
(GEMM) kernel [5]. This dataflow graph is subsequently mapped onto the CGRA to
maximize parallelism while satisfying all the constraints of the architecture as well
as data dependencies within the loop kernel. The challenge now is to map the com-
putations within the loop kernel onto the processing elements by finding appropriate
spatio-temporal coordinates and route the data dependencies between processing
elements. Fig. 1.3 shows the spatio-temporal mapping of a simple dataflow graph
on a 2x2 CGRA. We provide an in-depth tour of the diverse mapping approaches
with trade-offs between the quality of the mapping and the compilation time in
Section 1.4.

Finally, we introduce additional challenges and opportunities in the CGRA ac-
celerator space in terms of data memory management, configuration memory man-
agement, and mapping of entire application as opposed to a single isolated loop
kernel.

1.2 Historical Context

The first general-purpose microprocessor, Intel 4004, was introduced in 1971. The
microprocessor industry since then has enjoyed an unprecedented growth in per-
formance due to Moore’s Law [6], Dennard scaling [7], and micro-architectural
innovations [1] . While Moore’s Law was responsible for the sustained increase in
clock frequency, the processor performance improved further due to several micro-
architectural innovations including processor pipeline, out-of-order execution, spec-
ulation and cache memory hierarchy among others. These advancements enabled the

1 Coarse Grained Reconfigurable Array (CGRA) 5

processor to extract instruction-level parallelism (ILP), thereby boosting the critical
instructions-per-cycle (IPC) metric [1]. More importantly, as the ILP was extracted
transparently by the underlying architecture from single-threaded programs, the
software developers enjoyed the performance benefit without any additional effort.
Together, the growth in clock frequency and IPC ensued the relentless gain in pro-
cessor performance spanning over three decades. However, this performance growth
has come to an end with power wall due to the breakdown of Dennard scaling, ILP
wall, and memory wall [8]. Thus, computing systems made the irreversible transition
in early 2000 towards multi- and many-core architectures to gainfully employ the
growing number of transistors supported by Moore’ Law and exploit thread-level
parallelism (TLP) instead of ILP. However, simply increasing the core count in multi-
cores is no longer tenable as the sequential fragment limits the speedup of the entire
application according to Amdahl’s Law [9].

Against this backdrop, domain-specific accelerators [3, 10, 11, 12] specialized
for a particular task such as deep neural networks, image/video processing, encryp-
tion etc. have become prevalent from tiny Internet of Things (IoT) devices to the
data-centers. Current system-on-chips (SoCs) include a number of special-purpose
accelerators. Shao et al. [13] analyzed die photos from three generations of Apple’s
SoCs: A6 (iPhone 5), A7 (iPhone 5S) and A8 (iPhone 6) to show that consistently
more than half of the die area is dedicated to application-specific hardware accel-
erators and estimated the presence of around 29 accelerators in A8 SoC. The ITRS
roadmap predicts hundreds to thousands of customized accelerators by 2022 [14].
These tailor-made ASIC (application-specific integrated circuit) accelerators can
provide excellent performance and energy-efficiency but suffer from lack of flexibil-
ity as they are restricted to only one particular task. Thus, such accelerators can only
be feasible for tasks that are ubiquitous across multiple applications.

Ideally, we want the best of both the worlds, i.e., a general-purpose universal
accelerator that can reach close to the performance and efficiency of domain-specific
accelerators while maintaining software programmability and flexibility to support
multiple tasks. Reconfigurable computing [15] fills this gap between hardware and
software with far superior performance potential compared to programmable cores
while maintaining higher-level of flexibility than ASICs.

Field-Programmable Gate Arrays (FPGAs) are pre-fabricated semiconductor de-
vices that can be reprogrammed to create almost any digital circuit/system [16].
FPGAs contain an array of computation elements, called configurable logic blocks
connected through a set of programmable routing resources. A digital circuit can
be fabricated on FPGAs by appropriately setting the configuration bits of the logic
blocks for the functionality and connecting these blocks together through reconfig-
urable routing. This comes at the cost of area, power, and delay: an FPGA requires
approximately 20 to 35 times more area than ASIC, has roughly 3 − 4 times slower
performance than ASIC and consumes about 10 times as much dynamic power [17].

Coarse-Grained Reconfigurable Arrays (CGRAs) [18] are promising alternative
between ASICs and FPGAs. FPGAs do not have as high an efficiency as ASIC
accelerators due to the fine bit-level granularity of reconfiguration that results in
lower performance, higher energy consumption, and longer reconfiguration penalty.

6 Zhaoying Li, Dhananjaya Wĳerathne, and Tulika Mitra

In contrast, CGRAs, as the name suggests, comprise of coarse-grained functional
units (FUs) connected via typically a mesh-like interconnect as shown in Figure 1.1.
The functional units are capable of performing arithmetic/logic operations and can be
reconfigured on a per cycle basis by writing to a control (context) register associated
with each functional unit. The functional units can exchange data among themselves
through the interconnect. As many functional units work in parallel, CGRAs can
easily accelerate compute-intensive loop executions by exploiting instruction-level
parallelism. The primary challenge lies with the compiler that needs to map and
schedule the instructions on the FUs as well as take care of the routing of data
among the FUs through the interconnect.

CGRA was introduced around 2000 [19, 20, 21]. Recently, CGRA is witnessing
a resurgence in both industry and academia as a promising accelerator architecture
that can provide both efficiency and programmability. DARPA has recently launched
Software Defined Hardware (SDH) programme [22] to build CGRA-like recon-
figurable hardware that would enable near ASIC performance without sacrificing
programmability. Various CGRAs are appearing from academia and industry, such
as HRL [23], Plasticine [24], HyCUBE [25], Wave DPU [26], Sambanova [27],
Samsung Reconfigurable Processor [28], Renesas Dynamically Reconfigurable Pro-
cessor (DRP) [29] and Intel Configurable Spatial Accelerator [30]. These CGRAs
have more processing elements and complex architectures compared to the original
designs and thus require more compilation effort to efficiently utilize the hardware
resources.

There have been many works on domain-specific spatial accelerators in recent
literature [31, 10, 32, 33, 34, 35]. These accelerators target applications in specific
domains such as deep neural network, image analysis, and signal processing. The
micro-architecture of domain-specific spatial accelerators shares many similarities
with CGRAs. Like CGRAs, most of the domain-specific accelerators have an array
of processing elements connected in a two-dimensional grid. However, the process-
ing elements have limited and specific computation capability. The interconnection
network is designed to support specific data flow and not fully reconfigurable. For
example, in the Google Tensor Processing Unit (TPU), the processing elements only
support Multiply and Accumulation operations while the interconnection network
support systolic data flow for matrix multiplication [10]. These domain-specific
accelerators can be viewed as different instantiation of domain-agnostic CGRA ac-
celerator that can be configured in software to support any data flow and computation.

1.3 Architecture: A Landscape of Modern CGRA

In this section, we provide a brief overview of the basic CGRA architecture and its
variations. For a detailed survey of the CGRA architectures, the readers can refer to
[36, 37]

1 Coarse Grained Reconfigurable Array (CGRA) 7

Basic CGRA architecture A CGRA consists of a set of Processing Elements (PE)
and an on-chip network. A CGRA can reconfigure each PE for different operations
and the network for different routing on a per-cycle basis. Figure 1.1 shows an
abstract block diagram of a classic 4x4 CGRA. It uses a 2D mesh network and each
PE is connected to its neighboring PEs. A PE comprises of a Functional Unit (FU),
Register File (RF), crossbar switches, and configuration memory. Each FU can have
one or more ALU (Arithmetic-Logic Unit) or other computation units. The on-chip
data memory, usually Scratchpad Memory (SPM), feeds data to the whole PE array.
The data transfer between the SPM and the off-chip memory takes place through
Direct-Memory Access (DMA). In each cycle, a PE reads a configuration from the
configuration memory and configures the corresponding modules such as the ALU,
the switches and the RF ports. Then PE executes the operation and passed the data
to other PEs through the on-chip network.

Homogeneous and Heterogeneous CGRA From the perspective of the PEs, the
CGRAs can be classified into two categories: homogeneous and heterogeneous. In
homogeneous CGRA, all the PE have the same functionality, while in heterogeneous
CGRA, the PEs can have different functionality. If a CGRA targets application
kernels from some specific domains, special PEs can be useful, such as the ones
supporting Multiply-Accumulate (MAC) operations in machine learning. However,
if these special PEs are costly in terms of area or power, then the CGRA includes
special functionality in only some of the PEs. Most CGRAs provide heterogeneity
in terms of memory access functionality. For example, in the CGRA of Fig. 1.1,
it is not necessary to let all the PEs access the on-chip data memory. The latency
for data memory access is generally much longer than computation, and the SPM
also has limited number of ports restricting the number of parallel accesses. Hence,
usually only the PEs at the boundary can access the SPM.Another example is RAPID
architecture [38] that has 1D array of Special Function Units (SFUs) alongside a 2D
array of PEs. The SFU is used to support FP32 operations, and other PEs can only
support integer operations.

A recent work REVAMP [39] proposes a generalized automated approach in
heterogeneous CGRA exploration that can work across diverse architectures. It is
a design space exploration framework that can automatically realize more power-
efficient heterogeneous CGRA versions from a given homogeneous CGRA and
target application suit. Their micro-architectural optimizations cover a broad scope
of heterogeneity, including compute, interconnect, and PE-local storage. It also auto-
matically generates compiler support tomap loop kernels onto derived heterogeneous
architecture efficiently.

Spatial CGRAACGRA can reconfigure the PEs for different operations and routing
per cycle. Each PE is associated with a configuration memory. The configuration
memory stores a limited number of configuration words, one per cycle. The PE
rotates or loops through these configuration words and accordingly sets the operation
of the FU and the routing for the switches and the RF. A special case is a CGRA
with only one configuration word and is referred to as a spatial CGRA. A spatial

8 Zhaoying Li, Dhananjaya Wĳerathne, and Tulika Mitra

CGRA can reduce area, power, as well as cycle time (higher clock frequency) as
there is no reconfiguration delay involved. The area and power of the configuration
memory is considerable for the CGRAs. In [40], the power consumption of a 4KB
configuration memory in a 4x4 CGRA is around 40% of the whole chip power. A
spatial CGRA is more energy-efficient than traditional CGRAs. However it does
not have the advantage of temporal dimension and essentially reduces to FPGA
but with coarse-grained reconfigurable units. Note that the limited configuration
memory, while area and energy efficient, may not be able to accommodate large
kernels or need loop partitioning with runtime configuration reloading to accelerate
such kernels.

On-chip network The on-chip network connects the PEs to route data. In each
PE, there are routing paths from the input ports to the output ports. Also, the data
can be stored in the register file while waiting for processing or further routing.
The most common network is Neighbor-to-Neighbor (N2N) connection. Each PE is
connected to its neighboring PEs and neighbors can be reached in one cycle. Routing
to distant PEs requires other intermediate PEs and needs multiple cycles. The simple
N2N network, however, provides very limited interconnection on the chip. It needs
tremendous compilation effort to achieve good speedup in accelerating kernels with
complex data dependencies and even then the speedup can be limited.

A recent CGRA architecture called HyCUBE [25] creates a larger virtual neigh-
borhood for each PE by allowing single-cycle multiple-hop connections. HyCUBE
designs a special bypass network to allow intermediate PEs to forward data to other
PEs without consuming the data. Thus a PE can send data to distant PEs in one cycle.
The HyCUBE chip [41] offers four hops per cycle at maximum clock frequency of
753 MHz. Increasing the number of hops per cycle further will reduce the maximum
possible clock frequency. The dataflow graph (DFG) of an application kernel can
have complex structure and data dependencies. While N2N networks need multiple
cycles when the source and destination nodes corresponding to a data dependency
are mapped to distant PEs, HyCUBE only needs one cycle to route most data de-
pendencies leading to better performance both in terms of compilation time (as the
mapping becomes easier with larger neighborhood) and actual kernel execution time
(due to reduced delay in routing data dependencies). Moreover, in N2N network,
a PE that is involved in routing transient data cannot perform computation in the
same cycle as the data needs to be stored in the register file of the PE requiring an
explicit move operation. HyCUBE allows the intermediate PEs in the bypass path to
continue executing operations leading to better utilization of the PEs in performing
useful computation.

The above networks cannot scale well with increasing CGRA sizes. A bigger
CGRA is usually tiled into blocks and each block is a small sub-CGRA. The network
among the blocks often has a higher bandwidth than the one inside a block. An
example of such titled architecture is Plasticine [24] that provides scalar and vector
communication channels between the blocks.

1 Coarse Grained Reconfigurable Array (CGRA) 9

Memory hierarchy Typically, the CGRAmemory hierarchy consists of two types of
memory: data memory to hold input, output and intermediate data and the configu-
ration memory to hold the configuration directives for the FU, RF, and the switches.

Most CGRA architectures use multi-bank scratchpad memory as the global on-
chip data memory [20, 42, 25]. Scratchpad memories are fully software-controlled,
meaning that the data movement between the off-chip main memory and on-chip
scratchpad memory is explicitly controlled through directives generated by the com-
piler. Therefore scratchpad memories are more power-efficient than hardware con-
trolled caches. Multi-bank memory SPM is used to increase the data throughput,
i.e., the number of parallel accesses between the SPM data memory and the PE
array. Usually, each memory bank has a few (one or two) read/write ports, and a
subset of PEs have access to each memory bank. The CGRA PEs execute load and
store operations to load the input data and store the computed data back into the
on-chip memory. Figure 1.4 shows CGRA data memory with four memory banks
where only the boundary PEs on the left side have access to the data memory. Some
architectures perform the load/store address generation within the PE array, while
others have specialized hardware address generation units [43]. Apart from global
data memory, some CGRA architectures use shared register files to hold interme-
diate data. These register files are shared between a subset of PEs. It provides an
alternative to the on-chip network for communication between those subsets of PEs.

The CGRA configuration memory, also referred to as context/instruction mem-
ory, holds the directives for CGRA execution each cycle including the operation to
be executed by the PEs and the routing configurations for the crossbars switches.
As CGRAs are specifically used for accelerating loop kernels, the same sequence
of configurations are repeated over a fixed number of cycles. The configurations are
loaded into the configuration memory before the CGRA execution starts. The con-
figuration memory can be either centralized (global) or decentralized (local), where
each PE has a separate configuration memory. Even in a decentralized setting, the
configurations for the PEs are fetched and decoded in a lockstep manner. Therefore,
program counters of all the PEs have the same value even though they have different
configurations.

Interface between CPU and CGRA

Fig. 1.4: On-chip memory hierarchy of CGRA loosely coupled with host CPU

10 Zhaoying Li, Dhananjaya Wĳerathne, and Tulika Mitra

CGRAs are used to accelerate compute-intensive loop kernels of the applications.
Therefore, it needs to be coupled with the host processor for executing a complete
application. The host processor is responsible for running the non-loop code, con-
figuring the CGRA, and initiating the DMA data transfers from the main memory to
the CGRA local memory.

Some CGRAs are closely coupled with the main processor, where CGRA is a
part of the main CPU. For example, ADRES [20] CGRA is tightly coupled with the
main processor, where the top row of the PE array is a VLIW processor that acts
as the main processor. Figure 1.4 shows a loosely coupled CPU where the CGRA
is connected to an independent accelerator. MorphoSys CGRA [42] is an example
of a loosely coupled CGRA. Loosely coupled CGRAs offer more flexibility in the
design phase as they can be designed independently. In a loosely coupled system,
both the CPU and the CGRA can execute code in parallel in a non-blocking manner.
A tightly coupled system typically cannot execute code in parallel on the CPU and
the CGRA as they share the same resources. However, the overheads in data transfer
are higher in the loosely coupled system compared to the tightly coupled system.

1.4 Compilation for CGRAs

Given a loop from an application and a CGRA architecture, the goal of compilation is
to map the loop onto the CGRA (i.e., generate the configurations for a fixed number
of cycles) to maximize the throughput. In general, this compilation is referred as
mapping in the CGRA world. The loop is represented as a Data Flow Graph (DFG),
where the nodes represent the operations and the edges represent the dependency
between the nodes.

1.4.1 Modulo Scheduling and Modulo Routing Resource Graph
(MRRG)

Modulo SchedulingModulo scheduling is a software pipelining technique to exploit
the instruction-level parallelism among the loop iterations [44]. There are often
inadequate instruction-level parallelism in a single iteration of a loop. Pipelining
consecutive loop iterations can provide more parallelism and thus improves the
resource utilization. Fig.1.5a shows a 2x2 homogeneous CGRA and we assume each
PE can support any operation. Fig.1.5b shows an example DFG where each node
represents an operation, such as addition, multiplication, etc. Mapping of the DFG
onto the CGRA has two components: placement and routing. The placement decides
which PE will execute each operation, and routing makes sure that the data can be
routed to the dependent operations in a timely manner.

1 Coarse Grained Reconfigurable Array (CGRA) 11

(a) 2x2 CGRA (b) DFG example (c) DFG mapping example

Fig. 1.5: 2x2 CGRA, a DFG (dataflow graph), and the mapping

Fig.1.5c shows a possible mapping of the DFG in Fig.1.5b onto the CGRA in
Fig.1.5a. For the sake of convenience, the 2x2 CGRA in Fig.1.5a has been drawn
as a linear array. The mapping has three parts: prologue, steady state kernel, and
epilogue. The prologue and epilogue are executed only once at the start and end of
the loop execution. The steady state kernel is repeated and include all the operations
from one or more iterations. The schedule length of the kernel is called the Initial
Interval (II) and indicates the number of cycles between the initiation of consecutive
loop iterations. For a loop with a large number of iterations, the execution time is
dominated by the II value.

In the mapping of Fig.1.5c, II = 2. Notice that node n5 of the first loop iteration
is executing in the same cycle with n1 and n2 from the second loop iteration. Hence
the CGRA can start a new loop iteration every two cycles leading to II value of
two. The routing is done through the network among the PEs. This figure shows an
abstract mapping for convenience. A real mapping will include the detailed routing
configuration at each PE.

Given a DFG and a CGRA, the mapper first calculates the Minimum Initial
Interval (MII), which is the maximum of the resource-minimal II and the recurrence-
minimal II. The resource MII depends on the number of PEs and the number of DFG
nodes (assume one PE can process one DFG node). Hence the resource MII cannot
be less than the number of DFG nodes divided by the number of PEs. The recurrence
MII is determined by the dependency across loop iterations. Let us assume that we
have an operation 0[8] = 0[8 − 1] × 1[8]. The operation of iteration i must wait for
the result of the operation of last iteration i-1. The recurrence MII can be calculated
by traversing the DFG.

Mapping a compute-intensive loop kernel of an application to CGRAs usingmod-
ulo scheduling was first discussed in the DRESC compiler [45]. The algorithm starts
with an II equal to the maximum between the resource-minimal II and recurrence-

12 Zhaoying Li, Dhananjaya Wĳerathne, and Tulika Mitra

minimal II and attempts to schedule the loop. If it fails, it tries with successively
larger II values.

Fig. 1.6: An example of Modulo Routing Resource Graph (MRRG)

Modulo Routing Resource Graph (MRRG) Mei et al. [45] proposed the MRRG,
which represents the resources and the routing for a time-extended CGRA. The
nodes in MRRG represent the ports of the register file, the on-chip network, the
ALU inside PE etc. The edges are the connections among the CGRA components
represented as nodes. The MRRG is a directed graph � � � where II corresponds to
the initiation interval. Given a graph �, let us denote the vertex set by + (�) and
the edge set by � (�). Each node E ∈ + (� � �) is a tuple (n, t), where n refers to the
resource in CGRA and t is the cycle (0 ≤ C ≤ � � − 1). Let 4 = (D, E) ∈ � (� � �) be
an edge where u = (m, t) and v = (n, t+1). Then the edge e represents a connection
from resource m in cycle t to resource n in cycle t+1. In general, if resource m is
connected to resource n in the CGRA, then node u = (m, t) is connected to node v =
(n, t+1), t ≥ 0.

Fig.1.6 shows the MRRG corresponding to the CGRA in Fig. 1.5a when the II
is 2. The resources of 2x2 CGRA are replicated every cycle along the time axis. In
modulo scheduling, if a node v=(n, t) in the MRRG becomes occupied, then all the
nodes v’=(n, t+k×II) (where k > 0) are also occupied. For example, in the Fig. 1.5c,
PE0 is occupied by node n1 at cycle 0 and the II is 2. Thus the node will occupy
PE0 every 2× : cycle. Hence after cycle 1, the configuration in cycle 0 will be used
to reconfigure the fabric, as the II is 2 and configuration has two items. Thus, there
are wrap around edges from the second item back to the first one, as cycle 3 will use
the first configuration item. These edges show hardware resource connection along
the time axis.

1 Coarse Grained Reconfigurable Array (CGRA) 13

1.4.2 CGRA Mapping Approaches

In this section, we present three broad classes of mapping approached based on
heuristics, mathematical optimization, and graph theory inspired techniques.

1.4.2.1 Heuristic Approaches

The heuristic approaches propose customized solutions for the CGRA mapping
problem.

Simulated Annealing

Meta-heuristics are problem-independent approaches that treat the architectural
elements as black boxes. Simulated Annealing is one of the most popular meta-
heuristic method. Here, we introduce the usage of Simulated Annealing in CGRA
mapping as proposed in theDRESC compiler [45]. For a target II value, the algorithm
first generates an initial schedule satisfying the dependence constraints but with
possibly over-subscribed resources. For example, more than one operations might
be scheduled on the same functional unit in the same cycle. The algorithm then
iteratively reduces resource overuse and tries to come up with a legal scheduling
via simulated annealing that explores different placement and routing options until
a valid placement and routing of all operations and data dependencies are found.
The cost function used during the simulated annealing is based on the total routing
cost, i.e., the combined resource consumption of all the placed operations and the
routed data dependencies. In this technique, a huge number of possible routes are
evaluated. As a result, the technique has long convergence time, especially for large
dataflow graphs.

Routing through the register files and the register allocation problems are further
explored in [46], which extends the work in [45]. Register allocation is achieved
by constraining the register usage during the simulated annealing place and route
process. The imposed constraint is adopted from the meeting graph [47] for solving
loop cyclic register allocation inVLIWprocessors. In post routing phase, the registers
are allocated by finding a Hamilton circuit in the meeting graph, which is solved as
a traveling salesman problem [46]. This technique is specially designed for CGRAs
with rotating register files. [48] and CGRA-ME[49] follow the simulated annealing
framework but aim at finding better cost functions for over-used resources.

Edge-Centric Modulo Scheduling

14 Zhaoying Li, Dhananjaya Wĳerathne, and Tulika Mitra

Fig. 1.7: Node-Centric (left) versus Edge-Centric (right) Modulo Scheduling [50]

The DRESC compiler performs node-centric modulo scheduling where the nodes
are scheduled and placed first followed by routing of the edges. In contrast, for edge-
centric modulo scheduling (EMS) [50], the primary objective is routing efficiency
rather than operations assignment. Figure 1.7 taken from [50] shows the difference
between the two approaches.

Node-centric approaches place an operation according to the heuristic routing
cost. The cost consists of various metrics that reflects the quality of the mapping.
The mapper visits the PE candidates and selects the best one, or visits the candidates
one by one until it finds a solution. When visiting a candidate, the mapper will try
to route the edges from the mapped nodes to the current candidate. Figure 1.7(b)
shows how an optimal placement is found with this approach. A DFG including two
producers P1 and P2 and a shared consumer C is mapped onto a 1 × 5 CGRA in
Figure 1.7(a). P1 and P2 are already placed and the mapper places the consumer
C by visiting all the empty slots as shown in Figure 1.7(b). The slots with dashed
circles are failed attempts as the mapper cannot establish routing from producer P1
and P2. After visiting those slots, the mapper successfully places C on PE3 at time
4 and routes values from P1 and P2.

In an edge-centric approach, the routing function contains the placement of an
operation, and the placement decision is made when the routing information is
discovered. When scheduling an operation, the mapper picks an edge from the
operation’s previously-placed producers or consumers and starts routing the edge.
The router will search for an empty slot which can execute the target operation. Once
a suitable slot is found, the mapper will place the operation and route for other edges.

1 Coarse Grained Reconfigurable Array (CGRA) 15

Figure 1.7(c) shows the same example of Figure 1.7(b), and the consumer is
mapped using an edge-centric approach. The scheduler tries to route edge from P1
to C first, instead of placing operation C directly. When an empty slot is found, the
scheduler temporarily places the target operation and checks if there are other edges
connected to the consumer; if so, it recursively routes those edges. For example,
when the router visits slot (PE2,1), it temporarily places C there and recursively
calls the router function to route the edge from P2 to C. When it fails to route the
edge from P2 to C, routing resumes from slot (PE2,1), and not from P1, and a
solution is eventually found at slot (PE3,4).

In general, an edge-centric approach can find a solution faster and achieves better
quality mapping compared to a node-centric approach. However, it has a greedy
nature in that it optimizes for a single edge at a time, and the solution can easily fall
into local minima. There is no search mechanism in the scheduler at the operation
level and every decision made in each step is final. This problem can be addressed
by employing intelligent routing cost metrics as priorities. The quality of a mapping
using specific priorities highly depends on efficient heuristics for assigning these
priority values to both the operations and the resources.

Schedule, Place, and Route (SPR)

SPR [51] is a mature CGRAmapping tool that successfully combines the VLIW-
style scheduler and FPGA placement and routing algorithms for CGRA application
mapping. It consists of three individual steps namely scheduling (ordering operations
in time based on data and control dependencies), placement (assigning operations to
functional units), and routing (mapping data signals between operations using wires
and registers). SPR uses IterativeModulo Scheduling (IMS) [44], Simulated Anneal-
ing [52] placementwith a cooling schedule inspired byVPR [53], and PathFinder [54]
and QuickRoute [55] for pipelined routing.

IMS is a VLIW inspired loop instruction scheduling algorithm. IMS heuristically
assigns operations to a schedule specifying the start time for each instruction, taking
into account resource constraints and data and control dependencies. SPR uses IMS
for initial operation scheduling and extends IMS to support rescheduling with feed-
back from the placement algorithm, letting it handle the configurable interconnects
of CGRAs.

FPGA mapping tools historically use Simulated Annealing for placement and
PathFinder for routing. VPR [53], which has become the de facto standard for FPGA
architecture exploration, is similar to SPR in that it seeks to be a flexible and open
mapping tool that can provide high quality mappings and support a wide spectrum of
architectural features. Unfortunately, it only applies to FPGAs. SPR adopts similar
algorithms but extended for CGRAs to support multiplexing of resources across
cycles and solving the placement and routing issues that arise when using a fixed
frequency device. SPR uses QuickRoute to solve the pipelined routing problem.

16 Zhaoying Li, Dhananjaya Wĳerathne, and Tulika Mitra

List Scheduling

A list scheduling algorithm is adapted in themapping algorithms of [56]. Priority-
based list scheduling heuristic is used in [56] tomap data-dependent operations in the
kernel onto spatially close PEs in the CGRA. Each operation in the kernel is mapped
onto a PE considering the operation priority and ability to route data from already
mapped parent operations. They maintain a PE list based on topology traversal order
and an operation list based on scheduling priority. Topology traversal order is the
order in which PEs are traversed in the CGRA while mapping operations to PEs.
The experiment results show that spiral traversal order performs best. According
to a scheduling priority, the operation list is maintained, which gives preference to
operations on the longest data dependency paths. Operation with the highest priority
is mapped on the next available PE in the PE list if there is a valid route from already
mapped parent operations. Scheduling is done on a cycle by cycle basis. Each cycle,
the algorithm schedules operations on each PE and then increments the cycle when
the PE list is exhausted. This process is continued until all the operations in the kernel
have been scheduled. Unfortunately, the list scheduling algorithms do not produce a
software pipelined schedule and are thus unable to exploit inter-iteration parallelism.

Evolutionary Algorithm

The mapping approach in [57] presents a fast heuristic using a quantum-inspired
evolutionary algorithm. This evolutionary algorithm uses an initial solution obtained
from list scheduling as a starting point. The algorithm uses Q-Bit encoding to
represent the hundreds of possible mapping results and evaluates each case to choose
the best solution that satisfies the data dependency constraints. Q-Bit encoding allows
compact maintenance of potential mappings, enabling fast design space exploration
compared to other evolutionary algorithms. Fitness function is the performance,
which is the inverse of the total latency. The algorithm iteratively improves the
solution until it finds a solution with the lower bound of optimal latency or there is
no improvement during a given time interval. However, the experimental evaluation
is limited to small loop kernels with few DFG operations and CGRAs with limited
reconfigurability.

Machine Learning

A reinforcement learning-based mapping approach for CGRAs has been proposed
in RLMap [58]. The CGRAmapping problem is formulated as an agent in reinforce-

1 Coarse Grained Reconfigurable Array (CGRA) 17

ment learning. Each mapping state is represented as a distinct image that captures
operation placement and inter-PE routing. Agent action is defined as the interchange
of operations on neighbour PEs to keep the action space small. The reward function
is defined based on a cost function that captures interconnect power requirements,
utilized compute PEs, routing PEs, and empty PEs. Reward function helps the agent
obtain valid and high-quality mapping in terms of power, area and performance.

Inspired by the progress in deep learning, [59] proposedDFGNet, a convolutional
neural network-based mapping approach. They present dual input neural network to
capture kernel DFG and CGRA architecture. CGRA mapping problem is translated
into an image-based classification problem in a convolutional neural network. Input
DFG is represented as an adjacency matrix, and a matrix represents the CGRA
architecture state. The neural network consists of convolutional, max pooling, con-
catenate and fully connected layers. The issue with any deep learning method for
application mapping on CGRAs is the difficulty in obtaining the abundant training
data required for such approaches.

CGRAs differ in the network and the PE function. Existing compilers [41, 60,
61] usually leverage special characteristics of the architecture to generate quality
mapping. These compilers, however, are usually hand-crafted, making it challenging
from the time-to-market perspective. [62] proposed a portable framework, LISA,
to map DFGs onto diverse CGRAs. LISA uses Graph Neural Network (GNN) to
analyze Data Flow Graph (DFG) to derive labels that describe how the DFG should
be mapped, e.g, the estimated routing resource required by an edge and the predicted
mapping distance between the DFG nodes. With trained GNNs, these labels can
reflect characteristics of the accelerator. Moreover, LISA provides a global view
in mapping by describing the whole DFG and accelerator characteristics. For a
new accelerator, the portable compiler re-trains the GNN model to adapt the labels
according to the accelerator characteristics.

1.4.2.2 Mathematical Optimization Techniques

We now present two mathematical optimization techniques for CGRA mapping.

Integer Linear Programming (ILP)

ILP-based formalization of the CGRA mapping problem has been proposed in
the literature [63, 64]. The ILP formulation consists of all the requirements and
the constraints that must be satisfied by a valid schedule. The formulation is built
from the DFG and the MRRG and hence highly portable as shown recently in the
CGRA-ME project [64]. However, it is not clear whether the ILP modeling can be
effective for all possible architectural features and more importantly, scalability is a
huge issue with ILP techniques that can only be applied to very simple loop kernels.

18 Zhaoying Li, Dhananjaya Wĳerathne, and Tulika Mitra

Boolean Satisfiability (SAT) solvers

A SAT solver based application mapping approach for CGRAs has been pro-
posed by Wave Computing for their CGRA architecture [65]. This technique has
been demonstrated to automatically compile dataflow programs onto a commer-
cial massively parallel CGRA-based dataflow processor (DPU) containing 16,000
processing elements. This is an innovative application of Boolean Satisfiability
to formally solve this complex and irregular optimization problem, and produce
high-quality results comparable to hand-written assembly code produced by human
experts. The approach is reported to be efficient in utilizing processing elements with
rich micro-architectural features such as complex instructions, multi-precision data
paths, local memories, register files, switches etc. However, the approach requires
custom algorithms to handle the complexity of the SAT-based solutions in offering
scalable, robust technique. A constraint-based approach is also used for the Silicon
Hive CGRA architecture [66] though the details are not publicly available.

1.4.2.3 Graph Theory Inspired Techniques

ManyCGRAmapping approaches use graph theory concepts to formulate the CGRA
mapping problem. Those approaches transform the CGRA mapping problem into
well known graph theoretic formulations and leverage the existing techniques to
solve the problem. This section categorises the graph theory inspired mapping tech-
niques based on the graph theory formalism they use. We also discuss, in more
detail, prominent CGRA mapping techniques that correspond to each formalisation.
Table 1.1 summarises different aspects of five such notable works.

Table 1.1: Notable works using graph theory concepts for CGRA mapping problem

Work Graph Theory Concept Solution What is new?
[67] Homeomorphism Greedy algorithm for transformation Mapping DFG substructures
EpiMap [68] Epimorphism Heuristic based search Re-computation to solve out-degree problem
Graph Minor [69] Graph Minor Tree search method Allow route sharing
RegiMap [60] Compatibility graph Finding a max clique Allow both route sharing, recomputation
SPKM [70] Graph Drawing Split and Push approach Support heterogeneous architectures

Following graph theory concepts are widely used to formalize and solve CGRA
application mapping problem:

1. Subgraph Homeomorphism
2. Graph Epimorphism
3. Graph Minor
4. Compatibility Graph
5. Graph drawing

1 Coarse Grained Reconfigurable Array (CGRA) 19

Fig. 1.8: Graph Isomorphism

Fig. 1.9: Graph Subdvision

To understand the above graph theory concepts, we need to first present few related
definitions. Therefore, let us first look at the definitions of graph isomorphism, graph
subdivision, graph homeomorphism, and induced subgraph.

Definition 1.1 A directed graph � = (+, �) is a pair where+ is a set of vertices and
� ⊆ + × + is a set of edges. Let � and � ′ be two graphs where � = (+, �) and
� ′ = (+ ′, � ′).

Definition 1.2 Graph Isomorphism: An isomorphism from � to � ′ is a bĳective
function 5 : + → + ′ such that (D, E) ∈ � ⇐⇒ (5 (D), 5 (E)) ∈ � ′.

Two graphs are isomorphic when both graphs contain the same number of ver-
tices connected in the same way. Figure 1.8 shows two isormorphic graphs. Graph
isomorphism is an equivalence relation on directed graphs.

Definition 1.3 Graph Subdivision: The subdivision of some edge 4 = (D, E) ∈ �
yields a graph containing one new vertex F and with an edge set replacing 4 by two
new edges, (D, F) and (F, E).

The definition of graph subdivision is self explanatory. In Figure 1.9, graph H is
formed by subdivision of graph G.

Definition 1.4 Graph Homeomorphism: Two graphs � and � ′ are homeomorphic
if there is a graph isomorphism from some subdivision of � to some subdivision of
� ′. In general, a subdivision of a graph � is a graph resulting from the subdivision
of edges in �.

In Figure 1.10, graph � can be created by subdivision of edges of � and also by
subdivision of edges of � ′. Therefore, graph � and graph � ′ are homeomorphic.

Definition 1.5 Induced Subgraph: Let * ⊆ + be a subset of vertices of �. The
subgraph of � induced by* is �↓* = (*, � ∩ (* ×*)).

20 Zhaoying Li, Dhananjaya Wĳerathne, and Tulika Mitra

Fig. 1.10: Graph Homeomorphism

Induced subgraph is a graph formed by a subset of vertices of another graph with
all of the edges that connect the vertices in that subset.

Subgraph Homeomorphism Based Techniques

Formal definition of subgraph homeomorphism is as follows:

Definition 1.6 Subgraph Homeomorphism: A subgraph homeomorphism from� to
� ′ is a homeomorphism 5 from an induced subgraph �↓* of � to � ′.

Let � be a directed graph representing the DFG and �� � be a directed graph
representing the MRRG with initiation interval II. In the ideal scenario of full
connectivity among the PEs, we can map all the data dependencies in the DFG to
direct edges in the MRRG. That is, for any edge 4 = (D, E) ∈ � (�), there is an edge
4 = (5 (D), 5 (E)) ∈ � (�) where 5 represents the vertex mapping function from the
DFG to the MRRG. This matches the definition of subgraph isomorphism. However,
data may need to be routed through a series of nodes rather than direct links in
reality. If an edge 4 = (D, E) ∈ � (�) in the DFG can be mapped to a path from 5 (D)
to 5 (E) in the MRRG �, it matches the subgraph homeomorphism definition. The
idea is to test if the DFG � representing the loop kernel is subgraph homeomorphic
to the MRRG �� � representing the CGRA resources and their interconnects.

Figure 1.11 illustrates the subgraph homeomorphism formulation. Figure 1.11a
shows a simple DFG being mapped onto a 2x2 homogeneous mesh CGRA shown
in Figure 1.11b. The DFG is homeomorphic to the subgraph of the MRRG shown
in Figure 1.11c and thus the subgraph represents a valid mapping (for simplicity
we have removed additional nodes of the MRRG). In this homeomorphic mapping,
edges (1,3) and (1,4) have been routed through three additional routing nodes marked
by R. Notice that each routing node has degree 2 and has been added through edge
subdivision (marked by dashed edges). Alternatively, we can smooth out the routing
nodes in the MRRG subgraph to obtain the original DFG.

The subgraph homeomorphism techniques for CGRAmapping problem has been
adopted in [71, 67, 72]. Authors in [71] formulate the mapping problem as finding
a node disjoint subgraph homeomorphism between the DFG and the MRRG. The
mapping algorithm is adapted from Modulo Scheduling with Integrated Register
Spilling (MIRS) [73], a modulo scheduler capable of instruction scheduling with
register constraints. [67] partitions the DFG into subgraphs called HyperOps, and

1 Coarse Grained Reconfigurable Array (CGRA) 21

(a) DFG (b) CGRA (c) MRRG

Fig. 1.11: Subgraph homeomorphism formulation of CGRA mapping problem.

these HyperOps are synthesized into hardware configurations. The synthesis is car-
ried out through a homeomorphic transformation of the dependency graph of each
HyperOp onto the hardware resource graph. They employ a greedy algorithm for
the transformation. [72] also formalizes the CGRA mapping as a subgraph homeo-
morphism problem. However, they consider general application kernels rather than
loops.

However, subgraph homeomorphism requires the edge mappings to be node
disjoint (except at endpoints) or edge-disjoint [74]. As a result, subgraph homeomor-
phism based techniques exclude the possibility of sharing the routing nodes among
single source multiple target edges [75] (also called multi-net), leading to possible
wastage of precious routing resources.

Graph Epimorphism Based Technique

Graph epimorphism is defined based on graph homomorphism. Therefore, let us
first look at the definition of graph homomorphism.Agraph homomorphismdefines a
mapping between two graphs in which adjacent vertices in the first graph are mapped
to adjacent vertices in the second graph. Unlike isomorphism, homomorphism can
be from a bigger to a smaller graph. The formal definition of a homomorphism is as
follows:

Definition 1.7 GraphHomomorphism: A homomorphism from� to� ′ is a function
5 : + → + ′ such that (D, E) ∈ � =⇒ (5 (D), 5 (E)) ∈ � ′.

Graph epimorphism relaxes the bĳection constraint of graph isomorphisms to a
surjection constraint on both vertices and edges (hence the terminology of epimor-
phism). Several vertices of � may be mapped on the same vertex of � ′.

22 Zhaoying Li, Dhananjaya Wĳerathne, and Tulika Mitra

Definition 1.8 Graph Epimorphism: An epimorphism from � to � ′ is a surjective
function 5 : + → + ′ such that

• if (D, E) ∈ � =⇒ (5 (D), 5 (E)) ∈ � ′ (graph homomorphism)
• if (D′, E′) ∈ � ′ then there exists (D, E) ∈ � such that 5 (D) = D′ and 5 (E) = E′

(surjectivity on edges)

Fig. 1.12: A valid mapping without using re-computation (left) versus with re-
computation (right) in EpiMap [68]

EPIMap [68] formalizes the CGRA mapping problem as a graph epimorphism
problem with the additional feature of recomputations. Re-computation allows for
the same operation to be performed on multiple PEs if it leads to better routing. In
the EPIMap approach, the DFG � is morphed into another graph � ′ (through the
introduction of routing/recomputation nodes and other transformations) such that
there exists subgraph epimorphism from � ′ to � (many to one mapping of vertices
from � ′ to � and adjacent vertices in � ′ map to adjacent vertices in �). Then
EPImap attempts to find the maximal common subgraph (MCS) between� ′ and the
MRRGgraph� using standardMCS identification procedure. If the resultingMCS is
isomorphic to � ′, then a valid mapping has been obtained; otherwise, � is morphed
differently in the next iteration and the process repeats. EPIMap can generate better
scheduling results compared to EMS with a similar compilation time. Figure 1.12

1 Coarse Grained Reconfigurable Array (CGRA) 23

taken from [68] shows the benefit of recomputation. The mapping in Figure 1.12 (d)
computes the node 1 in both PE1 and PE2 at cycle 1. This recomputation results
in a better mapping (II=2) compared to mapping without recomputation (II=3) in
Figure 1.12 (c).

Graph Minor Based Technique

Definition 1.9 GraphMinor: An undirected graph� is called aminor of the graph� ′
if � is isomorphic to a graph that can be obtained by zero or more edge contractions
on a subgraph of � ′. An edge contraction is an operation that removes an edge from
a graph while simultaneously merging together the two vertices it used to connect. A
model of� in� ′ is a mapping q that assigns to every edge 4 ∈ � an edge q(4) ∈ � ′,
and to every vertex E ∈ + a non-empty connected tree subgraph q(E) ⊆ � ′ such that

• the graphs q(E) |E ∈ + are mutually vertex-disjoint and the edges q(4) |4 ∈ � are
pairwise distinct; and

• if 4 = (D, E) ∈ � , the edge q(4) connects q(D) with q(E).

� is isomorphic to a minor of � ′ if and only if there exists a model of � in � ′ .

Graphminor [69]models the CGRAmapping problem as a graphminor containment
problem that can explicitly model route sharing. As explained in the definition, a
graph H is a minor of graph G if H can be obtained from a subgraph of G by a
(possibly empty) sequence of edge contractions [76]. The graph minor is initially
defined for undirected graphs, but the authors in [69] adapt the definition to directed
graphs for CGRA mapping. In this context, we need to test if the DFG is a minor
of the MRRG, where the edges to be contracted represent the routing paths in
the MRRG. The mapping algorithm is inspired by the tree search method, which
is widely used to solve graph matching problems. Unlike edge subdivision (or its
reverse operation smoothing), edge contractions are not restricted to simple paths.
Thus graph minor formalism naturally allows for route sharing. Figure 1.13 shows
the difference between mappings under graph minor approach (Figure 1.13 (d)) and
subgraph homeomorphism approach (Figure 1.13 (c)). The number of routing nodes
are reduced from 3 (in subgraph homeomorphism mapping) to 2 (in graph minor
mapping) through route sharing.

Compatibilty Graph Based Technique

REGIMap [60] presents a general formulation of the problem of mapping a kernel
on the CGRA while using its registers to minimize II. The formulation partitions
the problem into a scheduling problem and an integrated placement and register

24 Zhaoying Li, Dhananjaya Wĳerathne, and Tulika Mitra

Fig. 1.13: Subgraph homeomorphism (left) versus Graph Minor formulation [69]
(right) of CGRA mapping problem

allocation problem. They first create a compatibility graph, a subgraph of the product
of the DFG � and MRRG �. The vertices of the compatibility graph denote the
operation-resource pair, which represent possible mapping pairs. The edges of the
graph denote the compatibility of two corresponding mapping pairs. The mapping
problem is reduced to one of finding the largest clique in the compatibility graph
under the constraints of register resources. Then an efficient and constructive heuristic
is used to solve the mapping problem.

Graph Drawing Based Technique

SPKM [70] adopts the split and push technique [77] for planar graph drawing and
focuses on spatial mappings for CGRAs. The mapping in SPKM starts from an
initial drawing where all DFG nodes reside in the same group. One group represents
a single processing element. The group is then split into two, and a set of nodes are
pushed to the newly generated group. The split process continues until each group
contains only one node, representing a one-to-one map ping from DFG to the planar
resource graph of CGRA.

1 Coarse Grained Reconfigurable Array (CGRA) 25

1.4.3 Other Compilation-related Issues

1.4.3.1 Challenges Related to Data Access

The works presented for computation mapping have largely ignored the impact of
data placement in the on-chip memory and the communication between the CPU
and CGRA. Those works mostly assume data is already present in the local data
memory. They also assume all PEs have access to all data memories, i.e., infinite
memory bandwidth between local data memory and PE array. However, in reality,
CGRA local memory bank has non-uniform memory access architecture where only
a subset of the PEs have access to a memory bank with limited number of read/write
ports [78]. Even when CGRA mapping achieves higher compute utilization under
the assumption of ideal memory, the memory limitations could cause overall perfor-
mance degradation in the actual setting. Thus, the compiler should be aware of the
data memory limitations to minimize the effects of the memory bottleneck.

Figure 1.14a shows the simplified DFG of array-addition loop kernel. The kernel
adds elements in two arrays �[], �[] and stores the results in array � []. Shaded
nodes represent memory access operations; two load operations (!) and one store
operation ((). Memory address of each array (&�[8],&�[8],&� [8]) are computed
in the nodes above the !/(nodes based on the iteration variable 8. Figure 1.14b
shows the mapping of the DFG on CGRA coupled with on-chip local memory
with four banks. Only boundary PEs have access to a directly connected memory
bank. Array �[], �[], and � [] are placed in memory banks 1, 2, and 4 respectively.
The CGRA mapper should be aware of the data placement to correctly place the
load/store operations on the PEs. Therefore, data placement and CGRAmapping are
interdependent tasks. Host CPUmanages the datamovement using aDMAcontroller
based on the data placement decided by the compiler.

This section discusses compiler based solutions for challenges related to data
access in CGRA.

Memory Aware Compilation

Effective memory-aware compiling strategy should

• Place the data without under-utilizing the memory banks
• Consider the limited connections between the PE array and the memory banks
• Prevent memory access conflicts
• Maximize data reuse by avoiding data duplication

[78] proposes a memory aware mapping solution that considers the effects of var-
ious memory architecture parameters, including the number of banks, local memory
size and the communication bandwidth between the local memory and the external
main memory. Their heuristic-based mapping approach considers minimizing dupli-
cate arrays, balancing bank utilization, and balancing computation and data transfer
time.

26 Zhaoying Li, Dhananjaya Wĳerathne, and Tulika Mitra

(a) DFG of the array-addition loop kernel (b) Mapping of array-addition loop kernel

Fig. 1.14: Memory-aware Loop Mapping on CGRA

Memory access conflict arises when the number of data accesses per bank per
cycle is higher than the number of memory ports in one memory bank. Such ac-
cess conflicts can be resolved either by data duplication or hardware queue with
arbiters. Both approaches result in higher cost in terms of performance and power.
A better solution would be to let the compiler partition the data into memory banks
to avoid access conflicts. The application mapping technique in [79] consider the
memory banking architecture and map operations and data to avoid memory bank
conflicts. The initial schedule is generated without considering the data mapping.
Subsequently, it uses array clustering and conflict-free scheduling until a conflict-free
mapping is found. They also consider a hardware solution called DAMQ (Dynam-
ically Allocated, Multi-Queue buffer), which uses a request queue and arbiter to
resolve access conflicts. This hardware approach increases the access latency of the
memory operation. They show the software solution is 8.5% better than a hardware
solution. [80, 81] also proposes memory access conflict-free loop mapping strategy
and a joint mapping flow by integratingmodulo scheduling andmemory partitioning.
Dual-force directed scheduling algorithm is designed to solve the CGRA mapping
problem and memory partitioning problem jointly.

When supporting kernels with multiple accesses for the same data array, a naive
data placement in multi-bank memory could result in many access conflicts. [82]
propose amemory partitioning scheme formulti-dimensional arrays based on a linear
transformation. It partitions the multi-dimensional array among different banks to
place each parallelly accessed data element in a separate memory bank.

[83] proposes memory aware mapping technique which uses shared data memory
as the routing resource. They argue that routing some data dependencies through
memory could improve the performance. Therefore, data dependencies that consume
multiple PE routing resources are replaced by memory access operations. They

1 Coarse Grained Reconfigurable Array (CGRA) 27

divide the mapping problem into two subproblems: 1) replacing the dependence
with memory access operations, and 2) integrating placement and routing with the
PE allocation for memory operations. Then, those two subproblems are solved to
find a valid mapping. They establish a precise formulation for the CGRA mapping
problem while using shared local data memory as a routing resource and present a
practical approach for mapping loops to CGRAs.

Memory Address Generation

One other main challenge related to data access is the way data memory addresses
are generated. [43] shows a substantial amount of instructions in loop kernels
correspond to address generation (ranging from 20% to 80%). One solution is to
offload the address generation to specialized address generation units since address
generation involves a common operation pattern.

[84, 43] advocate the separation of execution and memory address generation
due to the overhead of address generation in CGRA. [84] proposes a decoupled
access-execute CGRA with complex on-chip memory hierarchy and a stream-based
programming interface. In decoupled access-execute CGRAmodel, memory address
generation is decoupled from the execution of main computation. [43] propose a
decoupled access-execute CGRA with software and hardware support for conflict-
free memory access.

1.4.3.2 Nested Loop Mapping.

The application mapping approaches presented in the previous subsections consider
a single innermost loop. In recent literature, several works explore the mapping of
loop-nests beyond the innermost level.

There are two main motivations for going beyond the innermost loop level. First,
nested loops offer more parallelism than what is available in a single innermost loop
level. Therefore going beyond the innermost loop level could improve the available
instruction-level parallelism. Secondly, the host processor needs to invoke the CGRA
multiple times to support imperfect nested loops when only the innermost loop body
is mapped to the CGRA. Multiple invocations lead to overheads, including pipeline
filling/draining and the initialization of loop variables and pipeline parameters on
the CGRA.

Mapping Approaches

We categorise existing works for nested loop mapping based on their approach.

28 Zhaoying Li, Dhananjaya Wĳerathne, and Tulika Mitra

Polyhedral Model Based: The polyhedral model is a robust framework that is
widely used as a loop transformation technique. Polyhedral based transformations
can be applied to nested loops where the loop bounds and array references are affine
functions of loop iterators and program parameters. [85] use the polyhedral model
to map the innermost two loops of multi-level loop nests. They use the polyhedral
model to transform the two-dimensional nested loops to a new iteration domain with
a parallelogram shape. Then they tile the parallelogram intomultiple tiles where each
tile consists of numerous iterations in the original program. Operators in each tile are
mapped to CGRA using a place and route algorithm. The objective of the problem
formulation is to reduce the total execution time by determining tile parameters.
They adopt genetic algorithm to solve the problem.

Loop Flattening Based Loop flattening can convert imperfect loop nests into
a single nested loop and can be executed in a single invocation. However, loop
flattening comes with the overhead of increased code size. [86] argue that overhead
from increased code size is lower than the overheads from multiple invocations. To
limit the negative impact of loop flattening, they combine loop fission with flattening
and introduce few specialized operations to CGRA PEs called nested iterators,
extended accumulator, and periodic store.

Systolic Mapping Based HiMap [87, 88] proposes a hierarchical mapping ap-
proach to map regular multi-dimensional kernels on CGRAs. They use systolic
mapping [89] as an intermediate abstraction layer to guide the hierarchical map-
ping. Each iteration in the multi-dimensional iteration space is mapped to a virtual
PE cluster on CGRA based on a space-time mapping matrix derived from systolic
mapping algorithm. Then operations in each iteration are mapped to physical CGRA
PEs. They only generate detailed mapping for the few unique iterations with unique
computation and routing patterns. The mappings of the unique iterations are repli-
cated to obtain the final valid mapping. Therefore, HiMap is fast and scalable for
mapping regular multi-dimensional kernels.

Nested Loop Mapping Under Limited Configuration Memory

[90] proposes a method to map two of the innermost levels of loop-nests using
less configuration memory compared to [86]. In this context, configuration memory
size constraint presents a significant limitation. To solve this configuration memory
capacity constraint, recent works [91, 92] propose architectural improvements to use
the configurationmemory as a cache that stores themost recently accessed loop-nests
at runtime. The dynamic caching leads to performance improvement because more
application segments can be accelerated, and the data transfer between the host and
the CGRA is minimized. It is possible to naively employ caching within a loop-nest
to expand the mappable loop-nests beyond the innermost loops. Still, the frequent
context switching between outer and inner loops may incur significant overhead.
DNestMap [40], a partitioning and mapping tool for CGRAs, can judiciously extract

1 Coarse Grained Reconfigurable Array (CGRA) 29

the most beneficial code segments of multiple deeply-nested loops and effectively
cache them together statically in the configuration memory through spatio-temporal
partitioning.

1.4.3.3 Application-level Mapping

An application usually has several kernels, which can be a sequential code, a single
loop, or multiple loops, or any combination of them. CGRA can reconfigure the
functionality of PE and the routing of on-chip network to accelerate any kernel.
Application-Specific Integrated Circuits (ASICs) always target specific kernels and
lose the flexibility to process other kernels. Field-Programmable Gate Array (FPGA)
can be reconfigured to accelerate any kernel. Due to the time cost of reconfiguration,
however, FPGA cannot change the configuration frequently to execute different
kernels. When mapping an application, FPGA usually needs to map all the target
kernels spatially, which is limited by the area and cannot do a spatio-temporal
mapping. On the contrary, CGRA can re-configure the PE and on-chip network per
cycle, thus leading to a spatio-temporal mapping.

Partitioning between CPU and CGRA

Anapplication can havemultiple kernels. Somekernels can significantly benefit from
CGRA because of adequate instruction-level parallelism, while other kernels may
not. With limited on-chip memory, offloading all the kernels to a tiny CGRA might
be not a good choice as it might need to use main memory to store intermediate data.
[93] explores how to execute the whole application onto CGRA and host processor.
This work first profiles the execution time and memory requirement of each Kernel.
Then it uses Integer Linear Programming (ILP) to select which kernel to execute
on CGRA and which kernel to execute on host processor. Through this method, it
can maximize the utilization of CGRA and reduce the data transfer between host
processor and CGRA. CGRA can be reconfigured to execute the selected kernels.
However, this work only focuses on a small 4 × 4 CGRA and did not explore how to
run multiple kernels concurrently on CGRA.

Synchronous DataFlow (SDF)

Synchronous DataFlow (SDF) is a suitable representation for application-level
mapping on CGRAs. The SDF has several actors, and data is encapsulated in an
object called a token. Each actor either consumes data tokens or produces tokens
or both in each invocation. An actor in an SDF can be a sequential code, a single
loop, or multiple loops, or any combination of them. Fig. 1.15 shows a SDF example
which has three actors: A, B, and C. Each invocation of A produces 20 tokens.

30 Zhaoying Li, Dhananjaya Wĳerathne, and Tulika Mitra

Fig. 1.15: SDF example

Each invocation of B consumer 10 tokens from A and produces 20 tokens. Thus
the SDF needs a schedule which can balance the execution of actors. �(��2)2 and
��2�4 are some of the many possible bounded-buffer schedules for our example,
where �(��2)2 indicates the execution order ������� and ��2�4 represents
�������. These schedules trades-off between buffer requirement and throughput.

(a) Spatial mapping (b) Spatio-tempoal mapping

Fig. 1.16: Comparison between a Spatial and Spatio-Temporal mapping.

Fig. 1.16 shows the difference between spatial and spatio- temporal mapping.
In FPGA, these actors are placed spatially and scheduled to respect to the data
dependency among the actors. Each actor occupy a region throughout. However,
this method cannot utilize the advantage the spatio-temporal mapping for CGRA.
Specially, the SDF needs a schedule to orchestrate the actors to satisfy the data

1 Coarse Grained Reconfigurable Array (CGRA) 31

dependencies. It is hard to achieve balanced execution of the actors under the SDF
schedule constraints with spatial-onlymapping. On the other side, the spatio-tempoal
mapping of the actors provides a 3D space for the schedule that has more flexibility
to map these actors.

ChordMap [94] explores the mapping of the SDF onto CGRA for high through-
put, spatio-temporal mapping. Given a limited scratchpad memory for the buffers,
ChordMap uses a divide-and-conquer approach to partition the SDF and CGRA to
reduce the complextity. ChordMap maps each sub-SDF onto corresponding sub-
CGRA and uses an iterative approach to improve the overall mapping. ChordMap
can exploit the instruction level parallelism inside actor, the parallelism among actors
and their instances, and the pipeline parallelism among sub-SDFs.

1.4.3.4 Handling Loops with Control Flow

The statically scheduledCGRAs rely on predication to handle the loopswith complex
control flow [95]. Predication effectively translates the control flow instructions with
dataflow instructions. The compiler maps both paths of each conditional branch onto
the CGRA, but the instructions from the taken path are permitted to execute at run
time. This leads to resource underutilization due to static allocation of duplicate
resources which are unused at runtime. A recent work 4D-CGRA [96] proposes a
new execution paradigm to handle control divergence at low overhead. 4D-CGRA
architecture follows a semi-triggered execution model, a hybrid between sequential
execution and triggered execution to accelerate loops with complex control flows.
4D-CGRA compiler places multiple shards of instructions (a portion of a basic
block) from mutually exclusive execution paths on a PE and triggers a specific shard
at runtime.

1.4.3.5 Scalable CGRA Mapping.

Most CGRA mapping approaches are not scalable, i.e., they fail to generate high-
quality mappings within an acceptable compilation time for larger CGRAs and
complex application kernels. Operation placement and routing become increasingly
difficult in larger CGRAs due to limited routing resources and complicated data
dependencies in bigger kernels. Therefore, most CGRA mappers are only evaluated
on small benchmark kernels and small CGRA sizes. Table 1.2 shows the DFG size,
CGRA size, and compilation time of prominent CGRA mappers. SPR [51] is the
most scalable compiler evaluated on benchmark kernels with an average of 263
nodes and 16x16 CGRA.

Panorama is a fast and scalablemapper that generates qualitymapping for complex
dataflow graphs onto larger CGRA using a divide-and-conquer approach [97]. It is
a portable solution that can be combined with existing low-level CGRA mappers to
achieve enhanced performance in a shorter compilation time. Panorama implements

32 Zhaoying Li, Dhananjaya Wĳerathne, and Tulika Mitra

Table 1.2: Summary of CGRA mappers.

DFG Nodes CGRA Size Compilation Time

CGRA-ME [49] 12 4x4 NA
SPKM [70] 16 4x4 ∼1s
G-Minor [69] 35 4x4, 16x16 0.2s, 7s
EPIMAP [68] 35 4x4, 16x16 54s, 23min
DRESC [101] 56 4x4 ∼15min
EMS [75] 4∼142 4x4 ∼37min
SPR [51] 263 16x16 NA

a high-level mapping step that finds clusters of nodes in the dataflow graph and
performs cluster level mapping to place closely related clusters on nearby CGRA PE
clusters. The higher-level mapping guides the lower-level mapping, reducing overall
complexity. HiMap is another fast and scalable mapping technique, although it is
only specialized for mapping regular highly parallel kernels, as mentioned in the
nested loop mapping section [87, 88]. Similar approaches of exploring multi-level
parallelism has been studied in the context of FPGAs [98, 99, 100].

1.5 Conclusions

Coarse-Grained Reconfigurable Array (CGRA) has emerged as a popular, general-
purpose, spatial accelerator that can support high-performance, energy-efficiency,
and flexibility across multiple application domains. In this article, we presented an
overview of the architectural and compilation innovations over the last two decades
to better realize the potential of the CGRAs. There remain multiple challenges and
opportunities in this space, including but not limited to, scalability for more complex
applications, memorymanagement, runtime power management, and specializations
for important and emerging application domains.

1.6 Acknowledgement

This work is partially supported by the National Research Foundation, Singapore
under its Competitive Research Programme Award NRF-CRP23-2019-0003.

References

1. J. L.Hennessy andD.A. Patterson,Computer architecture: a quantitative approach. Elsevier,
2011.

2. R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B. C. Lee, S. Richardson,
C. Kozyrakis, and M. Horowitz, “Understanding sources of inefficiency in general-purpose

1 Coarse Grained Reconfigurable Array (CGRA) 33

chips,” in Proceedings of the 37th annual international symposium on Computer architecture,
2010, pp. 37–47.

3. W. J. Dally, Y. Turakhia, and S. Han, “Domain-specific hardware accelerators,” Communica-
tions of the ACM, vol. 63, no. 7, pp. 48–57, 2020.

4. T. Mitra, “Heterogeneous multi-core architectures,” Information and Media Technologies,
vol. 10, no. 3, pp. 383–394, 2015.

5. B. Kågström, P. Ling, and C. Van Loan, “Gemm-based level 3 blas: high-performance model
implementations and performance evaluation benchmark,” ACM Transactions on Mathemat-
ical Software (TOMS), vol. 24, no. 3, pp. 268–302, 1998.

6. G. E. Moore et al., “Cramming more components onto integrated circuits,” 1965.
7. R. H. Dennard, F. H. Gaensslen, H.-N. Yu, V. L. Rideout, E. Bassous, and A. R. LeBlanc,

“Design of ion-implanted mosfet’s with very small physical dimensions,” IEEE Journal of
Solid-State Circuits, vol. 9, no. 5, pp. 256–268, 1974.

8. D. A. Patterson, “Future of computer architecture,” in Berkeley EECS Annual Research
Symposium (BEARS), College of Engineering, UC Berkeley, US, 2006.

9. G. M. Amdahl, “Validity of the single processor approach to achieving large scale computing
capabilities,” in Proceedings of the April 18-20, 1967, spring joint computer conference,
1967, pp. 483–485.

10. N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S. Bhatia,
N. Boden, A. Borchers et al., “In-datacenter performance analysis of a tensor processing
unit,” in Proceedings of the 44th annual international symposium on computer architecture,
2017, pp. 1–12.

11. J. Ghorpade, J. Parande, M. Kulkarni, and A. Bawaskar, “Gpgpu processing in cuda archi-
tecture,” arXiv preprint arXiv:1202.4347, 2012.

12. M. Rashid, M. Imran, A. R. Jafri, and T. F. Al-Somani, “Flexible architectures for crypto-
graphic algorithms—a systematic literature review,” Journal of Circuits, Systems and Com-
puters, vol. 28, no. 03, p. 1930003, 2019.

13. Y. S. Shao, B. Reagen, G.-Y.Wei, and D. Brooks, “The aladdin approach to accelerator design
and modeling,” IEEE Micro, vol. 35, no. 3, pp. 58–70, 2015.

14. J.-A. Carballo, W.-T. J. Chan, P. A. Gargini, A. B. Kahng, and S. Nath, “Itrs 2.0: Toward
a re-framing of the semiconductor technology roadmap,” in 2014 IEEE 32nd International
Conference on Computer Design (ICCD). IEEE, 2014, pp. 139–146.

15. K. Compton and S. Hauck, “Reconfigurable computing: a survey of systems and software,”
ACM Computing Surveys (csuR), vol. 34, no. 2, pp. 171–210, 2002.

16. I. Kuon, R. Tessier, and J. Rose, FPGA architecture: Survey and challenges. Now Publishers
Inc, 2008.

17. I. Kuon and J. Rose, “Measuring the gap between fpgas and asics,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 26, no. 2, pp. 203–215, 2007.

18. K. Choi, “Coarse-grained reconfigurable array: Architecture and application mapping,” IPSJ
Transactions on System LSI Design Methodology, vol. 4, pp. 31–46, 2011.

19. H. Singh, M.-H. Lee, G. Lu, F. J. Kurdahi, N. Bagherzadeh, and E. M. Chaves Filho, “Mor-
phosys: an integrated reconfigurable system for data-parallel and computation-intensive ap-
plications,” IEEE transactions on computers, vol. 49, no. 5, pp. 465–481, 2000.

20. B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins, “ADRES: An architecture
with tightly coupled VLIW processor and coarse-grained reconfigurable matrix,” in Proceed-
ings of the 13th International Conference on Field Programmable Logic and Application, ser.
FPL’03. Springer, 2003, pp. 61–70.

21. V. Baumgarte, G. Ehlers, F. May, A. Nückel, M. Vorbach, and M. Weinhardt, “Pact xpp—a
self-reconfigurable data processing architecture,” the Journal of Supercomputing, vol. 26,
no. 2, pp. 167–184, 2003.

22. “Darpa software defined hardware.” [Online]. Available:
https://www.darpa.mil/program/software-defined-hardware

34 Zhaoying Li, Dhananjaya Wĳerathne, and Tulika Mitra

23. M. Gao and C. Kozyrakis, “Hrl: Efficient and flexible reconfigurable logic for near-data
processing,” in 2016 IEEE International Symposium on High Performance Computer Archi-
tecture (HPCA). Ieee, 2016, pp. 126–137.

24. R. Prabhakar, Y. Zhang, D. Koeplinger, M. Feldman, T. Zhao, S. Hadjis, A. Pedram,
C. Kozyrakis, and K. Olukotun, “Plasticine: A reconfigurable architecture for parallel pat-
terns,” in 2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture
(ISCA). IEEE, 2017, pp. 389–402.

25. M. Karunaratne, A. K. Mohite, T. Mitra, and L.-S. Peh, “Hycube: A cgra with reconfigurable
single-cycle multi-hop interconnect,” in Design Automation Conference (DAC), 2017 54th
ACM/EDAC/IEEE. IEEE, 2017, pp. 1–6.

26. C. Nicol, “A coarse grain reconfigurable array (cgra) for statically scheduled data flow com-
puting,” Wave Computing White Paper, 2017.

27. M. Emani, V. Vishwanath, C. Adams, M. E. Papka, R. Stevens, L. Florescu, S. Jairath, W. Liu,
T. Nama, and A. Sujeeth, “Accelerating scientific applications with sambanova reconfigurable
dataflow architecture,” Computing in Science & Engineering, vol. 23, no. 2, pp. 114–119,
2021.

28. D. Suh, K. Kwon, S. Kim, S. Ryu, and J. Kim, “Design space exploration and implementa-
tion of a high performance and low area coarse grained reconfigurable processor,” in 2012
international conference on field-programmable technology. IEEE, 2012, pp. 67–70.

29. T. Fujii, T. Toi, T. Tanaka, K. Togawa, T. Kitaoka, K. Nishino, N. Nakamura, H. Nakahara,
and M. Motomura, “New generation dynamically reconfigurable processor technology for
accelerating embedded ai applications,” in 2018 IEEE Symposium on VLSI Circuits. IEEE,
2018, pp. 41–42.

30. K. E. Fleming, K. D. Glossop, S. C. Steely Jr, J. Tang, A. G. Gara et al., “Processors, methods,
and systems with a configurable spatial accelerator,” Feb. 11 2020, uS Patent 10,558,575.

31. Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, “Eyeriss v2: A flexible accelerator for emerging
deep neural networks on mobile devices,” IEEE Journal on Emerging and Selected Topics in
Circuits and Systems, vol. 9, no. 2, pp. 292–308, 2019.

32. W. Lu, G. Yan, J. Li, S. Gong, Y. Han, and X. Li, “Flexflow: A flexible dataflow accelerator
architecture for convolutional neural networks,” in 2017 IEEE International Symposium on
High Performance Computer Architecture (HPCA). IEEE, 2017, pp. 553–564.

33. F. Tu, S. Yin, P. Ouyang, S. Tang, L. Liu, and S. Wei, “Deep convolutional neural network
architecture with reconfigurable computation patterns,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 25, no. 8, pp. 2220–2233, 2017.

34. J. Kwong and A. P. Chandrakasan, “An energy-efficient biomedical signal processing plat-
form,” IEEE Journal of Solid-State Circuits, vol. 46, no. 7, pp. 1742–1753, 2011.

35. J. Yoo, L. Yan, D. El-Damak, M. A. B. Altaf, A. H. Shoeb, and A. P. Chandrakasan, “An 8-
channel scalable eeg acquisition soc with patient-specific seizure classification and recording
processor,” IEEE journal of solid-state circuits, vol. 48, no. 1, pp. 214–228, 2012.

36. L. Liu, J. Zhu, Z. Li, Y. Lu, Y. Deng, J. Han, S. Yin, and S. Wei, “A survey of coarse-
grained reconfigurable architecture and design: Taxonomy, challenges, and applications,”
ACM Computing Surveys (CSUR), vol. 52, no. 6, pp. 1–39, 2019.

37. A. Podobas, K. Sano, and S. Matsuoka, “A survey on coarse-grained reconfigurable architec-
tures from a performance perspective,” IEEE Access, vol. 8, pp. 146 719–146 743, 2020.

38. S. Venkataramani, J. Choi, V. Srinivasan, W. Wang, J. Zhang, M. Schaal, M. J. Serrano,
K. Ishizaki, H. Inoue, E. Ogawa et al., “Deeptools: Compiler and execution runtime extensions
for rapid ai accelerator,” IEEE Micro, vol. 39, no. 5, pp. 102–111, 2019.

39. T. M. L.-S. P. Thilini Kaushalya Bandara, Dhananjaya Wĳerathne, “Revamp: A systematic
framework for heterogeneous cgra realization,” in 27th ACM International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems (ASPLOS). ACM,
2022.

40. M. Karunaratne, C. Tan, A. Kulkarni, T. Mitra, and L.-S. Peh, “Dnestmap: mapping deeply-
nested loops on ultra-low power cgras,” in 2018 55th ACM/ESDA/IEEE Design Automation
Conference (DAC). IEEE, 2018, pp. 1–6.

1 Coarse Grained Reconfigurable Array (CGRA) 35

41. B. Wang, M. Karunarathne, A. Kulkarni, T. Mitra, and L.-S. Peh, “Hycube: A 0.9 v 26.4
mops/mw, 290 pj/op, power efficient accelerator for iot applications,” in 2019 IEEE Asian
Solid-State Circuits Conference (A-SSCC). IEEE, 2019, pp. 133–136.

42. H. Singh, M.-H. Lee, G. Lu, F. J. Kurdahi, N. Bagherzadeh, and E. M. Chaves Filho, “Mor-
phoSys: an integrated reconfigurable system for data-parallel and computation-intensive ap-
plications,” IEEE Transactions on Computers, vol. 49, no. 5, pp. 465–481, 2000.

43. D. Wĳerathne, Z. Li, M. Karunarathne, A. Pathania, and T. Mitra, “Cascade: High through-
put data streaming via decoupled access-execute cgra,” ACM Transactions on Embedded
Computing Systems (TECS), vol. 18, no. 5s, pp. 1–26, 2019.

44. B. R. Rau, “Iterative modulo scheduling: An algorithm for software pipelining loops,” in
Proceedings of the 27th annual international symposium on Microarchitecture. ACM,
1994, pp. 63–74.

45. B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins, “Exploiting loop-level
parallelism on coarse-grained reconfigurable architectures using modulo scheduling,” in Pro-
ceedings of the 2003 Conference on Design, Automation and Test in Europe, ser. DATE’03.
IEEE, 2003, pp. 296–301.

46. B. De Sutter, P. Coene, T. Vander Aa, and B. Mei, “Placement-and-routing-based regis-
ter allocation for coarse-grained reconfigurable arrays,” in Proceedings of the 2008 ACM
SIGPLAN-SIGBED Conference on Languages, Compilers and Tools for Embedded System,
ser. LCTES’08. ACM, 2008, pp. 151–160.

47. C. Eisenbeis, S. Lelait, and B. Marmol, “The meeting graph: a new model for loop cyclic
register allocation,” in Proceedings of the 1995 International Federation for Information
Processing Working Group, 1995, pp. 264–267.

48. A. Hatanaka and N. Bagherzadeh, “A modulo scheduling algorithm for a coarse-grain recon-
figurable array template,” in Proceedings of the 21th International Parallel and Distributed
Processing Symposium, ser. IPDPS’07. IEEE, 2007, pp. 1–8.

49. S. A. Chin, N. Sakamoto, A. Rui, J. Zhao, J. H. Kim, Y. Hara-Azumi, and J. Anderson, “Cgra-
me:Aunified framework for cgramodelling and exploration,” in 2017 IEEE28th International
Conference on Application-specific Systems, Architectures and Processors (ASAP). IEEE,
2017, pp. 184–189.

50. H. Park,K. Fan, S.A.Mahlke, T.Oh,H.Kim, andH.-s.Kim, “Edge-centricmodulo scheduling
for coarse-grained reconfigurable architectures,” in Proceedings of the 17th International
Conference on Parallel Architectures and Compilation Techniques, ser. PACT’08. ACM,
2008, pp. 166–176.

51. S. Friedman, A. Carroll, B. Van Essen, B. Ylvisaker, C. Ebeling, and S. Hauck, “SPR:
an architecture-adaptive CGRA mapping tool,” in Proceedings of the 17th ACM/SIGDA
International Symposium on Field Programmable Gate Arrays, ser. FPGA’09. ACM, 2009,
pp. 191–200.

52. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,”
science, vol. 220, no. 4598, pp. 671–680, 1983.

53. V. Betz and J. Rose, “Vpr: A new packing, placement and routing tool for fpga research,” in
International Workshop on Field Programmable Logic and Applications. Springer, 1997,
pp. 213–222.

54. L. McMurchie and C. Ebeling, “Pathfinder: a negotiation-based performance-driven router
for fpgas,” in Reconfigurable Computing. Elsevier, 2008, pp. 365–381.

55. S. Li and C. Ebeling, “Quickroute: a fast routing algorithm for pipelined architectures,” in
Field-Programmable Technology, 2004. Proceedings. 2004 IEEE International Conference
on. IEEE, 2004, pp. 73–80.

56. N. B. S. G. N. Dutt and A. Nicolau, “Analysis of the performance of coarse-grain reconfig-
urable architectures with different processing element configurations.”

57. G. Lee, K. Choi, and N. D. Dutt, “Mapping multi-domain applications onto coarse-grained
reconfigurable architectures,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 30, no. 5, pp. 637–650, 2011.

36 Zhaoying Li, Dhananjaya Wĳerathne, and Tulika Mitra

58. D. Liu, S. Yin, G. Luo, J. Shang, L. Liu, S. Wei, Y. Feng, and S. Zhou, “Data-flow graph
mapping optimization for cgra with deep reinforcement learning,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 38, no. 12, pp. 2271–2283,
2018.

59. S. Yin, D. Liu, L. Sun, L. Liu, and S. Wei, “Dfgnet: Mapping dataflow graph onto cgra by
a deep learning approach,” in 2017 IEEE International Symposium on Circuits and Systems
(ISCAS). IEEE, 2017, pp. 1–4.

60. M. Hamzeh, A. Shrivastava, and S. Vrudhula, “Regimap: Register-aware application mapping
on coarse-grained reconfigurable architectures (cgras),” in Proceedings of the 50th Annual
Design Automation Conference, 2013, pp. 1–10.

61. S. Dave, M. Balasubramanian, and A. Shrivastava, “Ramp: Resource-aware mapping for
cgras,” in 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC). IEEE, 2018,
pp. 1–6.

62. Z. Li, D. Wu, D. Wĳerathne, and T. Mitra, “Lisa: Graph neural network based portable map-
ping on spatial accelerators,” in 2022 IEEE International Symposium on High-Performance
Computer Architecture (HPCA). IEEE, 2022.

63. M.Ahn, J.W.Yoon,Y. Paek,Y.Kim,M.Kiemb, andK.Choi, “A spatialmapping algorithm for
heterogeneous coarse-grained reconfigurable architectures,” in Proceedings of the conference
on Design, automation and test in Europe: Proceedings. European Design and Automation
Association, 2006, pp. 363–368.

64. S.A.Chin and J.H.Anderson, “An architecture-agnostic integer linear programming approach
to cgra mapping,” in 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC).
IEEE, 2018, pp. 1–6.

65. S. Chaudhuri and A. Hetzel, “Sat-based compilation to a non-von neumann processor,” in
Proceedings of the 36th International Conference on Computer-Aided Design. IEEE Press,
2017, pp. 675–682.

66. G. F. Burns, M. Jacobs, M. Lindwer, and B. Vandewiele, “Exploiting parallelism, while
managing complexity using silicon hive programming tools,” White paper, vol. 42, p. 43,
2004.

67. M. Alle, K. Varadarajan, R. C. Ramesh, J. Nimmy, A. Fell, A. Rao, S. Nandy, and R. Narayan,
“Synthesis of application accelerators on runtime reconfigurable hardware,” in 2008 Inter-
national Conference on Application-Specific Systems, Architectures and Processors. IEEE,
2008, pp. 13–18.

68. M. Hamzeh, A. Shrivastava, and S. Vrudhula, “Epimap: Using epimorphism to map applica-
tions on cgras,” in Proceedings of the 49th Annual Design Automation Conference, 2012, pp.
1284–1291.

69. L. Chen and T. Mitra, “Graph minor approach for application mapping on cgras,” ACM
Transactions on Reconfigurable Technology and Systems (TRETS), vol. 7, no. 3, pp. 1–25,
2014.

70. J. W. Yoon, A. Shrivastava, S. Park, M. Ahn, and Y. Paek, “A graph drawing based spatial
mapping algorithm for coarse-grained reconfigurable architectures,” IEEE transactions on
very large scale integration (VLSI) systems, vol. 17, no. 11, pp. 1565–1578, 2009.

71. M. A. A. Tuhin and T. S. Norvell, “Compiling parallel applications to coarse-grained reconfig-
urable architectures,” in 2008CanadianConference on Electrical andComputer Engineering.
IEEE, 2008, pp. 001 723–001 728.

72. J. A. Brenner, S. P. Fekete, and J. C. Van Der Veen, “A minimization version of a directed
subgraph homeomorphism problem,”MathematicalMethods of Operations Research, vol. 69,
no. 2, pp. 281–296, 2009.

73. J. Zalamea, J. Llosa, E. Ayguadé, and M. Valero, “Mirs: Modulo scheduling with integrated
register spilling,” in International Workshop on Languages and Compilers for Parallel Com-
puting. Springer, 2001, pp. 239–253.

74. S. Fortune, J. Hopcroft, and J. Wyllie, “The directed subgraph homeomorphism problem,”
Theoretical Computer Science, vol. 10, no. 2, pp. 111–121, 1980.

1 Coarse Grained Reconfigurable Array (CGRA) 37

75. H. Park,K. Fan, S.A.Mahlke, T.Oh,H.Kim, andH.-s.Kim, “Edge-centricmodulo scheduling
for coarse-grained reconfigurable architectures,” in Proceedings of the 17th international
conference on Parallel architectures and compilation techniques, 2008, pp. 166–176.

76. N. Robertson and P. D. Seymour, “Graph minors. ix. disjoint crossed paths,” Journal of
Combinatorial Theory, Series B, vol. 49, no. 1, pp. 40–77, 1990.

77. G. Di Battista, M. Patrignani, and F. Vargiu, “A split&push approach to 3d orthogonal
drawing,” in International Symposium on Graph Drawing. Springer, 1998, pp. 87–101.

78. Y. Kim, J. Lee, A. Shrivastava, J. Yoon, and Y. Paek, “Memory-aware application mapping
on coarse-grained reconfigurable arrays,” in International conference on High-Performance
Embedded Architectures and Compilers. Springer, 2010, pp. 171–185.

79. Y. Kim, J. Lee, A. Shrivastava, and Y. Paek, “Operation and data mapping for cgras with
multi-bank memory,” ACM Sigplan Notices, vol. 45, no. 4, pp. 17–26, 2010.

80. S. Yin, X. Yao, T. Lu, D. Liu, J. Gu, L. Liu, and S. Wei, “Conflict-free loop mapping for
coarse-grained reconfigurable architecture with multi-bank memory,” IEEE Transactions on
Parallel and Distributed Systems, vol. 28, no. 9, pp. 2471–2485, 2017.

81. S. Yin, X. Yao, T. Lu, L. Liu, and S. Wei, “Joint loop mapping and data placement for
coarse-grained reconfigurable architecture with multi-bank memory,” in Proceedings of the
35th International Conference on Computer-Aided Design, 2016, pp. 1–8.

82. Y. Wang, P. Li, P. Zhang, C. Zhang, and J. Cong, “Memory partitioning for multidimen-
sional arrays in high-level synthesis,” in Proceedings of the 50th Annual Design Automation
Conference, 2013, pp. 1–8.

83. S. Yin, X. Yao, D. Liu, L. Liu, and S. Wei, “Memory-aware loop mapping on coarse-grained
reconfigurable architectures,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 24, no. 5, pp. 1895–1908, 2015.

84. T. Nowatzki, V. Gangadhar, N. Ardalani, and K. Sankaralingam, “Stream-dataflow accelera-
tion,” in 2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture
(ISCA). IEEE, 2017, pp. 416–429.

85. D. Liu, S. Yin, L. Liu, and S. Wei, “Polyhedral model based mapping optimization of loop
nests for cgras,” in Proceedings of the 50th Annual Design Automation Conference. ACM,
2013, p. 19.

86. J. Lee, S. Seo, H. Lee, and H. U. Sim, “Flattening-based mapping of imperfect loop nests for
cgras,” in Proceedings of the 2014 International Conference on Hardware/Software Codesign
and System Synthesis. ACM, 2014, p. 9.

87. D. Wĳerathne, Z. Li, A. Pathania, T. Mitra, and L. Thiele, “Himap: Fast and scalable high-
quality mapping on cgra via hierarchical abstraction,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 2021.

88. ——, “Himap: Fast and scalable high-quality mapping on cgra via hierarchical abstraction,”
pp. 1192–1197, 2021.

89. P. Lee and Z. M. Kedem, “Mapping Nested Loop Algorithms into Multidimensional Systolic
Arrays,” IEEE transactions on Parallel and Distributed Systems, vol. 1, no. 1, pp. 64–76,
1990.

90. S. Yin, X. Lin, L. Liu, and S. Wei, “Exploiting parallelism of imperfect nested loops on
coarse-grained reconfigurable architectures,” IEEE Transactions on Parallel and Distributed
Systems, vol. 27, no. 11, pp. 3199–3213, 2016.

91. P. Cao, B. Liu, J. Yang, J. Yang, M. Zhang, and L. Shi, “Context management scheme
optimization of coarse-grained reconfigurable architecture formultimedia applications,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 17, 2017.

92. S. M. A. H. Jafri, M. A. Tajammul, A. Hemani, K. Paul, J. Plosila, P. Ellervee, and H. Tenuh-
nen, “Polymorphic configuration architecture for cgras,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 24, no. 1, pp. 403–407, 2015.

93. H. Lee, D. Nguyen, and J. Lee, “Optimizing stream program performance on cgra-based
systems,” in Proceedings of the 52nd Annual Design Automation Conference, 2015, pp. 1–6.

38 Zhaoying Li, Dhananjaya Wĳerathne, and Tulika Mitra

94. Z. Li, D. Wĳerathne, X. Chen, A. Pathania, and T. Mitra, “Chordmap: Automated map-
ping of streaming applications onto cgra,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 2021.

95. K. Han, J. Ahn, and K. Choi, “Power-efficient predication techniques for acceleration of
control flow execution on cgra,” ACM Transactions on Architecture and Code Optimization
(TACO), vol. 10, no. 2, pp. 1–25, 2013.

96. M. Karunaratne, D. Wĳerathne, T. Mitra, and L.-S. Peh, “4d-cgra: Introducing branch di-
mension to spatio-temporal application mapping on cgras,” in 2019 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD). IEEE, 2019, pp. 1–8.

97. D. Wĳerathne, Z. Li, T. K. Bandara, and T. Mitra, “Panorama: Divide-and-conquer approach
for mapping complex loop kernels on cgra,” in 2022 59th ACM/EDAC/IEEE Design Automa-
tion Conference (DAC). IEEE, 2022, pp. 1–6.

98. G. Zhong, V. Venkataramani, Y. Liang, T. Mitra, and S. Niar, “Design space exploration
of multiple loops on fpgas using high level synthesis,” in 2014 IEEE 32nd international
conference on computer design (ICCD). IEEE, 2014, pp. 456–463.

99. G. Zhong, A. Prakash, Y. Liang, T. Mitra, and S. Niar, “Lin-analyzer: A high-level perfor-
mance analysis tool for fpga-based accelerators,” in 2016 53nd ACM/EDAC/IEEE Design
Automation Conference (DAC). IEEE, 2016, pp. 1–6.

100. G. Zhong, A. Prakash, S. Wang, Y. Liang, T. Mitra, and S. Niar, “Design space exploration
of fpga-based accelerators with multi-level parallelism,” in Design, Automation & Test in
Europe Conference & Exhibition (DATE), 2017. IEEE, 2017, pp. 1141–1146.

101. B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins, “DRESC: A retargetable
compiler for coarse-grained reconfigurable architectures,” in 2002 IEEE International Con-
ference on Field-Programmable Technology, 2002.(FPT). Proceedings. IEEE, 2002, pp.
166–173.

