
Distributed Scheduling for Many-Cores
Using Cooperative Game Theory

Anuj Pathania*, Vanchinathan Venkataramani†, Muhammad Shafique*, Tulika Mitra†, Jörg Henkel*
*Chair of Embedded System (CES), Karlsruhe Institute of Technology, Germany

†School of Computing, National University of Singapore, Singapore
Corresponding Author: anuj.pathania@kit.edu

ABSTRACT
Many-cores are envisaged to include hundreds of processing
cores etched on to a single die and will execute tens of multi-
threaded tasks in parallel to exploit their massive parallel
processing potential. A task can be sped up by assigning it
to more than one core. Moreover, processing requirements
of tasks are in a constant state of flux and some of the cores
assigned to a task entering a low processing requirement
phase can be transferred to a task entering high requirement
phase, maximizing overall performance of the system.

This scheduling problem of partial core reallocations can
be solved optimally in polynomial time using a dynamic
programming based scheduler. Dynamic programming is
an inherently centralized algorithm that uses only one of
the available cores for scheduling-related computations and
hence is not scalable. In this work, we introduce a dis-
tributed scheduler that disburses all scheduling-related com-
putations throughout the many-core allowing it to scale up.
We prove that our proposed scheduler is optimal and hence
converges to the same solution as the centralized optimal
scheduler. Our simulations show that the proposed dis-
tributed scheduler can result in 1000x reduction in per-core
processing overhead in comparison to the centralized sched-
uler and hence is more suited for scheduling on many-cores.

CCS Concepts
•Computer systems organization → Self-organizing
autonomic computing;

Keywords
Many-Core, Distributed Scheduling, Multi-Agent Systems

1. INTRODUCTION
Many-cores are upcoming hundred core processors that

execute tens of multi-threaded tasks in parallel. A task can
be allocated to more than one core to speed up its processing.
Speedup of a task with N cores is defined as Instruction per

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DAC ’16, June 05-09, 2016, Austin, TX, USA
c© 2016 ACM. ISBN 978-1-4503-4236-0/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2897937.2898009

0 50 100 150 200

0.2

0.4

0.6

0.8

1

x10 Million Instruction

IP
C

mcf bzip2

(a) Instruction per Cycle

0 50 100 150 200

1.4

1.6

1.8

x10 Million Instruction

S
p
e
e
d
u
p

(b) 2-core speedup

Figure 1: Execution profiles of mcf and bzip2 benchmarks.

Cycle (IPC) of the task when assigned N cores in compari-
son to the task’s IPC when assigned one core in an isolated
execution. In this work, we use a special kind of many-
core called adaptive many-core [10, 14] that can execute
single-threaded tasks on multiple cores. This also allows the
acceleration of both single-threaded and multi-threaded tasks
by exploitation of Instruction Level Parallelism (ILP) and
Thread Level Parallelism (TLP), respectively.

Dynamic Scheduling Motivation: Figure 1a shows
processing requirements of executing tasks (mcf and bizp2)
vary over time. Further, ILP/TLP exploitation potential
in benchmarks also changes during execution resulting in
a varying speedup on multiple cores as shown in Figure 1b.
To keep the many-core operating at peak performance, cores
from task entering a low requirement phase need to be trans-
ferred to a task entering a high requirement phase by a
scheduler. Figure 2 shows 13.28% gain in throughput (total
IPC) can be obtained from performing dynamic partial core
reallocations in a 4-core processor running two tasks (mcf
and bizp2) compared to a static approach, where two cores
are allocated to each task.

Authors in [7] proposed a Dynamic Programming (DP)
based scheduler that can optimally solve the partial core re-
allocation problem on many-cores in polynomial time. Dy-
namic programming is an inherently centralized algorithm
that uses only one core of the many-core for performing
scheduling-related computations and hence cannot scale up.

http://dx.doi.org/10.1145/2897937.2898009

0 100 200

0

1

2

3

Throughput = 2.093 IPC

x10 million cycles

C
o
re

ID

1

2

3

T
h
ro

u
g
h
p
u
t

mcf bzip2 Throughput

(a) Static Scheduling (Equal Distribution)

0 100 200

0

1

2

3

Throughput = 2.371 IPC

x10 million cycles

C
o
re

ID

1

2

3

T
h
ro

u
g
h
p
u
t

(b) Dynamic Scheduling (Optimal Reallocation)

Figure 2: Dynamic scheduling can provide 13.28% addi-
tional throughput over static scheduling.

As an alternative, in this work we propose a distributed
scheduler. To perform distributed scheduling, we propose
a Multi-Agent System (MAS) scheduler based on Cooper-
ative Game Theory (CGT) called CGT-MAS. CGT is a
sub-branch of economic game theory wherein agents can co-
operate with each other to form coalitions, and these coali-
tions then compete with other coalitions. It is intuitively
applicable to scheduling on many-cores, wherein cores come
together to form core-coalitions on which tasks are executed.
A core-coalition is a virtual construct formed at run-time
when multiple cores are assigned to the same task.

MAS schedulers [6] based on game theory, with founda-
tions in Nash equilibrium have been proposed for many-cores
before [1, 19]. But we use a new approach for proving Nash
equilibrium in this work that allows CGT-MAS to provide
stronger formal theoretical results on convergence, quality
of converged solution and time to converge than previous
attempts. We theoretically prove that CGT-MAS will con-
verge to the same optimal solution as the dynamic program-
ming based scheduler. Hence, CGT-MAS provides scala-
bility without any compromise on the quality of the solu-
tion. In a complementary work, we present a distributed
fair scheduling solution for many-cores in [13].

Our Novel Contributions: We present a distributed
scheduler called CGT-MAS, which performs dynamic
scheduling on many-cores. CGT-MAS disburses its process-
ing overhead across all cores in the many-core enabling its
scalability. CGT-MAS guarantees convergence to the opti-
mal solution similar to dynamic programming based sched-
uler from any initial state in a finite number of steps but with
1000x less per-core processing overhead. Therefore, CGT-
MAS is suited for performing task scheduling on many-cores.

2. SCHEDULING WITH CGT-MAS
System Overview: We now present our proposed MAS

scheduler CGT-MAS. We assign a unique agent to each core
of the many-core. A unique core-coalition is assigned to
each task to be executed on the many-core that the agents
can join or leave anytime changing the core-coalitions sizes
in the process. We assume our tasks are malleable, which

Begin All Core Agents Free New Scheduling Epoch New MAS Round Make Moves

Moves = 0?Execute

Y
MaxEpoch?Stop

Y
N

N

Figure 3: Execution Flow for CGT-MAS

1 2 4 8
1

2

3

Core-Coalition Size

A
v
g
.
S
p
e
e
d
u
p

astar bzip2 applu art

disparity mser blackscholes swaptions

Figure 4: Average speedup of varisized core-coalitions over
singular core-coalitions for different tasks.

means the number of cores allocated to a task can change
during its execution. We also assume that there is one to
many mapping between tasks and cores. This makes our
optimization search-space discrete.

System Models: We model the problem of task schedul-
ing on many-core in game theoretic notation. Let A repre-
sent the set of |A| agents, indexed by ai. Let C represent
the set of |C| core-coalitions, indexed by Cj . |Cj | represent
the current size of (or number of agents in) Cj .

We define the quality of service of a task by its IPC. Q(Cj)
represents the current IPC of the task associated with Cj .
Q(Cj) can vary as the associated task passes through its dif-
ferent execution phases on Cj as shown in Figure 1. We allot
a unit value every time an instruction is successfully com-
mitted. Thus, Q(Cj) represents the value associated with
Cj . V (C) represents the total value generated by all core-
coalitions C and is an abstraction for the total number of
instructions committed by the many-core. We define current
utility uai for an agent ai as the increase in IPC it brings
to the core-coalition it has joined. Our utility definition is
inspired by the CGT model presented in [2].

V (C) = ∑
∀Cj∈C

Q(Cj) (1)

uai
(Cj) = Q(Cj)−Q({Cj−ai}) (2)

Execution Flow: Figure 3 shows the execution flow of
CGT-MAS. Initially, all agents are free. At the beginning
of each scheduling epoch, a series of MAS rounds take place
to determine mapping. Scheduling epoch is the granularity
at which scheduling is performed in the operating system.
In each round, agents evaluate the benefits of joining every
other core-coalition they are not part of against the benefits
of staying in their current core-coalitions based on their utili-
ties. Agents then myopically take decisions to move amongst
core-coalitions to increase their utilities. It suffices for one
agent in a given core-coalition to perform utility calculations
and take decisions on behalf of all other agents in that core-
coalition to reduce overheads. An agent ai will change core-
coalition from Cj to Cj′ if uai(Cj′ ∪ {ai}) > uai(Cj). For
estimating utilities, agents use IPC prediction techniques for
adaptive many-cores developed in [17]. Rounds stop when
no more moves are possible. Tasks are then executed with
cores allocated to them in the final round. System halts
when a user-defined MaxEpoch is reached.

Execution Characteristics: Figure 4 shows the average
speedup for benchmarks of different types on varisized core-
coalitions. It can be observed from the figure that the aver-
age speedup is both monotonically increasing and concave.
This is because of the saturation of exploitable ILP or TLP
in the benchmarks with increasing core-coalition size. Still,
addition of every core to the core-coalitions brings a non-
negative increase in the IPC of the associated benchmark.
This by definition makes the task’s IPC non-decreasing
and agent’s utility sub-modular.

Q(Cj)≥Q(C′
j) if |Cj |≥|C′

j | (3)

Q(Cj)−Q({Cj−ai})≤Q(C′
j)−Q({C′

j−ai}) if |Cj |≥|C′
j | (4)

Equilibrium (Stability): Stability with respect to
CGT-MAS means that if the system load does not change,
then the system will achieve oscillation-free tasks-to-cores
mapping. When stable, no agent has an incentive to move -
a state of Nash equilibrium.

∀(ai∈(Cj))∈C 6∃C
j′∈C uai

(Cj′∪{ai}) > uai
(Cj) (5)

We choose to prove equilibrium using Sharkovsky theo-
rem [5], by denying the existence of a two-period cycle in
our system.

Let Cx
 Cy represent core-coalitions Cx and Cy in equi-
librium. Let ax and ay represent agents that are part of
core-coalitions Cx and Cy, respectively. Based on Equa-
tions (2) and (5) following equations hold.

Q(Cx)−Q({Cx−ax}) ≥ Q(Cy∪{ax})−Q(Cy) (6)

Q(Cy)−Q({Cy−ay}) ≥ Q(Cx∪{ay})−Q(Cx) (7)

Lemma 1. In equilibrium Cx
 Cy, if ax does not want to
move, then subset {ax, ax′} ⊆ Cx will also not move.

Proof. From Equation (4) we know,

Q(Cx−{ax})−Q(Cx−{ax,ax′}) ≥ Q(Cy∪{ax,ax′})−Q(Cy∪{ax})

Q(Cx)−Q(Cx−{ax,ax′}) ≥ Q(Cy∪{ax,ax′})−Q(Cy)[∵Eq. (6)]

This result can be extended to any subset size and implies
that results shown for a single agent will also extend to sub-
set of agents in a core-coalition; hence proved.

Lemma 2. If a new agent az is added to equilibrium Cx

Cy, then equilibrium continues to hold.

Proof. Without loss of generality, let us say utility for agent
az is greater on joining Cx than Cy and hence agent az joins
Cx. By this assumption following equation is true,

Q(Cx∪{az})−Q(Cx)≥Q(Cy∪{az})−Q(Cy)

By adding and subtracting az from Cx we get,

Q(Cx∪{az})−Q(Cx∪{az}−{az})≥Q(Cy∪{az})−Q(Cy)

After joining Cx, az and ax ∈ Cx have equal utility,

Q(Cx∪{az})−Q(Cx∪{az}−{ax})≥Q(Cy∪{ax})−Q(Cy)

Therefore, ax would not move from Cx even after az joins.
From Equation (4) we know,

Q(Cx∪{ay})−Q(Cx) ≥ Q(Cx∪{az ,ay})−Q(Cx∪{az})

Q(Cy)−Q(Cy−{ay}) ≥ Q(Cx∪{az ,ay})−Q(Cx∪{az})[∵Eq. (7)]

Therefore, ay ∈ Cy would also not move; hence proved.

Lemma 3. If an agent ax′ ∈ Cx is removed from equilib-
rium Cx
 Cy, it is reattained in no more than one move.

Proof. Without loss of generality, this result would hold even
if an agent was removed from Cy. From Equation (4),

Q(Cx−{a′
x})−Q(Cx−{a′

x,ax}) ≥ Q(Cx)−Q(Cx−{ax})

Q(Cx−{ax′})−Q(Cx−{ax′ ,ax}) ≥ Q(Cy∪{ax})−Q(Cy)[∵Eq. (6)]

Therefore, ax would not move from Cx even after ax′ leaves.
Now a move is possible from Cy to Cx since after leaving

of ax′ the utility of joining Cx has increased. We assume an
agent ay′ ∈ Cy makes that move. From Equation (7),

Q(Cy)−Q(Cy−{ay}) ≥ Q(Cx∪{ay})−Q(Cx)

Q(Cy−{ay′})−Q(Cy−{ay′ ,ay}) ≥ Q(Cy)−Q(Cy−{ay})[∵Eq. (4)]

Since, Cx is equivalent to (Cx − {ax′}) ∪ {ay′} we obtain

Q(Cy−{ay′})−Q(Cy−{ay′ ,ay}) ≥ Q(Cx−{ax′}∪{ay′ ,ay})

−Q(Cx−{ax′}∪{ay′})

Therefore, ay would not move from Cy; hence proved.

Lemma 4. If a core-coalition Cz is added to equilibrium
Cx
 Cy, an equilibrium Cx
 Cy
 Cz will be attained.

Proof. Without loss of generality, let us assume only two
core-coalitions interact at a time, beginning with Cx and
Cz. By Lemma- 2 and 3 when Cx and Cz unidirection-
ally exchange agents until equilibrium Cx
 Cz is reached,
equilibrium Cx
 Cy will continue to hold. After Cx
 Cz

is reached, Cy and Cz unidirectionally exchange agents un-
til equilibrium Cy
 Cz is reached, while Cx
 Cy holds.
Thereby, Cx
 Cy
 Cz is attained; hence proved.

Theorem 1. Our MAS will achieve oscillation-free equilib-
rium from any given initial state in O(C) rounds.

Proof. From any given initial state, any core-coalition is
trivially in equilibrium when considered in isolation. Equi-
librium can be iteratively extended using Lemma 4 to any
number of core-coalitions. Further, Lemmas 2 and 3 show
that cycles of period two cannot exist in our MAS because
exchange of agents between core-coalition is always unidirec-
tional. Since period two cycle is easiest to create, corollary
of Sharkovsky theorem [5] says that in a dynamic system if
cycle of period two does not exist then cycle of any higher
period also does not exists. Additionally, since no cycle ex-
ists, an agent cannot return to core-coalition it had previ-
ously left. Thus, any agent can make a maximum of |C|
jumps (excluding incorrect myopic movement corrections)
before system reaches the equilibrium; hence proved.

Theorem 2. In equilibrium state on a many-core, agent
allocation is optimal under predicted information.

Proof. In equilibrium Cx
 Cy, let us assume V (C) is not
optimal under the purview of predicted IPC, and there exists
another allocation of agents to core-coalitions C′x and C′y
that is optimal. From Equation (1) we know,

Q(C′
x)+Q(C′

y) > Q(Cx)+Q(Cy) (8)

We assume all agents are part of either of the core-coalitions
and without loss of generality (Lemma 1) we say,

C′
x=Cx−{ax} and C′

y=Cy∪{ax}

Now since Cx
 Cy, from Equation 6 we have

Q(Cx)−Q({Cx−ax}) ≥ Q(Cy∪{ax})−Q(Cy)

=⇒ Q(Cx)−Q({C′
x}) ≥ Q(C′

y)−Q(Cy)

=⇒ Q(Cx)+Q(Cy) ≥ Q({C′
x})+Q(C′

y)

a contradiction to Equation (8); hence proved.

Initial State

a1

a2

a3

a4

C1 C2

(a) Round 1

Correction

C1 C2

a1

a2

a3

a4

(b) Round 2

Equilibrium

C1 C2

a2

a3

a4

a1

(c) Round 3

Phase Change

C1 C2

a2

IP
C

D
ro
p
in

t 1

a3

a4

a1

(d) Round 4

Equilibrium

C1 C2

a3

a4

a1

a2

(e) Round 5

New Task

C1 C2 C3

a3

a4

a1

a2

(f) Round 6

Equilibrium

C1 C2 C3

a3a4

a1

a2

(g) Round 7

Figure 5: Illustrative example demonstrating the Nash dynamics that can occur under CGT-MAS on a processor.

System Dynamics Illustration: We now illustrate
with the help of an example the autonomous Nash dynam-
ics that occur under CGT-MAS. Nash dynamics is a series
of best response myopic moves made by agents converging
towards Nash equilibrium. Figure 5 shows simple Nash dy-
namics that can occur on a processor with four agents (cores)
a1, a2, a3 and a4. It starts execution with two tasks that
are assigned empty core-coalitions C1 and C2. Let the task
associated with C1 have higher throughput than the task
belonging to C2 and in equilibrium C1 and C2 should be
assigned three agents and one agent, respectively.

Round 1 (Figure 5a): initially both C1 and C2 are empty
and all agents are unbounded. All agents evaluate the ben-
efits of joining either C1 or C2. All come to the same de-
cision of joining C1 associated with the higher throughput
task. Round 2 (Figure 5b): a1 evaluates the possibility of
joining C2 on behalf of all agents in C1 and concludes that it
is better off joining C2. Round 3 (Figure 5c): the dynamics
stop because equilibrium is reached as neither a1 wants to
move from C2 nor a2 wants to move from C1. Round 4 (Fig-
ure 5d): the task associated with core-coalition C1 enters a
new phase and its IPC decreases. New equilibrium should
have two cores assigned to both core-coalitions. a1 still does
not want to move from C2 but a2 now decides to move to C2

from C1. Round 5 (Figure 5e): the dynamics stop as system
reattains equilibrium. Round 6 (Figure 5f): another task
with core-coalition C3 enters the system or wakes up from
hibernation and has the highest throughput. New equilib-
rium has one agent assigned to C1 and C2, with two agents
assigned to C3. Note that a1 and a3 move to C3 in par-
allel from C2 and C1, respectively. Round 7 (Figure 5g):
dynamics come to halt again as an equilibrium is achieved.
Complexity: Each round of CGT-MAS requires |A|

agents to perform O(|C|) utility calculations as described in
Equation (2). In the worst-case, equilibrium can take up
to O(|C|) rounds (refer Theorem 1). In total, a maximum
of O(|A||C|2) calculations are required to ensure stability.
However, the processing overhead is distributed across all
cores resulting in O(|C|2) worst-case calculations per-core.

The many-core performance scheduling problem can also
be solved optimally using a scheduler based on DP. The DP
scheduler has a centralized overhead of O(|A||C|2), which is
difficult to parallelize [16]. Every time speedup or IPC of any
task changes, the optimal schedule needs to be re-evaluated.
In many-cores, where |C| >> 1, changes are nearly contin-
uous, making an online DP scheduler impractical.

DP scheduler has a space overhead of O(|A||C|), while
CGT-MAS space overhead is only O(1). Under CGT-MAS,
at worst |C| messages are broadcasted every round. Thus,
in the worst-case O(|C|2) messages need to be transmitted

Benchmarks Multi-Core Simulator (Cycle-Accurate) gem5 [4] Traces (1-8 Cores)

Many-Core Simulator (Trace) with SchedulerFinal Trace (64-256 Cores)

Figure 6: Experimental Setup.

every scheduling epoch. These messages can be transmitted
with low overhead using Network on Chip (NoC) proposed
for many-core architectures.

3. EXPERIMENTAL EVALUATIONS
Experimental Setup: We use a two-stage adaptive

many-core simulator for evaluation as shown in Figure 6.
In the first stage, we use cycle-accurate gem5 simulator [4]
with up to eight cores with ARMv7 ISA. Each core is a 2-
way out-of-order core with separate 64 KB L1 instruction-
and data cache. All cores share a 2MB unified L2 cache.
L1 caches are 4-way associative, while L2 cache is 8-way
associative with all caches having a line size of 64 bytes.
Multi-threaded tasks can run directly on the simulator. For
sequential tasks, we modify the gem5 simulator to model
Bahurupi adaptive multi-core architecture [14] that can exe-
cute a single sequential task on a virtual core-coalition of at
most 8 cores. With increase in every core in the simulated
system, cycle-accurate simulation time starts to increase ex-
ponentially, which makes cycle-accurate many-core simula-
tions (with hundreds of cores) timewise infeasible. To bypass
this limitation, we first collect isolated execution traces of
the tasks from the cycle-accurate simulator, albeit restricted
to core-coalition size of at most eight. We use a second trace-
driven simulator that operates on these execution traces to
model adaptive many-core with up to 256 cores. Akin to
other trace-driven simulators, our simulations also cannot
capture performance impacts due to resource contentions of
concurrent tasks execution in many-core architectures [11].

We create workloads out of 26 sequential single-
threaded (ILP) and 10 parallel multi-threaded (TLP) bench-
marks as listed in Table 1. Sequential benchmarks comprise
of integer-, float- and vision benchmarks from SPEC [9] and
SD-VBS suites [18]. Parallel benchmarks come from PAR-
SEC [3] and SPLASH-2 [20] suites. Benchmarks are ex-
ecuted in syscall emulation mode. SPEC- and SD-VBS-
benchmarks are executed with “ref”- and “full-hd’ inputs,
respectively. PARSEC- and SPLASH-2 benchmarks are all
executed with “sim-small” input.

All schedulers evaluated operate at a granularity of 10
million cycles. For a system running at 1GHz, this trans-
lates to decision making at 10ms, which is also the default
operational granularity of Linux schedulers [12].

Table 1: List of all the benchmarks used in the evaluations.

Type Benchmark Name
Integer astar, bzip2, gobmk, h264ref, hmmer, mcf, omnetpp,

perlbench, sjeng, twolf, vortex
Float art, bwaves, calculix, equake, gemsfdtd, lbm, namd,

povray, tonto
Vision disparity, mser, sift, svm, texture, tracking

Parallel blackscholes, cholesky, fmm, fluidanimate, lu, radix,
radiosity, swaptions, streamcluster, water-sp

64 128 256 512 1024

200

400

Number of Tasks

T
h
ro

u
g
h
p
u
t
[I
P
C
]

THRESH [15] DP-Oracle [7] CGT-MAS

Figure 7: Performance of different schedulers on a closed
256-core many-core. Higher value of throughput is better.

1 2 3 4

2

3

4

5

Task Arrival rate [arriving tasks per 10M Cycles]

R
e
sp

o
n
se

T
im

e
[B

il
li
o
n

C
y
c
le
s]

THRESH [15] DP-Oracle [7] CGT-MAS

Figure 8: Performance of different scheduler on an open 256-
core many-core. Lower value of response time is better.

Comparative Baselines: Authors in [7] presented a DP
based centralized optimal scheduler for multi-cores called
Profile, which takes in execution profiles of all tasks as an
input and operates on average speedups. We extend this al-
gorithm to DP-Oracle, which maximizes instantaneous IPC
in every scheduling epoch to get our oracular comparison.
Unlike Profile though, for a fair comparison DP-Oracle use
IPC prediction instead of profiling; same as CGT-MAS.

Maximize
∑|C|

j=1 Q(Cj), given constraint
∑|C|

j=1 |Cj |≤|A|

where Q(Cj) is the instantaneous IPC of the task associated
with core-coalition Cj . For perspective, we also choose to
compare against a threshold based heuristic called Thresh
presented in [15]. Thresh assign cores to a task as long as
task’s gain in speedup from the core is more than 40%.

Closed System: We begin with a closed system on a
256-core many-core. In a closed system, the system begins
with an immutable predefined set of tasks; instances of those
tasks on completion immediately rejoin the system for re-
execution. Throughput measured in terms of total system
IPC is the standard performance metric for a closed system
and highest possible value is desired. Figure 7 shows the
throughput with different schedulers under full spectrum of
system loads. For each experiment, ten random workloads
are generated with uniform distribution among all bench-
marks and the results obtained are then averaged across
these 10 workloads. Figure 7 shows performance of CGT-
MAS is equivalent to DP-Oracle under all loads. Thresh be-
ing heuristic in nature cannot optimally adapt to the work-
load and hence lags behind.

0 50 100 150 200
0

100

200

300

x10 Million Cycles

N
o
.
o
f
R
o
u
n
d
s

Figure 9: Number of MAS rounds occurring until conver-
gence in each scheduling epoch under CGT-MAS on a 256-
core many-core with 256 tasks.

Table 2: Overhead comparisons between CGT-MAS and
DP-Oracle on varisized closed many-core systems.

Cores Tasks
Total Processing

Decrease
Per-Core Processing

Decrease
Communication

Increase

64
32 2.78x 160.85x 4.05x
64 3.93x 228.46 x 2.84x

128 2.84x 161.80x 3.67x

128
64 3.32x 380.94x 6.79x

128 11.43x 1164.90x 2.26x
256 5.96x 616.59x 3.77x

256
128 4.83x 1088.67x 9.88x
256 8.31x 1724.49x 6.09x
512 6.63x 1345.93x 6.8x

Open Systems: CGT-MAS is not limited to closed sys-
tems but can be applied to open systems as well. In an
open system, tasks can arrive in the system at any time for
execution and permanently leave once finished. Response
time — measured as the time difference between task ar-
rival and departure — is the standard performance metric
for open systems. For each experiment, ten random work-
loads of 1024 tasks are generated with uniform distribution
amongst all benchmarks and the results obtained are then
averaged. The arrival time of the tasks follow Poisson dis-
tribution. Figure 8 shows the response time under different
schedulers with different loads. Performance of DP-Oracle
and CGT-MAS are also equivalent in open systems.

Convergence: CGT-MAS organizes itself autonomously
to produce better results with every successive round of
agent interactions until it converges. Figure 9 shows the
number of rounds it takes for CGT-MAS to attain equilib-
rium in every scheduling epoch for a closed 256-core many-
core system with full load (256 tasks). Convergence takes
most number of rounds in the initial state because all agents
are initially unbounded and system requires substantial re-
organization. After that, system can operate efficiently with
less rounds as only some of the tasks in the system change
their behavior substantially at any given time.

Scalability: We use number of floating point operations
performed and number of messages exchange by the agents
in CGT-MAS as an approximate measure of its processing-
and communication overhead, respectively. Total processing
overhead is sum of all the floating point operations through-
out the system in a scheduling epoch, while per-core pro-
cessing overhead is the maximum operations performed by
any core on behalf of its agents in that epoch.

In DP-Oracle, only one core does all the processing mak-
ing the total processing overhead and per-core processing
overhead equivalent. However, DP-Oracle has an advantage
over CGT-MAS in terms of communication overhead as it
requires only one round of communication in which all cores
send their state information to one selected core that per-
forms the scheduling. On the contrary, CGT-MAS requires
several rounds of communications for the same. Table 2

1 2 4 8 16 32 64 128 256

0.4

0.6

0.8

1

Tile Size

N
o
rm

.
T
h
ro

u
g
h
p
u
t

0

0.5

1

N
o
rm

.
O
v
e
rh

e
a
d

Throughput Total Overhead

Per-Core Overhead Communication Overhead

Figure 10: Normalized throughput and overheads under
CGT-MAS on a half-loaded closed 256-core many-core
where cores are segregated into varisized tiles.

shows 1000x reduction in per-core processing overhead at-
tained by CGT-MAS over DP-Oracle at the cost of 10x en-
largement of communication overhead when scheduling on
varisized closed many-core systems under different loads.

Tiling: Due to performance penalty for maintaining
cache coherency across spatially separated base cores, many-
cores will be clustered into shared-cache tiles [8]. In tiled
many-cores, only cores within a tile will be able to form
core-coalitions amongst each other. Figure 10 shows the
normalized throughput and overhead (against 256-core tile)
under varisized tiles on a half-loaded closed 256-core many-
core system. Figure 10 shows that keeping all cores in one
tile (256-core tile) has no substantial performance advantage
over a many-core in which cores are divided equally into two
tiles (128-core tile). However, tiling can substantially re-
duce scheduling overheads. As long as tile size remains suf-
ficiently larger than the average size of core-coalitions that
could have been formed without the tiling restriction, the ef-
fects on throughput are insignificant. As tile size is reduced
further, performance starts to drop significantly.

4. CONCLUSION
We propose a MAS scheduler called CGT-MAS for dis-

tributed dynamic scheduling on many-cores. CGT-MAS
theoretically guarantees convergence to the optimal solution
in a given number of steps from any initial state. Since CGT-
MAS disburses its processing overhead across all the cores in
a many-core, it can scale up as number of cores in the many-
core increase. This scheduling can also be done optimally us-
ing a DP-based centralized scheduler called DP-Oracle. Our
evaluations show that both schedulers reach the same solu-
tions but CGT-MAS does so with 1000x reduction in per-
core processing overhead. Thus, CGT-MAS is more suited
for performing scheduling on many-core than DP-Oracle as
it provides scalability without making any compromise on
the quality of the solution obtained. Scheduling on multi-
cores has been extensively explored but many-cores bring
a new a paradigm shift in which existing works need to be
revisited. CGT-MAS represents a step in that direction.

Acknowledgement
This work was supported in parts by the German Research
Foundation (DFG) as part of the Transregional Collabora-
tive Research Centre “Invasive Computing” (SFB/TR 89)
and in parts by Huawei International Pte. Ltd. research
grant in Singapore.

5. REFERENCES
[1] I. Ahmad, S. Ranka, and S. U. Khan. Using Game Theory

for Scheduling Tasks on Multi-core Processors for
Simultaneous Optimization of Performance and Energy. In
International Symposium on Parallel and Distributed
Processing (IPDPS), 2008.

[2] J. Augustine, N. Chen, E. Elkind, A. Fanelli, N. Gravin,
and D. Shiryaev. Dynamics of Profit-Sharing Games.
Internet Mathematics, 2013.

[3] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC
Benchmark Suite: Characterization and Architectural
Implications. In International Conference on Parallel
Architectures and Compilation Techniques (PACT), 2008.

[4] N. Binkert et al. The gem5 Simulator. In SIGARCH
Computer Architecture News, 2011.

[5] K. Burns and B. Hasselblatt. The Sharkovsky Theorem: A
Natural Direct Proof. Mathematical Monthly, 2011.

[6] T. Ebi, M. Faruque, and J. Henkel. TAPE: Thermal-Aware
Agent-Based Power Economy Multi/Many-core
Architectures. In International Conference on
Computer-Aided Design (ICCAD), 2009.

[7] D. P. Gulati, C. Kim, S. Sethumadhavan, S. W. Keckler,
and D. Burger. Multitasking Workload Scheduling on
Flexible-core Chip Multiprocessors. In International
Conference on Parallel Architectures and Compilation
Techniques (PACT), 2008.

[8] J. Henkel, A. Herkersdorf, L. Bauer, T. Wild, M. Hübner,
R. K. Pujari, A. Grudnitsky, J. Heisswolf, A. Zaib,
B. Vogel, V. Lari, and S. Kobbe. Invasive Manycore
Architectures. In Asia and South Pacific Design
Automation Conference (ASP-DAC), 2012.

[9] J. L. Henning. SPEC CPU2006 Benchmark Descriptions.
Computer Architecture News, 2006.

[10] C. Kim, S. Sethumadhavan, M. S. Govindan,
N. Ranganathan, D. Gulati, D. Burger, and S. W. Keckler.
Composable Lightweight Processors. In International
Symposium on Microarchitecture (MICRO), 2007.

[11] K. M. Lepak, H. W. Cain, and M. H. Lipasti. Redeeming
IPC as a Performance Metric for Multithreaded Programs.
In International Conference on Parallel Architectures and
Compilation Techniques (PACT), 2003.

[12] V. Pallipadi and A. Starikovskiy. The Ondemand Governor.
In The Linux Symposium, 2006.

[13] A. Pathania, V. Venkataramani, M. Shafique, T. Mitra,
and J. Henkel. Distributed Fair Scheduling for Many-Cores.
In Design, Automation and Test in Europe (DATE), 2016.

[14] M. Pricopi and T. Mitra. Bahurupi: A Polymorphic
Heterogeneous Multi-core Architecture. Transactions on
Architecture and Code Optimization (TACO), 2012.

[15] M. Pricopi and T. Mitra. Task Scheduling on Adaptive
Multi-Core. Transactions on Computers (TC), 2013.

[16] A. Stivala, P. J. Stuckey, M. G. de la Banda,
M. Hermenegildo, and A. Wirth. Lock-Free Parallel
Dynamic Programming. Parallel and Distributed
Computing, 2010.

[17] V. Vanchinathan. Performance Modeling of Adaptive
Multi-core Architecture. Master’s thesis, National
University of Singapore, 2015.

[18] S. K. Venkata, I. Ahn, D. Jeon, A. Gupta, C. Louie,
S. Garcia, S. Belongie, and M. B. Taylor. SD-VBS: The San
Diego Vision Benchmark Suite. In International
Symposium on Workload Characterization (IISWC), 2009.

[19] S. Wildermann, T. Ziermann, and J. Teich. Game-theoretic
Analysis of Decentralized Core Allocation Schemes on
Many-Core Systems. In Design, Automation and Test in
Europe (DATE), 2013.

[20] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The SPLASH-2 Programs: Characterization and
Methodological Considerations. In Computer Architecture
News, 1995.

