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ABSTRACT
The increasing complexity of FPGA-based accelerators, cou-
pled with time-to-market pressure, makes high-level synthe-
sis (HLS) an attractive solution to improve designer produc-
tivity by abstracting the programming effort above register-
transfer level (RTL). HLS offers various architectural design
options with different trade-offs via pragmas (loop unrolling,
loop pipelining, array partitioning). However, non-negligible
HLS runtime renders manual or automated HLS-based ex-
haustive architectural exploration practically infeasible. To
address this challenge, we present Lin-Analyzer, a high-level
accurate performance analysis tool that enables rapid design
space exploration with various pragmas for FPGA-based ac-
celerators without requiring RTL implementations.

1. INTRODUCTION
Field programmable gate arrays (FPGAs) have the ad-

vantages of reconfigurability, customization and energy effi-
ciency. They are widely used in embedded domains such as
automotive, wireless communications, and others that de-
mand high performance with low energy consumption. The
increasing capacity and improving power efficiency in latest
FPGA devices, such as 16nm UltraScale+ from Xilinx and
14nm Stratix 10 from Altera, have also contributed to their
adoption in high-performance computing domains such as
data-centers. However, the architectural flexibility comes at
the cost of complex hardware programming models, making
FPGA development a challenging and time consuming task
even as the time-to-market constraints continue to tighten.

High-level synthesis (HLS) tools have been developed,
both in academia [4][5] and industry [1][17], to address this
challenge by enabling automated translation of applications
written in high-level languages (such as C/C++, SystemC,
and others) to register-transfer level (RTL). But the var-
ious optimization options offered by HLS tools (e.g., loop
unrolling, loop pipelining, array partitioning) make it non-
trivial to choose appropriate options in synthesizing an ap-
plication on an FPGA even with the assistance of HLS.
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Hence, several authors [3][8][9][10][11][13][14] have pro-
posed compiler-assisted static program analysis, similar to
the commercial HLS tools, to estimate accelerator perfor-
mance while exploring the large design space. However,
static program analysis suffers from its inherently conserva-
tive dependence analysis [4][5][12] that can potentially lead
to false dependences between the operations and limit the
exploitable parallelism by the FPGA-based accelerators, ul-
timately introducing large inaccuracies in the predicted per-
formance. In addition, to improve the estimation accuracy,
some techniques rely on HLS tools to obtain performance for
a few design points and then extrapolate for the rest. The
time required in the HLS tools ranges from hours to days
depending on the number of design points to be synthesized
and the configuration choices.

We propose a dynamic analysis method that exploits run-
time information to obtain true dependences between op-
erations and hence accurately predicts the accelerator per-
formance. This also obviates the need to use HLS tools,
resulting in a rapid and reliable design space exploration
(DSE) tool. In particular, our contributions are two-fold:

• We introduce a high-level analysis tool, Lin-Analyzer,
to perform fast and accurate FPGA performance esti-
mation as well as DSE according to different optimiza-
tions (loop unrolling, pipelining and array partition-
ing) without generating any RTL implementations.

• Lin-Analyzer can identify bottlenecks of different
FPGA implementations when applying diverse opti-
mizations. It can assist designers in evaluating differ-
ent architectural options in the context of high-level
synthesis and better understand the performance im-
pact of different accelerator design choices.

The goal of Lin-Analyzer is to perform an early design space
exploration and recommend the best suited optimization
configuration for an application when mapped to FPGAs.
The HLS tool should then be invoked with the suggested
configuration to obtain the final synthesized accelerator. In
other words, Lin-Analyzer is complementary to HLS tools.
Experimental evaluation confirms that Lin-Analyzer returns
the optimal recommendation while navigating complex de-
sign spaces within seconds to minutes.

2. RELATED WORK
Table 1 summarizes the state-of-the-art techniques used

for performance estimation and architectural exploration of
hardware accelerators based on either FPGAs or ASICs.



Table 1: Current State-of-the-art vs. Lin-Analyzer
Reference Accuracy

Design Space
Complexity

DSE
Time

Static/
Dynamic

Target

Bilavarn [3]
[TCAD’06]

Medium Low (Loop Unrolling) minutes Static FPGA

Boucle [10]
[DSD’13]

Medium
Med (Loop Unrolling+

Array to registers)
minutes Static FPGA

Liu [8]
[DAC’13]

High
High (Loop Unrolling+
Loop Pipelining+Array
Partitioning (MemBW))

hours
Static+
HLS

ASIC

Zhong [14]
[ICCD’14]

High
Low (Loop Unrolling+

dataflow)
minutes

Static+
HLS

FPGA

Pham [9]
[DATE’15]

High
High (Loop Unrolling+
Loop Pipelining+Array
Partitioning (MemBW))

hours
Static+
HLS

FPGA

Schafer [11]
[TECS’12]

High
High (Loop Unrolling+
Loop Pipelining+Array
Partitioning (MemBW))

hours
Static+
HLS

FPGA

So [13]
[PLDI’02]

High
Low (Loop Unrolling+

Loop Tiling+data reuse)
minutes

Static+
HLS

FPGA

Shao [12]
[ISCA’14]

High
High (Loop Unrolling+
Loop Pipelining+Array
Partitioning (MemBW))

minutes
(small

input size)
Dynamic ASIC

Proposed
Lin-
Analyzer

High
High (Loop Unrolling+
Loop Pipelining+Array
Partitioning (MemBW))

seconds to
minutes

Dynamic FPGA

As the design space of hardware accelerators can get pro-
hibitively large in the presence of the various pragma
options, the existing works rightly focus on pruning
this design space for rapid exploration. The major-
ity of the current state-of-the-art techniques use static
compiler-assisted program analysis to prune the design
space [3][8][9][10][11][13][14]. Moreover, [3][10][13][14] con-
sider only loop unrolling and ignore the other two promi-
nent optimizations (loop pipelining and array partitioning)
that have significant impact on accelerator performance and
resource consumption. [8][14] use HLS tools to improve
the accuracy of the predicted performance of the acceler-
ators, while using machine learning techniques or regression
analysis to further prune the design space. Most of these
works have limited design space or only focus on one bench-
mark [8] in an effort to find optimal application-specific ac-
celerators. [9][11] perform more extensive design space ex-
ploration, however the usage of commercial HLS tools in
their frameworks significantly increases the exploration time
to hours or even days in some cases. In addition, the reliance
on static analysis introduces inaccuracies, to varying extent,
in the performance prediction due to the lack of memory
disambiguation information.

In [12], the authors propose a pre-RTL power-performance
simulator for ASIC accelerators. We have similar goal.
But as we target FPGA-based accelerators, the differ-
ent kind of resources (DSP, BRAM) along with memory
bandwidth bring in additional complexity during resource-
constrained scheduling. In contrast, [12] only considers
memory bandwidth (number of read/write ports per mem-
ory bank and number of memory banks) while using an
ASAP-like scheduling algorithm. Moreover, instead of ana-
lyzing the entire trace, as in [12], Lin-Analyzer only focuses
on relevant sub-traces that makes it very fast even for appli-
cations with relatively large input size. Lastly, Lin-Analyzer
can also assist hardware designers in developing good qual-
ity FPGA-based accelerators by identifying potential appli-
cation bottlenecks after performing a set of optimizations.

3. MOTIVATING EXAMPLE
Manual or automated HLS-based DSE is a time-

consuming process due to non-negligible HLS runtime and
large design space. Listing 1 shows the nested loop of Con-
volution3D kernel from Polybench suite [15]. We use a com-
mercial HLS tool, Vivado HLS [17], to generate FPGA-based
accelerators for this application with three different pragma

combinations specified in Table 2. The HLS runtime varies
from seconds to hours for different choices of pragmas. As
the internal workings of the Vivado HLS tool is not avail-
able publicly, we do not know the precise reasons behind
this highly variable synthesis time.

Listing 1: Convolution3D example

1 . . .
2 /∗ c11 to c33 are constant va lues o f a window∗/
3 loop1 : f o r ( i = 1 ; i < NI − 1 ; ++i ) {
4 loop2 : f o r ( j = 1 ; j < NJ − 1 ; ++j ) {
5 loop3 : f o r (k = 1 ; k < NK −1; ++k) {
6 B[ i ] [ j ] [ k]=c11∗A[ i −1][ j −1][k−1]+
7 c13∗A[ i +1] [ j −1][k−1]+c21∗A[ i −1][ j −1][k−1]+
8 c23∗A[ i +1] [ j −1][k−1]+c31∗A[ i −1][ j −1][k−1]+
9 c33∗A[ i +1] [ j −1][k−1]+c12∗A[ i +0] [ j −1][ k+0]+

10 c22∗A[ i +0] [ j +0] [ k+0]+c32∗A[ i +0] [ j +1] [ k+0]+
11 c11∗A[ i −1][ j −1][ k+1]+c13∗A[ i +1] [ j −1][ k+1]+
12 c21∗A[ i −1][ j +0] [ k+1]+c23∗A[ i +1] [ j +0] [ k+1]+
13 c31∗A[ i −1][ j +1] [ k+1]+c33∗A[ i +1] [ j +1] [ k+1] ;
14 }
15 }
16 }

Table 2: Xilinx Vivado HLS Runtime for Convolution3D
Input
Size

Loop
Pipelining

Loop
Unrolling

Array
Partitioning

Vivado HLS
Runtime

32*32*32
Disabled

loop3
factor=30

A, cyclic, 2
B, cyclic, 2

44.25 seconds

loop3, yes
loop3

factor=15
A, cyclic, 16
B, cyclic, 16

1.78 hours

loop3, yes
loop3

factor=16
A, cyclic, 16
B, cyclic, 16

3.25 hours

Table 3: Convolution3D DSE: Exhaustive vs. Lin-Analyzer.

Input Size Design Space
DSE Time

Exhaustive HLS-based Lin-Analyzer
32*32*32 120 10 days* 29.30 seconds
*The HLS tool runs for a long time with few design points with
complex pragmas and we terminate it after running for 10 days

Due to the long HLS runtime, exhaustive HLS-based DSE
is infeasible as shown in Table 3. To assist designers in
finding good-quality accelerator designs through appropri-
ate pragma settings, it is vital to obtain performance estima-
tions early in the design stage without generating RTL im-
plementations. This also enables rapid architectural explo-
ration. Hence, we develop Lin-Analyzer, a pre-RTL, high-
level performance analysis tool for FPGA-based accelera-
tors. Table 3 demonstrates that Lin-Analyzer can navigate
the complex design space Convolution3D kernel with 120
design points under 30 sec.

4. THE LIN-ANALYZER FRAMEWORK
Lin-Analyzer leverages dynamic analysis and uses dy-

namic data dependence graphs (DDDGs) generated from
program traces to represent the dataflow of the accelerator
to be designed. A DDDG is a directed, acyclic graph in
which nodes represent operations and edges denote data de-
pendences between the nodes. DDDG representation is suit-
able for accelerator design [2][12]. Based on the DDDG, Lin-
Analyzer can model performance of FPGA-based accelera-
tors directly from algorithms written in high-level languages,
such as C/C++, without generating RTL implementations.

4.1 Framework Overview
Lin-Analyzer framework is shown in Figure 1. It takes

in a high-level specification (C/C++) of an algorithm with-
out any modifications as input and generates its execution
trace. According to optimization pragmas (loop unrolling,
loop pipelining and array partitioning) provided by the de-
signer, Lin-Analyzer extracts a sub-trace and generates the
corresponding DDDG. After essential optimizations on the
DDDG, Lin-Analyzer schedules the nodes with resource con-
straints to obtain an early performance estimate of the ac-
celerator corresponding to the input algorithm. As it only
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Figure 1: The Lin-Analyzer Framework

focuses on DDDG of the relevant sub-trace and uses fast
scheduling algorithm, Lin-Analyzer has minimal runtime
even for applications with relative large input size and com-
plex optimization combination, for example, complete loop
unrolling, pipelining and large array partitioning factors.

4.2 Instrumentation
An execution trace of the application specified in C/C++

is required for generating the DDDG. Lin-Analyzer leverages
the Low-Level Virtual Machine (LLVM) [6] for instrumenta-
tion and trace collection. The core of LLVM is a Static Single
Assignment (SSA) based Intermediate Representation (IR).
The IR is machine-independent and uses unlimited virtual
registers. Code analysis, optimization and modification are
performed on IR via LLVM passes.

We implement an instrumentation pass by adding profil-
ing functions to instrument the IR for trace collection. After
instrumentation, the Execution Engine, an LLVM Just-in-
Time (JIT) compiler integrated in Lin-Analyzer, is invoked
to perform execution of the instrumented IR and generate
run-time trace. The generated trace contains runtime in-
stances of static instructions, including instruction IDs, op-
codes, operands, virtual register IDs, memory addresses (for
load/store instructions) and basic block IDs. A Profiling
Library, developed in-house, is used to record the trace.

4.3 Optimized DDDG Generation
A dynamic trace typically contains millions or even bil-

lions of instruction instances. So Lin-Analyzer only focuses
on a sub-trace based on the pragma settings, constructs a
DDDG of the sub-trace, and optimizes it.

4.3.1 Sub-trace Extraction
Consider a nested loop L = {L1, .., Li, .., LK}, where K

is the number of loop levels in L and LK is the inner-
most loop level. Loop unrolling can be applied at any loop
level. We can handle both perfectly nested loops (e.g., List-
ing 1) and non-perfectly nested loops with statements be-
tween different loop levels. Given an unrolling factor tuple
{U1, .., Ui, .., UK}, where Ui is the unrolling factor of loop Li,
we extract sub-trace of Ui iterations of Li if all inner loop
levels {Li+1, Li+2, ..., LK} are completely unrolled; other-
wise, we only collect UK iterations of LK as the sub-trace.

Loop pipelining is only applied at one loop level Li in L.
When loop pipelining is applied to Li and i �= K, all the
nested inner level loops L′ = {Li+1, ..., LK} are completely
unrolled irrespective of their unrolling factors. The sub-
trace in this case consists of instruction instances of L′. On
the other hand, if i = K, then the sub-trace consists of the
instruction instances in UK iterations of LK .

4.3.2 DDDG Generation & Pre-optimizations
An un-optimized DDDG is generated first from the sub-

trace. Nodes in the DDDG represent dynamic instances of
LLVM IR instructions, while edges denote dependences be-
tween nodes including register/memory-dependence. Edges

only consider true dependences and does not include anti-
/output dependences. Control dependences are not consid-
ered as we are dealing with dynamic traces.

Before scheduling, we perform tree-height reduction to de-
crease the height of long expression chains and expose poten-
tial parallelism similar to Shao’s work [12]. The generated
DDDG contains supporting instructions and dependences
between loop index variables that are not relevant to accel-
erators. To focus only on actual computations, we remove
supporting instructions and dependences by assigning zero
latency to the associated nodes.

We also perform optimizations to remove redundant load-
/store operations to save memory (BRAM) bandwidth. For
example, if a store is a direct predecessor of a load with the
same memory address, then the load is redundant and can
be eliminated by adding edges between the store and succes-
sors of the load. If two loads have the same memory address
and there is no store operation in between with the same ad-
dress, the load operations can be reduced to one load node.
After removing redundancies, we map each unique memory
address (corresponding to load/store operations) to a mem-
ory bank according to array partitioning factor.

4.4 DDDG Scheduling
Once an optimized DDDG is generated, Lin-Analyzer

performs Resource-Constrained List Scheduling (RCLS) for
performance prediction. The inputs to RCLS are the
DDDG and a priority list obtained from As-Soon-As-
Possible (ASAP) and As-Late-As-Possible (ALAP) schedul-
ing policies. These algorithms schedule nodes with the fol-
lowing assumptions: (1) hardware functional units associ-
ated with nodes follow the default setting of Vivado HLS
including their types, latencies, and resources consumption
(e.g., a 32-bit floating-point addition node is mapped to a
pipelined floating-point add (FADD) unit with 5-cycle la-
tency consuming 2 DSP and zero BRAM); (2) each memory
bank only supports two reads and one write simultaneously;
(3) nodes related to supporting instructions (e.g., loop in-
dex computation) are assigned zero latency; and (4) resource
constraints are modeled for only DSP and BRAM, as these
resources are the bottlenecks in most accelerator designs.

With the above assumptions, ASAP policy schedules a
node as soon as possible when its predecessors are all com-
pleted and returns minimum latency for the DDDG. ALAP
policy schedules nodes at the latest opportunity. Times-
tamps of nodes after ALAP scheduling are fed into RCLS
scheduling and serve as a priority list. ASAP and ALAP
schedules are generated without resource constraints. How-
ever, it is impossible to generate FPGA-based accelerators
with infinite resources. Therefore, to find a feasible sched-
ule of minimum latency under limited FPGA resources, we
employ resource-constrained list scheduling algorithm.

In RCLS algorithm, a node is scheduled when all of the
following conditions are satisfied: (1) its predecessors have
all completed; (2) it has the highest priority among the un-



scheduled ready nodes; (3) resources are sufficient for allo-
cating the node. When scheduling nodes, resources alloca-
tion and release are managed by FPGA Resource Allocator
(FRA). For example, to schedule a single-precision floating-
point multiplication node, FRA checks whether there exists
an unoccupied floating-point multiplication unit (FMUL). If
all FMUL units are occupied, FRA allocates 3 DSP blocks
from the resource budget to create a new FMUL unit and
records the occupied status of the unit; otherwise, FRA al-
locates a previously generated FMUL unit for the node. For
pipelined functional units (floating-point operations), FRA
releases the unit in the next cycle after a node using this
functional unit is scheduled (assuming single-cycle initia-
tion interval for the pipelined functional units), while for
non-pipelined units (integer operations), FRA releases the
unit when the associated node finishes its execution.

When all nodes in the DDDG have been scheduled and
finished execution, RCLS algorithm terminates and returns
the finial schedule and latency for the DDDG.

4.5 Enabling Architectural Exploration
The current state-of-the-art HLS tools provide optimiza-

tion pragmas for users to explore and evaluate diverse hard-
ware architectures. Loop unrolling, pipelining and array
partitioning are the three prominent pragmas that have sig-
nificant impact on hardware performance and resource uti-
lization. Hence, we designed Lin-Analyzer to support these
three pragmas and enable rapid architectural exploration.

Loop Unrolling: To simulate loop unrolling with fac-
tor u, Lin-Analyzer extracts u loop iterations as sub-trace
to generate a DDDG as explained in Section 4.3.1. After
removing dependences between loop index variables in the
DDDG, u loop iterations can be executed in parallel if there
is no loop carried dependences across different iterations.
RCLS schedules nodes in the optimized DDDG and returns
latency of u iterations of the loop (IL). Lin-Analyzer then
takes into account the IL, loop bounds and the unrolling
factor u, to predict performance of the accelerator.

Loop Pipelining: Accelerator performance, with loop
pipelining enabled, is determined by a constant initiation
interval (II) of the loop, where the II is defined as the in-
terval between the start of consecutive iterations. Instead of
generating schedule with loop pipelining, Lin-Analyzer cal-
culates the minimum initiation interval (MII) by Equation
1 to predict performance,

MII = max(RecMII,ResMII) (1)
where RecMII and ResMII are the recurrence-constrained
and resource-constrained MII, respectively. MII is used
as an approximation for the II to reduce the size of the
sub-trace required by Lin-Analyzer and hence its run-
time. RecMII is introduced by loop-carried dependences.
Lin-Analyzer calculates RecMII by using Swing Modulo
Scheduling described in [16]. ResMII is calculated as,

ResMII = max(ResMIImem, ResMIIop) (2)

ResMIImem = max
m

(

⌈
Rm

RPortsm

⌉
,

⌈
Wm

WPortsm

⌉
) (3)

ResMIIop = max
n

(

⌈
Fop Parn
Fop usedn

⌉
) (4)

where ResMIImem is limited by memory bandwidth and
ResMIIop is constrained by number of floating-point func-
tional units. Rm and Wm denote the number of mem-
ory reads and writes of array m inside a pipeline stage re-

spectively, while RPortsm and WPortsm represent number
of available read and write ports of array m respectively.
Fop Parn is the maximum number of floating-point func-
tional unit of type n that can run in parallel and this value
is obtained from ALAP scheduling without resource con-
straints. Fop usedn is the number of floating-point func-
tional unit of type n used in RCLS scheduling. Using IL
for the pipeline depth, predicted MII as well as the loop
bounds, Lin-Analyzer estimates FPGA performance with
loop pipelining enabled utilizing the equation in [7].

Array Partitioning: This technique partitions program
arrays into multiple memory banks to improve memory
bandwidth. It is a commonly used array optimization in
FPGA domain, as memory blocks in FPGAs have limited
number of read/write ports. In this work, we assume that
each memory partition has two read ports and one write
port. Similar to Vivado HLS [17], Lin-Analyzer supports
block, cyclic and complete array partitioning strategies (one-
dimensional partitions). Due to the page limitation, further
details on block, cyclic and complete partitioning strategies
have not been included here, but can be found in [17].

Lin-Analyzer enables array partitioning by mapping ad-
dresses of memory nodes (load and store) in the DDDG to
memory banks. FRA keeps track of read/write ports used
for each memory bank in each cycle and only allows up to 2
read or 1 write memory accesses for the same memory bank.
Memory bank number is calculated as follows:

Bank Nm =

{
(addrm)/(�sizem/pf�) if block (5a)

(addrm) modulo (pf) if cyclic(5b)
where addrm is a memory address within array m, sizem is
size of array m, and pf is the partition factor. For complete
array partitioning, we do not need to consider memory-port
constraints as the entire array is placed in registers.

An Example: Figure 2 shows an example to demon-
strate how Lin-Analyzer predicts FPGA performance. Let
us assume that the FMUL unit has 4-cycle latency, while
the FADD unit has 5-cycle latency. FMUL and FADD are
pipelined hardware components. Memory load and store op-
erations have 1-cycle latency. These FPGA node latencies
are obtained from Vivado HLS. In this example, let us as-
sume the designer wants to apply loop unrolling with factor
of 2, no loop pipelining and cyclic partitioning of array C
with partitioning factor 2.

Lin-Analyzer collects an execution trace of this program
from LLVM and extracts sub-trace of two loop iterations
based on loop unrolling factor for generating a DDDG. Af-
ter performing optimizations on the DDDG, the optimized
DDDG, shown in Figure 2b, reflects dataflow nature of the
FPGA-based accelerator. Edges in the DDDG represent
flow dependences and FPGA node latencies are added to
edges as edge weights. Figure 2c shows the schedule gener-
ated by RCLS algorithm. As each memory partition has two
read ports, memory load operations for array A and B can
be executed in the same cycle. As array C has cyclic par-
titioning with partitioning factor 2, the two memory stores
(C0 and C1) access different memory banks and can be ex-
ecuted in the same cycle. Figure 2c illustrates a feasible
schedule with two FADD and FMUL units. The IL for the
two loop iterations is 11 cycles. Therefore, the total latency
of the hardware accelerator is IL ∗ N/2 cycles where N is
the loop bound.

Similar to this example, Lin-Analyzer can rapidly esti-
mate the performance for other combinations of pragmas



1 . . .
2 /∗ f l o a t a ,A,B,C ∗/
3 f o r ( i n t i =0; i<N; i++){
4 C[ i ] = a∗A[ i ]+B[ i ] ;
5 }
6 . . .
7
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cycle 0 1 2 3 4 5 6 7 8 109

st C0

a * A0
ld A1 a * A1
ld A0

a * A0 + B0
a * A1 + B1

st Cst C00
st C1

ld B0
ld B1

(c) Scheduling Graph

Figure 2: An Example

without generating RTL implementations. This, in turn, en-
ables rapid architectural exploration in the order of seconds
to minutes over a large design space. However, it should be
noted that Lin-Analyzer, like other dynamic analysis tools
relying on profiling [12], can suffer from inaccuracy in per-
formance prediction if the behavior of the application differs
significantly across different program inputs. In such cases,
it is imperative to carefully select a representative program
input for trace generation. Also Lin-Analyzer only optimizes
for performance and lets the accelerator use all the available
FPGA resources if necessary. In future, we plan to explore
area-performance tradeoff in accelerator design.

5. EXPERIMENTAL RESULTS
We use 10 applications from Polybench benchmark suite

[15] to validate the proposed tool. The input data size for
each application is chosen such that the application can use
the resources (LUT, BRAMs, DSP, etc.) available on our
target FPGA device, Xilinx ZC702 Evaluation Kit [17]. We
use Xilinx Vivado HLS version 2014.4 and set the acceler-
ators to run at 100MHz. Experiments are conducted on a
PC with an Intel Xeon CPU E5-2620 core at 2.10Hz with
64GB RAM, running Ubuntu 14.04 OS.

5.1 Estimation Accuracy
Lin-Analyzer predicts accelerator performance consider-

ing loop unrolling, pipelining and array partitioning. As
Vivado HLS might add false loop-carried dependences when
using array partitioning, we report estimation accuracy sep-
arately according to optimization pragmas.

5.1.1 Loop Unrolling and Pipelining
Figure 3 shows the cycle counts predicted by Lin-Analyzer

against the ones obtained from Vivado HLS for Convolu-

tion3D and MM applications considering loop unrolling and
pipelining pragmas (due to page limitation, we only plot
two applications). The X-axis denotes the various config-
urations, each of which represents a pragma combination
(e.g., loop unrolling factor of 2 and pipelining outer loop for
one configuration). The cycle counts predicted by the Lin-
Analyzer tool matches the Vivado HLS tool very closely for
both applications. Similar results were also obtained for the
remaining applications. Table 4 demonstrates the average
percentage difference between the cycle counts predicted by
Lin-Analyzer and the ones obtained from the Vivado HLS
for the same configuration across all combinations of loop
unrolling and pipelining pragmas. Lin-Analyzer can accu-
rately predict accelerator performance with less than 5.2%
difference compared to Vivado HLS for all 10 benchmarks.

(a) Convolution3D (b) MM

Figure 3: Accuracy of Lin-Analyzer with loop unrolling and
pipelining pragmas compared to Vivado HLS

Table 4: Difference between Lin-Analyzer estimated perfor-
mance and the ones obtained from Vivado HLS with loop
unrolling and pipelining pragmas

Benchmark ATAX BICG CONV2D CONV3D GEMM

Difference (%) 2.68 1.24 1.63 3.75 3.25

Benchmark GESUMMV MM MVT SYR2K SYRK

Difference (%) 5.15 2.69 2.05 1.32 2.78

5.1.2 Array Partitioning
Figure 4 compares the results of Lin-Analyzer and Vivado

HLS for Convolution3D application while considering loop
unrolling, pipelining and array partitioning pragmas. The
code listing for this application was discussed earlier in Sec-
tion 3. The X-axis denotes the array partitioning factors
from 1 to 16 in step of 2. Dashed lines denote cycle counts
predicted by the Lin-Analyzer, while solid lines represent
results from Vivado HLS. (ui-Pj) denotes a pragma com-
bination with loop unrolling factor i for the innermost loop
and pipelining applied on loop level j.

As shown in Figure 4, Lin-Analyzer can predict the per-
formance trends accurately with varying partitioning fac-
tors. However, for a particular combination, the cycle count
predicted by Lin-Analyzer may differ to some extent from
the one obtained from Vivado HLS. This is not a limitation
of Lin-Analyzer and can be explained as follows. In these
configurations, Vivado HLS, while relying on static analysis,
conservatively adds false loop-carried dependences leading to
higher recurrence II values dominated by these dependences.
Increasing memory bandwidth by applying array partition-
ing, therefore, does not help to reduce the II in Vivado HLS.
This can be observed in the solid blue line showing the re-
sults for the (u3-P3) configuration in which Vivado HLS
is unable to improve the cycle counts by exploiting array
partitioning. A hand-written RTL code, however, can ef-
fectively exploit this feature as predicted by Lin-Analyzer.
Moreover, we also simulate the RTL code generated by Vi-
vado HLS and find that there are redundant memory reads
for some configurations when using array partitioning. This
further deteriorates accelerator performance in HLS designs
when compared to an optimized hand-written RTL code.

From the above discussion, it is also evident that Lin-
Analyzer can assist designers in generating efficient FPGA-
based accelerators using HLS tools by better understanding
design bottlenecks. Besides, Lin-Analyzer can also help HLS
developers to detect potential issues in HLS tools.

5.2 Rapid Design Space Exploration
The key motivation behind the proposed Lin-Analyzer

tool is to rapidly evaluate the accelerator performance while
using various pragma combinations such as loop unrolling,
loop pipelining and array partitioning. The design space
considered in this work is shown in Table 5.

Table 6 lists the different application kernels used in this
work in column 1, while column 2 shows the number of loops
in each of these applications. Column 3 shows the total num-



Figure 4: Lin-Analyzer vs. Vivado HLS for Convolution3D
considering loop unrolling, pipelining and array partitioning.
False loop-carried dependences cause Vivado HLS to create
inefficient designs leading to difference with estimations from
Lin-Analyzer.

Table 5: Pragma settings used in Lin-Analyzer
Pragmas Range

Loop unrolling factor Divisors of loop bound N

Loop pipelining [True, False]

Array partitioning
factor: [1 :: 2 :: 16] (the set

of values from 1 to 16 in steps of 2)
type: [cyclic, block, complete]

ber of configurations considered for each application while
exploring various loop unrolling factors, pipelining options,
and array partitioning factors/types. To evaluate the accu-
racy of Lin-Analyzer, we also used Vivado HLS tool to syn-
thesize accelerators for the same configurations and recorded
HLS runtime and cycle count of the generated hardware ac-
celerators. In Table 6, this is shown as Exhaustive method.

Columns 4 and 5 in Table 6 compare the optimal de-
sign points returned by exhaustive DSE with HLS and Lin-
Analyzer. The tuple denotes configurations recommended
by Exhaustive and Lin-Analyzer, respectively, that achieves
the best performance for each application. It has the format:
(partitioning factor, loop unrolling factor, pipeline level).
The pipeline level i indicates that the pipelining pragma
is applied to loop level Li as explained in 4.3.1. The results
confirm that Lin-Analyzer recommends exactly the same
configurations as Exhaustive method.

The exploration time of Exhaustive method is shown in
column 6. Lin-Analyzer profiles an application in the first
step to create dynamic trace. The time taken for this step
is shown in column 7, while column 8 shows the DSE time.
Profiling incurs one-time overhead and this overhead is amor-
tized. The last column in Table 6 shows the total runtime
for Lin-Analyzer. Comparing columns 6 and 9, it can be
seen that Lin-Analyzer takes a fraction of the time needed
by Exhaustive approach while arriving at the same result.

The asterisk for BICG and GESUMMV signify that for these
applications there is no change in performance obtained from
Vivado HLS, when partitioning factor varies from 1 to 16.
This is a limitation of Vivado HLS, as it does not exploit
array partitioning as expected, to improve performance. In
contrast, Lin-Analyzer correctly predicts the effect of array
partitioning and thereby finds the best configuration, i.e.
(16,1,1) for both BICG and GESUMMV.

It should also be noted that unlike the existing state-of-
the-art techniques that invoke HLS tools, Lin-Analyzer does
not rely on HLS tools. Hence, its runtime scales linearly with
increasing design space complexity (more unrolling factors,
pipeline levels, etc.), therefore making it attractive during
DSE of complex FPGA-based accelerators.

Table 6: DSE Results. Configuration Format (array parti-
tioning factor, loop unrolling factor, pipeline level)

Loop
Levels

Design
Space

Configuration
Total DSE Time

(seconds)

Exhaustive Lin-Analyzer Exhaustive
Lin-Analyzer

Profiling DSE Total
ATAX 2 85 16,1,1 16,1,1 3855.74 1.28 7.57 8.85
BICG 2 95 (1-16),1,1 * 16,1,1 8989.35 7.40 15.20 22.60
CONV2D 2 62 16,1,1 16,1,1 26573.13 5.48 17.28 22.76
CONV3D 3 65 16,1,2 16,1,2 21586.68 12.85 9.62 22.47
GEMM 3 85 1,1,2 1,1,2 36579.48 176.38 8.99 185.37
GESUMMV 2 85 (1-16),1,1 * 16,1,1 17318.30 1.88 10.17 12.05
MM 3 85 1,1,2 1,1,2 7986.90 153.07 8.30 161.37
MVT 2 95 16,1,1 16,1,1 7696.61 3.57 11.31 14.88
SYT2K 3 85 1,1,2 1,1,2 50714.11 239.24 10.76 250.01
SYRK 3 85 1,1,2 1,1,2 20769.15 160.05 8.73 168.78

6. CONCLUSION
In this paper we proposed Lin-Analyzer, a high-level per-

formance estimation tool that accurately and rapidly pre-
dicts the performance of FPGA-based accelerators. Lin-
Analyzer relies on the dynamic data dependence graph
(DDDG) to avoid the false data dependences created by the
static analysis techniques used in most existing techniques
including commercial HLS tools. This results in an accurate
performance estimation of FPGA-based accelerators with-
out resorting to time-consuming HLS runs. The tool also
helps in identifying design bottlenecks while exploring var-
ious pragmas such as loop unrolling, pipelining, and array
partitioning. Lastly, Lin-Analyzer can assist HLS developers
in identifying potential limitations of the HLS tool.
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