
Evaluating Design Trade-offs in Customizable Processors
Unmesh D. Bordoloi1 Huynh Phung Huynh2 Samarjit Chakraborty3 Tulika Mitra2

1Verimag Labs, France
2Department of Computer Science, National University of Singapore

3Institute for Real-Time Computer Systems, TU Munich, Germany
unmesh.bordoloi@verimag.fr, {huynhph1, tulika}@comp.nus.edu.sg, samarjit@tum.de

ABSTRACT
The short time-to-market window for embedded systems de-
mands automation of design methodologies for customiz-
able processors. Recent research advances in this direction
have mostly focused on single criteria optimization, e.g.,
optimizing performance though custom instructions under
pre-defined area constraint. From the designer’s perspec-
tive, however, it would be more interesting if the conflicting
trade-offs among multiple objectives (e.g., performance ver-
sus area) are exposed enabling an informed decision making.
Unfortunately, identifying the optimal trade-off points turns
out to be computationally intractable. In this paper, we
present a polynomial-time approximation algorithm to sys-
tematically evaluate the design trade-offs. In particular, we
explore performance-area trade-offs in the context of multi-
tasking real-time embedded applications to be implemented
on a customizable processor.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]:
Real-time and embedded systems

General Terms
Algorithms, Design, Performance

Keywords
ASIP, Processor customization, Multi-objective design space
exploration, Pareto-optimal curve.

1. INTRODUCTION
Instruction-set extensible processors that consist of exist-

ing processor cores extended with application specific cus-
tom instructions are now very popular in the embedded sys-
tems domain. Typically, a custom instruction encapsulates
the computation of a frequently executed subgraph of the
program’s dataflow graph. Custom instructions are imple-
mented as hardwired datapath of the existing processor core
and this helps improve the performance of the application.
Some examples of commercial customizable processors in-
clude Lx, ARCTM core, Xtensa, Stretch S5 among others.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2009, July 26 - 31, 2009, San Francisco, California, USA.
Copyright 2009 ACM ACM 978-1-60558-497-3 -6/08/0006 ...$10.00.

The past decade has seen a flurry of research activity on
automated identification and selection of custom instruc-
tions for an application or an application domain. However,
most of these design efforts have focused on single-objective
optimization, for example, choosing an optimal set of cus-
tom instructions either in terms of performance or energy.
As the performance/energy improvement offered by custom
instructions come at the cost of silicon area, this optimiza-
tion is typically constrained by a pre-defined silicon area.
The designer, on other other hand, can benefit significantly
if the automation tools expose all the conflicting trade-offs
(e.g., performance versus area) instead of offering a point
solution. It is then up to the designer to choose an appro-
priate trade-off point. More formally, we are interested in
generating the Pareto-optimal curve in a multi-objective de-
sign space (e.g., performance and area) where (a) no point
is better than any other point on the curve with respect to
both objectives, and (b) no improvement can be made in
any objective without trading-off or worsening the other.

Unfortunately, it turns out that computing the Pareto-
optimal curve for our design problem is computationally
intractable. Therefore, state-of-the-art customization tool-
chains (such as Tensilica’s XPRES compiler [15]) adopt ad-
hoc methods that simply compute the best performing de-
sign choices at arbitrary silicon area constraints. In this
paper, we propose a systematic methodology to explore the
performance-area trade-offs in designing customizable pro-
cessors. We present a polynomial-time approximation algo-
rithm to compute this trade-off. Moreover, as the Pareto
curve may potentially contain exponential number of design
points, it is impossible to compute this entire set in polyno-
mial time. Hence, our polynomial-time approximation algo-
rithm, by default, has to approximate the (potentially ex-
ponential size) set of points on the Pareto curve with only
a polynomial number of points. In a typical design cycle of
customizable processors, the system designer inspects all the
points in the Pareto curve and then selects one, or at most
a few implementations. Hence, from a practical perspective,
we feel it is more meaningful if the designer is presented with
a reasonably few well-distinguishable trade-offs rather than
an exponentially large number of solutions, many of which
are very similar to each other. Our approximation algorithm
is therefore not only attractive in terms of time-complexity,
but also returns more meaningful solutions, in terms of the
size of the solution set (including the spread/distribution of
solutions in this set).

We explore this approximation solution to Pareto curve
generation in the context of multi-tasking real-time embed-

ded applications running on customizable processors. Given
a multi-tasking application to be implemented on a cus-
tomizable processor, there are a large number of implemen-
tation possibilities with different subsets of custom instruc-
tions leading to varying processor utilization versus area
trade-offs. We would like to identify all schedulable imple-
mentations that expose the different performance trade-offs.

Our contributions: Formally, for any schedulable imple-
mentation, let (U, A) denote the corresponding utilization
of the base processor and the hardware cost arising from
the use of custom instructions. We are then interested in
identifying all possible Pareto-optimal solutions {(U1, A1),
. . . , (Un, An)} that capture the different performance trade-
offs [7]. Each (Ui, Ai) in this set has the property that there
does not exist any schedulable implementation with a per-
formance vector (U, A) such that U ≤ Ui and A ≤ Ai, with
at least one of the inequalities being strict. Further, let S
be the set of performance vectors (i.e., (utilization, area) tu-
ples) corresponding to all schedulable implementations. Let
P be the set of performance vectors (U1, A1), . . . , (Un, An)
corresponding to all the Pareto-optimal solutions. Then for
any (U, A) ∈ S − P there exists a (Ui, Ai) ∈ P such that
Ui ≤ U and Ai ≤ A, with at least one of these inequal-
ities being strict (i.e., the set P contains all performance
trade-offs). The vectors (U, A) ∈ S − P are referred to as
dominated solutions, since they are dominated by one or
more Pareto-optimal solutions.

In this paper we present a polynomial-time approximation
scheme for computing the utilization-area Pareto curve. Our
proposed solution for computing this Pareto curve involves
two distinct stages. First, in the intra-task stage, each indi-
vidual task is analyzed. Given the library of possible custom
instructions for the task, all possible custom instruction con-
figurations are generated exposing the workload-area Pareto
curve. In the inter -task stage, we consider all the tasks in
the task-set and their workload-area configurations, to gen-
erate the processor utilization-area Pareto curve P for the
overall task set. Our framework for approximately comput-
ing the trade-offs extends to both of the above stages.

Related Work: Any custom instruction selection problem
starts with the identification of a large number of candidate
custom instructions from the program’s dataflow graph. [2,
5] have proposed different techniques for this problem. Given
such a library of valid custom instructions, various approaches
have been proposed to select custom instructions to optimize
either the performance or the hardware area. For example,
different methods that have been proposed include dynamic
programming [1], 0-1 Knapsack [6], greedy heuristic [4, 5],
and ILP [11] which maximize the performance under differ-
ent design constraints, e.g., hardware area. However, the
above lines of work were aimed at optimizing a single crite-
ria. In this work, we propose a framework for multi-objective
optimization to expose the performance versus hardware
area trade-offs. Moreover, the above approaches do not take
into account the real-time constraints. [9, 18] explore pro-
cessor customization in the context of real-time systems but
only perform single-objective (performance) optimization.

The algorithmic techniques presented in this paper have
been motivated by [13]. The result that for any Pareto curve
and any ε, there exists a polynomial-size ε-approximate Pareto
curve was shown in [13]. However, for many problems, ef-

Figure 1: Motivating Example.

ficiently (i.e., in polynomial time) computing such approxi-
mate Pareto curves might not be possible. Our main techni-
cal contribution in this paper is to show that such ε-approximate
Pareto curves can be efficiently computed in the domain of
custom instruction selection. An important consequence of
this result is a formal basis for custom instruction selec-
tion. It shows that in the quest for efficiency, there is no
need to resort to ad-hoc techniques – as currently adopted
in state-of-the-art customization toolchains – for identifying
best-performing custom instruction choices.

Here, it should be noted that in this paper we have taken
a classical approximation algorithms standpoint, where the
goal is to provide formal guarantees on the quality of the
results obtained. Our work differs from the existing large
body of work on multiobjective optimization [7] that relies
on heuristics and randomized search techniques such as evo-
lutionary algorithms.

2. PROBLEM STATEMENT
2.1 Task Model

We use a very general sporadic task model [3] in a preemp-
tive uniprocessor context. Thus, we are interested in the cus-
tom instruction selection for a task set τ = {T1, T2, . . . , Tm}
consisting of m hard real-time tasks, with the constraint that
the task set is schedulable. Any task Ti can get triggered
independently of other tasks in τ . Each task Ti generates a
sequence of jobs; each job is characterized by the three pa-
rameters – the minimum separation (Pi) which is the mini-
mum time interval that must elapse before the successive job
of the task Ti is triggered, the deadline (Di) by which each
job generated by Ti must complete since its release time,
and workload (Ei) or the worst case execution requirement
of any job generated by Ti.

Throughout this paper, we assume the underlying schedul-
ing policy to be the earliest deadline first (EDF). Assuming
that for all tasks Ti, Di ≥ Pi, the schedulability of the task
set τ can be given by the following condition.

Theorem 1. A set of sporadic tasks τ is schedulable un-
der EDF if and only if (U =

∑N
i=1

Ei
Pi

) ≤ 1 where U is the

processor utilization due to τ [3, 12].

2.2 Intra-Task Custom Instructions Selection
We now state the intra-task custom instruction selection

problem for a task Ti. For the task Ti, let there be ni custom

instruction candidates. Each of these ni custom instruc-
tions is associated with a certain hardware area. Choos-
ing the jth custom instruction will lower the workload of
the task Ti by δi,j . Equivalently, the new workload will be
Ei − δi,j . Hence, for each task Ti we have a set of choices
Si = {(δi,1, ai,1), . . . , (δi,ni , ai,ni)}, where ai,j is the hard-
ware cost associated with the jth custom instruction. Our
objective is to select a set of custom instructions that would
minimize the workload on the base processor, as well as use
the minimum amount of hardware area for custom instruc-
tions. In other words, our goal is to compute all workload-
area trade-offs in the form of a Pareto curve {(wi,1, ci,1), . . . ,
(wi,Ni , ci,Ni)}, where wi,j is the workload of task Ti accel-
erated with a particular set of custom instructions and ci,j

is the corresponding cost in terms of silicon area.
In Figure 1, we illustrate this problem for two differ-

ent tasks T1 and T2. The task characteristics for T1 are
{E1 = 10, P1 = 20}. T1 has two entries in its library of
custom instructions, and thus, n1 = 2. Following our nota-
tion, δ1,1 = 2 and δ1,2 = 3, and the corresponding hardware
areas are a1,1 = 30 and a1,2 = 60. The goal is to identify
the workload-area Pareto curve for the task T1. For exam-
ple, in this case the Pareto curve consists of four solutions
{(10, 0), (8, 30), (7, 60), (5, 90)}. Note that the solution with
zero area does not use any custom instruction. Therefore,
the application workload is not reduced and is the highest
amongst all the solutions. On the other hand, the solution
(5, 90) contains both the custom instructions and has the
smallest workload with the largest area. The task charac-
teristics for T2 and the custom instruction candidates may
be read in the same way as described above for T1.

2.3 Inter-Task Custom Instructions Selection
For each task Ti, let there be Ni hardware implementa-

tion choices {(wi,1, ci,1), . . . , (wi,Ni , ci,Ni)} in the workload-
area Pareto curve that is computed by the intra-task custom
instruction selection phase. Each of these Ni choices repre-
sent a custom instruction configuration for the task. A task
may be chosen to run in one these configurations where it
will incur certain a hardware cost ci,j and would lower the
execution time of the task on the processor from Ei to wi,j .

However, in a real-time embedded system there is not one
task but a set of tasks running on a processor. Thus, a de-
signer is interested not in the performance of a single task,
but rater the utilization of the processor by the entire task-
set. The goal in the inter-task custom instruction selection
phase is to identify one custom instruction configuration for
each task, which would minimize the overall processor uti-
lization and minimize the total hardware cost. Therefore,
similar to intra-task customization, we generate a Pareto
curve containing the Pareto-optimal set of utilization-area
vectors {(U1, A1), . . . , (Un, An)} with the trade-off between
processor utilization U and hardware area A.

In Figure 1, we showed the intra-task custom instruc-
tion selection for two different tasks. For T1 and T2 we
have 4 and 6 elements in the custom instruction configura-
tions respectively. For example, for the task T1, we have
{(w1,1 = 10, c1,1 = 0), (w1,2 = 8, c1,2 = 30), (w1,3 = 7, c1,3 =
60), (w1,4 = 5, c1,4 = 90)}. The goal is to identify the
utilization-area Pareto curve for the task set {T1, T2}. As
shown in Figure 1, in this case the Pareto curve consists
of six solutions {(1, 80), (19

20
, 90), . . . , (3

4
, 170)}. Without us-

ing any custom instructions, the task set {T1, T2} is not
schedulable with U = 5

4
> 1. But the use of custom in-

structions speed up task executions, thereby lowering the
utilization. This yields six schedulable solutions with con-
flicting utilization-area trade-offs.

3. EVALUATING DESIGN TRADE-OFFS
We shall now present our algorithms for efficiently com-

puting the Pareto curves in the intra-task and the inter-task
custom instruction selection phases. Note that computing
the exact Pareto curves in both these cases is computation-
ally intractable. First, such Pareto curves would typically
contain an exponential number of trade-off points (which ob-
viously cannot be computed in polynomial time). Second, it
may be shown using a reduction from the classical Knapsack
problem, that the problem of computing even one point on
the Pareto curve is NP-hard. Hence, our algorithms approx-
imate both – the number of points on the Pareto curve, as
well as the “coordinates” of these points on the curve.

3.1 Intra-Task Trade-offs
In what follows, we first present a pseudo-polynomial time

dynamic programming algorithm (called DP) to compute
the exact Pareto curve, which is then used to devise an ap-
proximation scheme. Let the maximum cost associated with
any custom instruction be M , i.e., M = max(j=1,2,...,ni)ai,j ,
where ni is the number of custom instruction candidates for
the task Ti and ai,j is the hardware cost associated with the
jth custom instruction. Let Ωk,j be the minimum workload
that might be achieved by considering only a subset of cus-
tom instructions of task Ti from {1, 2, . . . , k} when the cost
is exactly j. The algorithm DP first initializes Ω0,j = ∞
for j = {1, 2, . . . , niM} and Ωj,0 = Ei for j = {0, 1, . . . , ni}.
Note that niM is an upper bound on the total hardware
cost that might be incurred. After initialization, the DP
computes the values of Ωk,j (k = 1 to ni) by the recursion:

Ωk,j ← min{Ωk−1,j , Ωk−1,j−ai,k − δi,k} (1)

That is, given an area j, we explore all possible configura-
tions and choose the one that results in minimum workload
for custom instructions 1, . . . , k.

After running DP , we retain the undominated solutions
from amongst the solutions in the final iteration (k = ni) to
obtain the exact workload-area Pareto curve, {(wi,1, ci,1), . . . ,
(wi,Ni , ci,Ni)}, where Ni is the size of the Pareto curve. This
algorithm runs in pseudo-polynomial time O(n2

i M), and will
suffer from long running times. Hence, our goal is to approx-
imately compute this curve in polynomial time.

Our approximation scheme takes an error parameter ε as
input and returns an ε-approximate Pareto curve denoted as
ε-Pareto curve (or Pε). Given a Pareto curve P = {(x1, y1),
. . . , (xp, yp)}, an ε-approximate Pareto curve Pε is defined
as any set Pε = {(x′1, y′1), . . . , (x′q, y′q)} such that for any
(xi, yi) ∈ P, there exists a (x′j , y

′
j) ∈ Pε for which x′j ≤

(1 + ε)xi and y′j ≤ (1 + ε)yi. In other words, corresponding
to any point on the Pareto curve P, there exists a point on
Pε, each of whose coordinates are at most ε distance away
from the corresponding coordinates of the point on P.

Papadimitriou and Yannakakis [13] has shown that for any
multi-objective optimization problem and any ε, there exists
a polynomial-sized ε-approximate Pareto curve Pε. Further,
[13] showed that a necessary and sufficient condition for com-
puting such a Pε in polynomial time is the existence of a
polynomial-time algorithm for solving, what was referred to
as the GAP problem. In what follows, we state the version

Figure 2: Solving the GAP problem for the corner point

A will either return a dominating solution or declare that

there is no solution in the shaded area.

of the GAP problem that arises in our setting and show that
it can be solved in polynomial time. Finally, we outline our
scheme to compute the approximate Pareto curves using the
polynomial time GAP subroutine.

3.1.1 The GAP Problem
For a two-dimensional multiobjective optimization prob-

lem, the GAP problem can be stated as follows: Given a vec-
tor b = (b1, b2), either return a solution vector which domi-
nates b, or report that there is no solution better than b by at
least a factor of 1+ ε in both dimensions. In our setting, the
objective is to minimize the workload of a task Ti, W (S) =
Ei−

∑ni
j=1 xi,jδi,j and the cost C(S) =

∑ni
j=1 xi,jai,j , where

xi,j is a boolean variable which is true if the jth custom
instruction is chosen for the solution S. Hence, the corre-
sponding GAP problem can be stated as follows.

Problem Statement: Given a cost c, workload w and an
ε ≥ 0, either return a solution S such that C(S) ≤ c and
W (S) ≤ w, or else declare that there is no solution S such
that C(S) ≤ c

1+ε
and W (S) ≤ w

1+ε
.

Solving the GAP Problem: We now present a polynomial-
time algorithm to solve this GAP problem. It involves the
following two steps:

Step 1: Transforming Costs
Let r =

⌈
ni
ε

⌉
. Modify each cost ai,j of task Ti to a′i,j such

that a′i,j =
⌈ai,jr

c

⌉
. Now, consider the problem of determin-

ing whether there exists a solution with the modified costs
such that C′(S) ≤ r. Let us call this problem GAP′. We
shall show that solving GAP is equivalent to solving GAP′.
Towards this, we enumerate two properties below. These
properties can be easily proved with algebraic equations.

(a) If a solution with the transformed costs satisfies C′(S) ≤
r, then C(S) ≤ c.

(b) If a solution satisfies C(S) ≤ c
1+ε

, then C′(S) ≤ r.

From property (a), we know that if this problem returns an
affirmative answer then the GAP problem would also return
a dominating solution. On the other hand, if GAP′ returns
a negative answer then property (b) leads to the conclusion
that there is no solution with cost ≤ c/(1 + ε). Hence, from
the above properties we can infer that solving GAP′ is equiv-
alent to solving the original GAP problem.

Step 2: Solving GAP′

We present a dynamic programming algorithm to solve the
GAP′ problem. This algorithm can be constructed with the
following adjustments to Algorithm DP .

Algorithm 1 Approximating the Pareto curve.

1: Partition the range of costs from 1 to niM geometrically
with a ratio 1 + ε′ = (1 + ε)1/2, thus dividing the cost
space into O(log1+εniM) coordinates.

2: For each coordinate b, call Algorithm DP with trans-
formed costs a′i,j =

⌈ai,jr

b

⌉
, where r =

⌈
ni
ε

⌉
.

3: For each run of Step 2, find the solution with the mini-
mum utilization.

4: Retain all the undominated solutions from the solutions
found in Step 3. This will represent a ε-Pareto curve.

1. Run Algorithm DP with the modified costs a′i,j .
2. Instead of iterating over all the cost values up to niM ,

iterate only up to a cost value of r, where r =
⌈

ni
ε

⌉
.

3. Finally, if the minimum value in the final array com-
puted by Algorithm DP is such that it is ≤ w, then
return the solution otherwise declare that there is no
solution.

Computing each row of the table built by this dynamic pro-
gramming algorithm requires O(r) running time. Hence,
this algorithm runs in time O(n2

i /ε).
The above polynomial time subroutine for solving the

GAP problem proves the existence of a fully polynomial-time
approximation scheme (FPTAS) for computing the approx-
imate workload-area Pareto curve Pε which is polynomial
in the input size and in 1/ε. This is because the following
FPTAS can be devised using the algorithm for solving GAP.
First, geometrically partition the objective space along all
dimensions with a ratio 1+ ε′, where ε′ = (1+ ε)1/2−1. For
each corner point of this grid, call the GAP routine (i.e., the
algorithm for solving GAP) with the parameter ε′, and keep
all the undominated solutions (see Figure 2 for an illustra-
tion of this procedure). This implies that for each rectangle
which contains a solution in the exact Pareto curve, there
will also be a solution within the same rectangle which be-
longs to Pε. The distance between these two solutions can be
bounded using the dimensions of the rectangle. Hence, for
every solution s in the Pareto curve, there exists a solution
q in Pε such that q

(1+ε)
≤ s. Moreover, because the number

of rectangles is polynomially bounded, it follows that the
number of points in Pε will also be a polynomial.

Algorithm 1 summarizes the above steps to compute the
ε-approximate workload-area Pareto curve in some more de-
tail. Note, that in step 1 of Algorithm 1 we partition only the
area space (and not both workload and area space). This
is because if a point (w, c) dominates the corner (w1, c1)
and w1 < w2, then (w, c) definitely dominates (w2, c2) . In
steps 2 and 3, we scale the costs, run Algorithm DP for
every co-ordinate in the partitioned cost space and retain
the minimum workload at each co-ordinate. The runtime

complexity of this algorithm is O(
n2

i
ε

log1+εniM).

3.2 Inter-Task Trade-offs
The existence of an inter-task approximation scheme to

compute the utilization-area Pareto curve may be argued in
the same fashion as for the intra-task approximation scheme
described above. This scheme takes the set of pareto-optimal
solutions Pi for each task Ti as input (as shown in the pre-
vious section), and generates the set of global design trade-
offs P̄ for the entire task set. Each global design configu-
ration S ∈ P̄ contains contains exactly one solution from
each Pi (for each task Ti). If a brute-force approach is

Figure 3: The overall two-stage approximation scheme.

used to examine all possible global design configurations,
then |P1| × . . . × |Pm| solutions will have to be examined,
where |Pi| denotes the number of solutions in the set Pi.
Hence, the number of solutions grow exponentially with the
number of tasks m in the task set, and moreover, not all
of these solutions would be optimal (i.e., they would be
dominated by some Pareto-optimal solution). Our goal is
to instead efficiently (but approximately) compute just the
Pareto-optimal global design configurations.

Broadly, the procedure follows the same steps as described
in Algorithm 1. Due to space constraints, we shall not work
out all the details of this stage. However, note that the main
difference is the core dynamic programming recursion that
is invoked in Step 2 (Algorithm 1), which we present below.
Let Ui,j be the minimum utilization that might be achieved
by considering only a subset of tasks from {1, 2, . . . , i} when
the cost is exactly j. Then, Ui,j is defined recursively as be-
low, where {wi,k, ci,k} ∈ Pi, (workload-area Pareto curve),
and Ei and Pi denote the execution time and the minimum
separation of the task Ti.

Ui,j ← min





Ui−1,j , Ui−1,j−ci,1 − (Ei − wi,1)/Pi

...
Ui−1,j , Ui−1,j−ci,Ni

− (Ei − wi,Ni)/Pi





(2)

We summarize the overall two-stage approximation scheme
in Figure 3. There are two distinct stages: (i) the intra-
task stage to compute the workload-area Pareto curve for
each task, and (ii) the inter-task stage which generates the
utilization-area Pareto curve for the entire task set. The
scheme for approximating the Pareto curve follows the three
main steps shown on the right hand of Figure 3. Note that
at each stage, the approximation scheme takes as an input
an error parameter ε (chosen by the designer) and returns
an ε-approximate Pareto curve. These parameters might be
different for the two stages.

4. EXPERIMENTAL EVALUATION
In this section we report some of the experimental results

obtained by running our approximation algorithm on a set
of well-known benchmarks. We compare the running times
of the optimal algorithm against our approximation scheme,
and also illustrate the difference in the sizes of Pε (the ap-
proximate Pareto curves) and the exact Pareto curve.

Experimental setup: We use five WCET benchmarks
[14] (compress, jfdctint, ndes, edn, adpcm), two benchmarks
(aes, sha) from MiBench [8], three benchmarks (g721 en-
coder, djpeg, cjpeg) from MediaBench [10] and one (ispell)
Trimaran benchmark [16] for our experiments.

Given the C code of an application, we use the Trimaran
compilation framework to generate optimized intermediate
code, as well as profiling information such as basic block

Task Set Benchmarks

1 cjpeg, adpcm, aes, compress, rijndael ispell
2 djpeg, g721decode, cjpeg, ispell, adpcm

jfdctint, aes
3 cjpeg, ispell, edn, sha, g721decode, djpeg

compress, ndes
4 adpcm, rijndael, cjpeg, ispell, sha

ndes, djpeg, compress, edn
5 aes, djpeg, g721decode, rijndael, jfdctint

cjpeg, edn, ispell, sha, ndes

Table 1: Composition of the task sets.

execution frequencies. We then construct the data flow
graph for each basic block and enumerate all possible cus-
tom instructions with at most 4 input operands and 2 out-
put operands [17]. We use Synopsys design tools with 0.18
micron CMOS cell libraries to synthesize and estimate la-
tency/area of custom instructions. Execution cycles of a cus-
tom instruction is its latency normalized against a Multiply-
Accumulate (MAC) operation, which has 1 cycle latency in
the processor running at 120MHz. Hardware area is repre-
sented in terms of the number of adders. Further, we assume
a single-issue in-order base processor core with a perfect
cache. The workload is measured in number of processor
cycles required to execute each task.

We create five task sets (see Table 1) with the number of
tasks in each set varying from 6–10. We chose a total uti-
lization for the task set (without any custom instructions)
and then select individual minimum separation period for
each task (Pi) to achieve the corresponding utilization. We
also chose five different utilization factors U = 0.80, 1.00,
1.05, 1.08 and 1.10. When U = 0.8 or 1.0, a task set is
schedulable without using any custom instructions. In these
cases, we are interested in finding out by how much we can
reduce the utilization through custom instructions and what
are the hardware trade-offs. For U > 1.0, a task set is not
schedulable on its own. Here, the goal is to find schedulable
solutions by using custom instructions as well as expose the
performance-area trade-offs. All CPU times reported below
are measured on a desktop with 3.0 GHz Pentium 4 CPU
and 1 GB RAM.

Running times: Table 2 shows the running time speedups
resulting from our approximation scheme, compared to com-
puting the exact Pareto curve for three different values of ε,
for each of the five task sets. Computing the exact Pareto
curve for task sets 1–5 require 139.78 sec, 514.20 sec, 622.32
sec, 747.17 sec, and 711.52 sec, respectively. Even for small
values of ε (ε = 0.44) our approximation algorithm runs
about three orders of magnitude faster than the exact algo-
rithm. For larger values of ε (e.g., ε = 3), the speedups are
even more significant (note that ε need not be ≤ 1). The
reason behind choosing the values 0.21, 0.44, and 0.69 for
ε is as follows. Our approximation algorithm involves the
computation of (1 + ε)1/2. This value might turn out to be
an irrational number if ε is not carefully chosen. Hence, to
avoid any possible rounding-off errors in our implementa-
tion, the above values were chosen for ε.

Pareto curve size: The workload-area Pareto curve (the
output of intra-task stage) and the utilization-area Pareto
curve (the output of intra-task stage) typically contain an
exponential number of points. The approximation algorithm
generates a polynomial-sized approximate Pareto curve Pε.
We now compare the sizes of the exact Pareto curve and Pε.

2.88E+08

2.90E+08

2.92E+08

2.94E+08

2.96E+08

2.98E+08

3.00E+08

3.02E+08

3.04E+08

0 20 40 60 80 100

P
ro

ce
ss

o
r

C
yc

le
s

Hardware Area

ε = .69

exact

ε = 3

0.85

0.9

0.95

1

1.05

1.1

1.15

0 500 1000 1500 2000

P
ro

ce
ss

o
r

U
ti

liz
at

io
n

Hardware Area

ε = .69

�����

ε = 3

(a) workload-area Pareto curve for g721decode (b) utilization-area Pareto curve for task set 1

Figure 4: The exact and approximate Pareto curves for ε = 0.69, 3.

Task Sets: 1 2 3 4 5

ε = 0.21 643 1075 1037 990 729
ε = 0.44 3248 5918 5712 5457 3933
ε = 0.69 7106 14587 14389 13922 10208
ε = 3.0 29615 72525 89285 69054 77508

Table 2: Speedup obtained from our approximation

scheme for the task sets 1 – 5.

For the intra-task results, Figure 4(a) shows the exact
Pareto curve and the Pε generated by our algorithm for the
g721decode benchmark. For the inter-task case, we show the
results for task set 1 in Figure 4(b). For clarity, we have only
plotted Pε for ε = 0.69 and 3. Note that (i) the number of
points in Pε decrease as ε increases, and (ii) the gap between
the exact and approximate curves widen with larger values
of ε, implying that the relative error indeed increases. We
would like to report that even for small values of ε (e.g.,
ε = 0.21), Pε contains almost 97% fewer points compared to
the exact Pareto curve. Similar trends were seen for all the
other benchmarks and task sets, which are not shown here
due to space constraints.

Benefits of approximation: Although the running times
associated with constructing the exact Pareto curve might
seem to be small (10–12 mins), in an interactive design pro-
cess where the designer repeatedly makes changes and gener-
ates new Pareto curves, this might hamper designer produc-
tivity. A tool which generates these curves faster (e.g., using
our proposed approximation algorithms) would be more us-
able. Secondly, exact Pareto curves return too many (sim-
ilar) design trade-offs. Approximate Pareto curves return
less, well spread out trade-offs, which might be more man-
ageable for the designer.

5. CONCLUDING REMARKS
In this paper, we proposed a framework for evaluating

trade-offs in custom instruction selection for instruction set
customizable processors. This framework consists of two
stages – in the first custom instruction configurations repre-
senting different trade-offs are chosen for each task, and in
the second, different configurations from each task are cho-
sen to derive system-level trade-offs. There are a couple of
directions in which this framework can be further refined,
e.g., by modeling isomorphic instructions across tasks or by
accounting for more general scheduling policies for task sets
(currently only EDF has been modeled).

6. REFERENCES
[1] M. Arnold and H. Corporaal. Designing domain-specific

processors. In CODES, 2001.
[2] K. Atasu, L. Pozzi, and P. Ienne. Automatic

application-specific instruction-set extensions under
microarchitectural constraints. In DAC, 2003.

[3] S. Baruah, A.K. Mok, and L.E. Rosier. Preemptively
scheduling hard-real-time sporadic tasks on one processor.
In RTSS, 1990.

[4] N. Cheung, S. Parameswaran, and J. Henkel. INSIDE:
INstruction Selection/Identification & Design Exploration
for extensible processors. In ICCAD, 2002.

[5] N. Clark, H. Zhong, and S. Mahlke. Processor acceleration
through automated instruction set customization. In
MICRO, 2003.

[6] J. Cong, Y. Fan, G. Han, and Z. Zhang.
Application-specific instruction generation for configurable
processor architectures. In FPGA, 2004.

[7] K. Deb. Multi-Objective Optimization Using Evolutionary
Algorithms. John Wiley & Sons, 2001.

[8] M. R. Guthaus et al. Mibench: A free, commercially
representative embedded benchmark suite. In IEEE Annual
Workshop on Workload Characterization, 2001.

[9] H. P. Huynh and T. Mitra. Instruction-set customization
for real-time systems. In DATE, 2007.

[10] C. Lee, M. Potkonjak, and W. H. Mangione-Smith.
Mediabench: a tool for evaluating and synthesizing
multimedia and communicatons systems. In MICRO, 1997.

[11] J. Lee, K. Choi, and N. Dutt. Efficient instruction encoding
for automatic instruction set design of configurable ASIPs.
In ICCAD, 2002.

[12] C. L. Liu and James W. Layland. Scheduling algorithms for
multiprogramming in a hard-real-time environment.
Journal of the ACM, 20(1):46–61, 1973.

[13] C. H. Papadimitriou and M. Yannakakis. On the
approximability of trade-offs and optimal access of web
sources. In FOCS, 2000.

[14] F. Stappert. WCET benchmarks.
http://www.c-lab.de/home/en/download.html.

[15] Tensilica - XPRES Compiler - Optimized Hardware
Directly from C.
www.tensilica.com/products/devtools/hw dev/xpres/.

[16] Trimaran: An infrastructure for research in backend
compilation and architecture exploration.
http://www.trimaran.org.

[17] P. Yu and T. Mitra. Scalable custom instructions
identification for instruction-set extensible processors. In
CASES, 2004.

[18] P. Yu and T. Mitra. Satisfying real-time constraints with
custom instructions. In CODES+ISSS, 2005.

