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ABSTRACT
Coarse-Grained Reconfigurable Arrays (CGRAs) provide high per-
formance, energy-efficient execution of the innermost loops of an
application. Most real-world applications, however, comprise of
deeply-nested loops with complex and often irregular control flow
structures that cannot be mapped to CGRAs by existing compilers.
This leads to excessive data transfer costs as the execution continu-
ously alternates between the outer loop-nests on the host processor
and the innermost loop on the CGRA accelerator. Moreover, ultra-
low power CGRAs can only include limited on-chip memory to
cache the configuration bitstreams and need frequent swapping
of configurations in the presence of multiple innermost loops. We
introduce DNestMap, a partitioning and mapping tool for CGRAs,
that can judiciously extract the most beneficial code segments of
multiple deeply-nested loops and effectively cache them together
statically in the configuration memory through spatio-temporal
partitioning. DNestMap achieves 1.58X performance improvement
compared to dynamic caching of configuration contexts of the in-
nermost loops in the CGRAs with limited on-chip memory.
1 INTRODUCTION
CGRAs are gaining traction due to their superior energy efficiency
over other forms of computation platforms, making them a good
candidate for Internet of Things (IoT) and wearable devices. CGRAs
offer a good balance of flexibility and efficiency compared to alter-
natives such as FPGAs and ASIC accelerators for computationally
demanding workloads. A CGRA consists of an array of processing
elements (PEs), each including an ALU, a register file, and a config.
memory (CMEM) as shown in Fig 1. A PE is directly connected
to its neighboring PEs. The PEs share a data memory that can be
directly accessed by a subset of the PEs. The host processor handles
data transfer to/from the data memory in the beginning/end of exe-
cution via DMA. CGRAs are ideal for acceleration of loop kernels.
The operations (including memory operations) within a loop are
scheduled on the PEs, while data flows are routed between depen-
dent operations, all at compile time. This scheduling and routing
information is stored in the on-chip CMEM .

Conventionally, the frequently executed segments of an appli-
cation — the innermost loops — have been the target of CGRA
acceleration. In recent literature, there have been several works
that explore the mapping of loop-nests beyond the innermost level.
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Figure 1: A 4x4 CGRA Architecture

For perfectly nested loops, [5] applies polyhedral based mapping
techniques. For imperfectly nested loops, [6] proposes to flatten
the loop hierarchy at the expense of increased code size for the
kernel. [17] proposes a method to map two of the innermost levels
of loop-nests using less CMEM compared to [6].

In applications with multiple loop-nests, these techniques are of-
ten limited by the number of loop-nests that can fit within the small
CMEM , especially in ultra-low power CGRAs. A variety of low-
power CGRAs have been proposed in recent years including HEAL-
WEAR[8], Samsung Reconfigurable Processor[2], REMUS_LPP[9]
and HyCUBE[12]. Table 1 shows that the on-chipCMEM is limited
to only a few hundred bytes per PE. This is due to their highly
constrained power budget — about 40% of the CGRA power is con-
sumed by the on-chipCMEM in [12]. To solve thisCMEM capacity
constraint, recent works [4, 13, 16] propose architectural improve-
ments to use the CMEM as a cache that stores the most recently
accessed loop-nests at runtime. The dynamic caching leads to per-
formance improvement because more segments of the application
can be accelerated and the data transfer between the host and the
CGRA is minimized. It is possible to naïvely employ caching even
within a loop-nest to expand the mappable loop-nests beyond the
innermost loops; but the frequent context switching between outer
and inner loops may incur significant overhead.

We propose DNestMap, a CGRA mapping framework that se-
lects the beneficial code segments across complex, deeply-nested
loops for acceleration (Fig 2) and assigns each segment to a spatio-
temporal partition of the aggregated conguration memory of the
CGRA, while considering CMEM constraints and communication
overheads. DNestMap segments the control-data flow graph of the
program into mapping units that are either loops or non-loop code
segments potentially mappable to the CGRA. It performs static and
dynamic analysis of the data and context transfers between map-
ping units to determine the acceleration potential of each mapping
unit, taking into account the communication costs.

Table 1: Low-Power CGRAs
CGRA Arch. Process Freq.(Mhz) Power(mW) CMEMperPE
HyCUBE[12] 40nm 50 14.16 256 Bytes
HEAL-WEAR[8] 65nm 1 N/A 384 Bytes
ULP-SRP[2] 40nm 100 22.3 N/A
REMUS_LPP[9] 65nm 75 23.75 560 Bytes
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Figure 2: DNestMap: Packing loop-nests in context memory

Given limitedCMEM , DNestMap selects and tightly packs a sub-
set of the mapping units. It does so by formulating the mapping
problem as a 3D orthogonal knapsack (3D-OKP) problem. CMEM
is viewed as a 3D container where height and width are the di-
mensions of the PE-array (e.g., 4 × 4 array) and the depth is the
number of configuration words available per PE. Each configura-
tion word encodes the operation mapped to the PE and the routing
information in a single cycle. Each mapping unit is treated as a
box that needs to be packed inside the CMEM . The width and the
height of the box indicate the number of PEs used by the mapping
unit along X-Y dimensions and the depth represents the number
of configuration words needed by the code segment. The goal is
to pack a subset of the code segments (boxes) inside the CMEM
(container) such that the execution time of the entire application
is minimized. We propose a dynamic programming approach for
the 3D-OKP problem that re-uses prior packing decisions to reach
near-optimal mapping solutions.

DNestMap achieves 1.58X improvement in performance on aver-
age compared to the state-of-the-art where limited CMEM is used
as a cache to map the innermost loops.

2 MOTIVATION OF DNESTMAP
The CGRA is used to accelerate the innermost loops in an appli-
cation. The CGRA mapping algorithms [7, 11, 12] schedule the
operations inside the loop body on the PEs and route the dataflow
between dependent operations. The schedule and route per PE per
cycle are encoded as a control word. The schedule length of the loop
kernel, which is also the interval between successive loop iterations,
is called the Initiation Interval (II). The goal of the mapping algo-
rithms is to minimize the II so as to maximize throughput. Existing
mapping approaches utilize all the PEs in the array to minimize the
II value. That is, each mapped loop requires XWidth×YWidth× I I
control words, where XWidth and YWidth are the number of PEs
in the X-dimension and Y-dimensions, respectively.

Consider the loop-nest in Fig.2 comprising of one outer loop
(LN1) and three inner loops (LN11,LN12,LN13). A conventional
CGRA compiler will map each inner loop independently to min-
imize its individual II value, subject to resource and recurrence
constraints. Let us assume that for each inner loop, the minimum
possible I I = 2 in this example utilizing all the PEs. However, the
CMEM can only hold three control words. Thus all the inner loops
cannot be stored together in the CMEM . If the CMEM is used as a
cache, the control words corresponding to each inner loop needs to
be swapped in from the off-chip storage before it starts execution.
Assuming that the outer loop executes N times, this will result in
3N context switches. As each control word is very long for the en-
tire CGRA (for example, 8 x 16 = 128 Bytes for 4x4 HyCUBE CGRA),
each context switch incurs significant overhead. We observe that

the existing approaches focus on partitioning the CMEM among
the loop kernels only along the temporal dimension (II dimension).
Each loop still uses all the PEs (LN11_V 1,LB12_V 1,LN13_V 1).
Thus the CMEM can accommodate a set of loops L if and only
if
∑
l ∈L I I (l) ≤ T , where I I (l) is the minimum II value for loop l

and T is the number of control words available in the CMEM .
Clearly, these approaches miss out the opportunity of partition-

ing along the spatial (XY) dimension, that is, partitioning the PEs
among the loop kernels in addition to the temporal dimension.
As shown in Figure 2, each inner loop can also be mapped some-
what differently by utilizing only a subset of the PEs (LN11_V 2,
LB12_V 2, LN 13_V 2). As each loop uses limited PE resources, the II
value increases from 2-cycles to 3-cycles. However, now the control
words corresponding to all the inner loops can be packed together
in theCMEM as shown in Figure 2. Thus the execution of the entire
loop-nest will not require any context transfers.

The spatio-temporal partitioning of the CMEM as opposed to
temporal partitioning leads to longer II value for each individual
loop kernel. However, if the context transfer and the data transfer
overhead of the temporal partitioning solution is higher than the
performance gain due to the shorter II value, spatio-temporal parti-
tioning will perform better for the overall application. DNestMap
exploits this observation to explore the spatio-temporal partition-
ing of the code segments in CMEM . DNestMap enumerates the
different spatial mapping choices for each loop kernel and their II
values. It then intelligently searches through the combination of
different choices for the loops and attempts to pack them together
in the CMEM so as to maximize the application performance. Note
that in conventional CGRAs, all the PEs participate in execution in
each cycle, but DNestMap decouples this association. When a loop
executes, only the PEs associated with the loop participates and
the rest of the PEs are disabled by the control logic of the CGRA.
In the next section, we present the formulation of the DNestMap
mapping problem as 3D orthogonal packing problem.
3 PROBLEM FORMULATION
3.1 Mapping Units
We start with the segmentation of the application program into
Mapping Units (MUs), the granularity of mapping in our framework.
Let L = set o f all loops
De f , child loop = immediate inner loop
De f ,ψ : li → {li1, . . . , lip } | s .t .{li1, . . . , lip }are child loops o f li .

De f ,ψ−1 : lj → li | s .t . lj ∈ ψ (li ), li is the parent o f lj .
De f , Pi = seдments o f li ∈ L f or ψ (li ) , ∅| de f , P : li → Pi
De f ,ki = kernel o f li ∈ L f or ψ (li ) = ∅ | de f ,K : li → ki
De f : MU can be any P(li ) or K(li ) |li ∈ L

The control data flow graph (CDFG) is partitioned into multiple
MUs. A loop li is an innermost loop if it does not have any child
loop (ψ (li ) = ∅). Similar, a loop li is an outermost loop if it does not
have a parent (ψ−1(li ) , ∅). In Fig 3, l2 and l4 are innermost loops,
while l1 is an outermost loop. l2 and l3 are the children of l1.

An innermost loop li comprises only of the kernel ki . Any outer
loop li comprises of one or more segments appearing before (pro-
logue) and/or after (epilogue) of each child loop. We define these
set of segments for loop li as Pi . The segments Pi can be viewed
as loops with single iterations. For example, loop l1 has three such
segments : MU1,MU2 and MU3. For any outer loop li , a kernel ki
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does not exist and instead ψ (li ) represents the inner loops of the
current loop li , that could be further expanded into segments and
inner loops/kernels. We denote each of the segments and kernels
as a MU. A MU is owned by the loop for which the MU is either
the kernel or a segment. Based on the final decision of DNestMap,
a subset of the loops will be mapped to the CGRA in terms of the
MUs they own.

3.1.1 Inter Mapping Unit Data Transfers : Each MU may
produce data that needs to be accessed in otherMUs.Whenmapping
to the CGRA, it is important to take into account the possible data
communication costs in choosing the optimal subset of MUs for the
CGRA. All the possible data flow edges betweenMUs can be inferred
through static analysis. We introduce edges connecting an MU that
modifies a variable to all the other MUs that accesses the variable.
Once all the edges have been added, we assign a weight to each edge
based on the amount of data transfer along that edge. The amount
of data transfer depends on the number of variables involved and
the number of times the control flow transitions between the MUs.
The latter is obtained through profiling.

From the profiling information, the number of times each loop is
invoked can be calculated as Inv(l) | l ∈ L where L is the set of all
loops. There are two variants of inter-MU data flow dependencies.

1) Dataflow dependency along ancestry line: Any data flow from
anMU in an outer loop la to an MU in any of its descendant loops ld
is defined as dataflow dependency along ancestry line. For example
in Fig.3, the dependency through the variable var1 from MU2 to
MU7 is such dependency as l1 is an ancestor of l4 (l4 ∈ ψ (l3) ∧ l3 ∈

ψ (l1)). Such dependencies will be weighted (denoted byw in Fig.3)
according to the number of invocations ofψ−1(ld ) as the data will
not be modified afterψ−1(ld ) (the loop l3 in our example).

2) Dataflow dependency outside ancestry line: Any dataflow from
anMU in loop li to another MU in loop lj where there is no ancestor-
descendant relationship between the two loops is outside the ances-
try line. In this case, we need to find the closest common ancestor
loop lp such that lp is an ancestor of both li and lj and there does
not exist any other common ancestor in the ancestry line lp ⇝ li
and lp ⇝ lj . Let li′ and lj′ be the children of lp along the ancestry
lines lp ⇝ li and lp ⇝ lj , respectively. Then, the dependency
between the MUs is weighted by the minimum of the number of in-
vocations of li′ and lj′ , that is,min(Inv(li′), Inv(lj′)). This is because
data transfer is exercised by the minimum of the times the data is
read or modified. Moreover, after the divergence, the variable is not
modified. For example in Fig.3, the dependency through variable
var2 from ofMU7, toMU4 is such dependency as l3 (l4 ∈ ψ (l3)) and
l2 are siblings. Thus, the edge would be weighted according to the
minimum number of invocations of the two siblings where the line
of ancestry diverges. That would be l3 and l2 andmin(12, 16) = 12.

Function Body

l1 (Inv = 1)
MU1

MU2

l2 (Inv = 16)

MU4

l4 (Inv = 24)

MU7

MU3

Inter-MU Control Flow

var2
(w=12)l3 (Inv = 12)

MU5

MU6

var1
(w=12)

Inter-MU Data Flow
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(w=12)

Function Body

MU1

MU2

MU4
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Figure 3: MU partitioning and inter-MU data transfers.

3.2 Mapping Problem
DNestMap chooses the best possible loop candidates in the deeply-
nested code structure given limited CMEM . Each individual loop
owns several mapping units as described in Section 3.1. Each MU
can bemapped to a sub-CGRAwith dimensions ranging from 1×1 to
XWdith ×YWidth, where XWidth and YWidth are the number of
PEs along X and Y dimension, respectively. Thus we can enumerate
all possible mappings for an MU with different II values (different
number of control words) depending on the sub-CGRA dimensions.
We call each of these mapping unit schedule (MUS). Let us define
MUSi,x,y as the mapping of the ith MU (MUi ) to a rectangular
sub-CGRA with x × y dimension.MUSi,x,y can be visualized as a
rectangular cuboid in the 3D space, created by time-extending the
2D sub-CGRA to the required number of control words. Similarly,
the total configuration space (CMEM) could be visualized as a 3D
container, created by time-extending the 2D CGRA to the available
number of control words. For maximum acceleration, we need to
fit the optimal subset of rectangular cuboids from the MUs (at most
one per MU) inside the container.

Prior to finding the optimal subset of MUS, we need to solve the
decision problem of whether a given set of MUS fit inside CMEM .
The decision problem of whether suchMUSi,x,y from different MU
can fit in the CMEM becomes analogous to finding whether a set
of boxes (with dimensions (xi ,yi , ti )) will fit in a container (with
dimensions xC ,yC , tC ). The naive approach would be to search
for combinations of all possible placements of each box in the
3D space of the container, until a legal placement is found. This
problem had been studied in the operations research community
and the exact solution is discussed in [15]. An abstraction called
Packing Class[14] is introduced where the search space is reduced
to constructing three graphs with number of nodes equal to the
cardinality of the set of boxes.

3.2.1 A Packing Class. Given a feasible packing, we can con-
struct a set of graphs (Gi = (V ,Ei )), one corresponding to each
dimension (in our case i = 0, 1, 2). Each graph represents the pro-
jections of the packed boxes to the corresponding dimension. The
nodes of the graphsV represent the boxes (vn ). If the boxes overlap
once projected to the ith dimension, we add an edge: (vn1,vn2) ∈ Ei .
For example Fig 4. shows a packing of 2D boxes in a 2D con-
tainer. When the boxes are projected towards the right (Y-axis),
G2 = (V ,E2), shows the edges between boxes that are overlapping:
v3,v2,v1. Similarly, G1 shows the overlap when projected to the
X-axis. A set of graphs Gi = (V ,Ei ) form a packing class, if the
following properties are satisfied [14]

• P1 : Ei does not contain an odd 2-chordless cycle.1
• P2 : Ei does not contain chordless cycle of length=4

1A chord is an edge joining two nonadjacent nodes in a cycle. A 2-chord is a chord
that have the two nonadjacent nodes only separated by a single node in the cycle.

Figure 4: An example packing class for a 2D container [14]3



• P3 : Ei does not contain a clique S , such that the summation
of lengths of v ∈ S in the ith dimension is less than the
length the container in the i dimension.

• P4 : ∩iEi = ∅
As a packing class abstracts many possible ways of packing, the
search space is reduced to just finding the Gi s that satisfy the
above properties. [15] proposes to use a branch and bound solution
with strong pruning conditions, aimed to construct Gi s starting
with edge-less graphs and then, iteratively add edges until the
above properties are satisfied. This is called the decision problem
of Orthogonal Packing Problem of d-dimensions (OPP-d). This
problem is known to be NP-Complete in a strict sense. However,
due to the packing class abstraction, the complexity is now in terms
of the edges in the projected graphs as opposed to all possible
placements in the 3D space. We develop a modified version of
constructing the packing class for the CGRA mapping problem.

Packing Class for Mapping Unit Schedule : When solving
the Orthogonal Packing Problem of 3-Dimension[14] (OPP-3D)
for the case of Mapping Unit Schedules (MUS), there is a slight
difference that the packing class is allowed to have chord-less cycle
of length 4 in the time dimension. For example Fig.5 illustrates a
valid packing that has a chord-less cycle of length 4 in the projected
graph along the time dimension. This is because only one MU
executes in the CGRA fabric at any point in time and its schedule
is repeated (modulo) after II cycles, allowing it to initiate from a
larger address and wrap back to the beginning of theCMEM (v4 in
Fig.5).
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Figure 5: A valid packing of MUS in config. memory

3.3 3D Orthogonal Knapsack Problem with
Synergistic Selection (3D-OKP-SS)

The CGRAmapping problem aims to select a subset of the MU SMU
and an MUS versionMUS(i,x,y) for each MUmi ∈ SMU such that
the selected combination of MUS fit within the CMEM . However,
we need to take into account the data communication cost when the
control flows from an MU chosen to be implemented in the CGRA
to an MU implemented in the host and vice-versa. The bytes to be
transferred between the CGRA and the host processor is calculated,
by performing summation of the weights on the edges that cross
the boundary between the CGRA and the host. As discussed in
Section 3.1.1, the edges are weighted by the variables that need
to be transferred and the invocation frequency of the transfer. In
order to avoid double counting, they are enumerated using a tuple
that consists of the source mapping unit where the data is created,
the loop in the boundary and the variable identifier. The cost is
calculated via weighted (invocation weight) summation of the sizes
of the variables.

Now the problem is to find the optimal set SMU that maximizes
the Savings (Eq.1), while ∀m ∈ SMU can form a valid packing class
(by choosing appropriate MUS version for each MU), as described
in Section 3.2.1. This problem is very similar to the 3D-Orthogonal

Knapsack Problem (3D-OKP), except that the selected MUs may
contribute to synergistic gain or loss depending on the communica-
tion cost. Thus, we define the problem as 3D-Orthogonal Knapsack
Problem with Synergistic Selection (3D-OKP-SS) that is also NP-
Complete.
Savinдs (SMU ) = HostCycles (SMU ) −CGRACycles (SMU ) −CommCost (SMU ) (1)

Algorithm 1: 3D-OKP-SS - DNestMap Algorithm
1 P(l) = {child loops of l}
2 Function PopulatePotLp(L+, L− )
3 foreach l ∈ L do
4 if P (l ) ∩ L+ == P (l ) and l ∩ L+ == ∅ and l ∩ L− == ∅ then PotL := l ;
5 end
6 return PotL;
7 si = init; SI.push(si);
8 while SI , ∅ do
9 Select si ∈ SI ; SI = SI \ si ;

10 (si.OPP3DInfo,result) = CheckPacking (si.MU+);
11 if result == sucess then UpdateSavings(si.MU+,si.OPP3DInfo) ;
12 else continue ;
13 si.PotL = PopulatePotLp(si .L+, si .L− );
14 if si.PotL == ∅ then continue;;
15 Select nL ∈ si .PotL; si .PotL = si .PotL \ nL;
16 MUS_Combos = AllMUSCombos(nL);
17 lets denote < MUS >p >∈ MU _Combos ∀p ;
18 < MUS >a= arдmaxp CalcGainDensity(< MUS >p );
19 < MUS >b= arдminp CalcCGRACycles (< MUS >p );
20 siN1 = si ; siN2 = si ; siN3 = si ;
21 siN1 .L+ := nL; siN2 .L+ := nL; siN3 .L− := nL;
22 siN1 .MU + :=< MUS >a ; siN2 .MU + :=< MUS >b ;
23 SI .push(siN1); SI .push(siN2); SI .push(siN3);
24 end

4 DNESTMAP ALGORITHM
We now present the DNestMap algorithm (Alg.1) to find the optimal
subset of MUs (SMU ) using a branch-and-bound (B&B) search with
efficient pruning. The original OPP-3D algorithm [15] is adapted
for our purposes. The main change is that the success criterion
is changed to find the packing class for MUS (Section 3.2.1). At a
high-level, DNestMap algorithm is a 2-level B&B algorithm. The top
level B&B is for the selection of the set of Mapping Units Schedules
(MUS = Mi,x,y ) to be included in the CGRA. At each search node
in the top-level B&B tree, a decision on which MUS to be included is
already taken. Based on that decision, the low-level B&B is invoked
to test whether the given set of MUS can fit in the container. The
low-level B&B is a building block for the top-level B&B algorithm.

Low-Level B&B : Given a set of MUS, finding whether they will
fit inside CMEM starts with constructing the projected graphs for
each dimensions : G = {Gx ,Gy ,Gt } that represent overlaps in the
corresponding dimension, similar to the exact solution provided
for OPP-d [15]. Initially, all pairs of MUS s.t. their sum of widths of
x ,y, t dimensions exceed the width of the container (CMEM) are
included to the projected graph. Then, the low-level B&B will try
to add edges in projected graphs until the properties for packing
class for MUS is satisfied (Section 3.2.1) or prune the branch when

PotLoops = {LN11}
L+ = {LN121} , L- = {}

MU+ = {POST_LN112x2, PRE_LN112x2, INNER_LN112x4}

SearchInfo : Branch & Bound of OPP-3D of MUS

1 2 3

Ex- = {<1,2>} 
Ey- = {}
Et- = {}

Ex+ = {<1,2>} 
Ey+ = {}
Et+ = {}

Ex+ = {<1,2>} 
Ey+ = {<2,3>,<1,3>}
Et+ = {}

Ex+ = {<1,2>} 
Ey+ = {<2,3>,<1,3>}
Et+ = {<1,2>}

Ex+ = {<1,2>} 
Ey+ = {<2,3>,<1,3>}
Et+ = {<1,2>,<2,3)}

Ex+ = {<1,2>} 
Ey+ = {<2,3>,<1,3>}
Et+ = {<1,2>,<2,3)}c

Ex+ = {<1,2>} 
Ey+ = {<2,3>,<1,3>}
Et+ = {<1,2>,<2,3>,<1,3>}A Valid Packing!

All the search info is inherited from the parent in branch
and bound tree of OKP-3D-SS.  Dynamic Programming

Figure 6: An example Low-Level B&B of OPP-3D of MUS.4



PotLoops = {LN11, LN12}
L+ = {LN121} , L- = {}

MU+ = {MUS7,1,1}

PotLoops = {LN11}
L+ = {LN121} , L- = {}

MU+ = {MUS7,4,3, MUS5,1,1, MUS6,1,1}

Function Body

l1

MU1

MU2

l2

MU4

l3

MU5
l4

MU7
MU6

MU3

PotLoops = {l2,l4}
L+ = {} , L- = {}

MU+ = {} 

PotLoops = {l2}
L+ = {} , L- = {l4}

MU+ = {}PotLoops = {LN11,LN121}
L+ = {} , L- = {}

MU+ = {MUS7,4,3}

PotLoops = {l2,l3}
L+ = {l4} , L- = {}

MU+ = {MUS7,4,4}

PotLoops = {LN11}
L+ = {} , L- = {}

MU+ = {MUS7,4,3, MUS5,4,4, MUS6,4,3}

PotLoops = {l2}
L+ = {l4,l3} , L- = {}

MU+ = {MUS7,4,3, MUS5,4,4, MUS6,4,4}

PotLoops = {l2}
L+ = {} , L- = {l3}

MU+ = {MUS7,4,3}

Figure 7: An example Top-Level B&B tree of 3D-OKP-SS.

the existence of such packing class becomes impossible based on
the considered edges [15].

Top-Level B&B : This is the main B&B algorithm that uses the
low-level B&B as a building block. Initially, the MUSs belonging
to the innermost loops are selected. Based on the outcome of the
low-level B&B (i.e., whether the packing is successful), the current
branch will either proceed or be terminated. If the current packing
is successful, the search will move forward to include any possible
parent loop : lp to the list potential loops (PotL) that could mapped
in the future (using PopulatePotLp - line 3-10). A loop li is selected
out of the potential loops (PotL) and explored based on the following
two characteristics:

GainDensity =
Savinдs(MU1, ...,MUn )∑
MUi,x,y Volume(MUi,x,y )

CGRACycles =
∑
MUi,x,y CyclesCGRA[MUi,x,y ]

We will include the set of MUS that provide the maximum
GainDensity and the set of MUS that provide the minimum CGRA
cycles. Based on our experiments, the maximumGainDensity strat-
egy works well for application with larger number of loops and
the minimum CGRACyles works well for applications with lesser
number of loops. In order to avoid re-explorations of the low-level
B&B search in the child nodes of the current search node of the
top-level B&B, the already explored projected graphs are forwarded
to the child nodes, exploiting memoization. An example is shown
in Fig.7. At every successful packing, maximum savings of cycles
and the set of MUS are stored, for it to be a possible end solution.

5 EVALUATION
In this section, we evaluate the DNestMap framework for any
generic ultra-low power CGRAs with limited CMEM .

Fig.8 illustrates the overview of the framework. The target source
code is first partitioned intoMUs using theMappinдUnitExtraction.
We implement this functionality based on LLVM 3.9[3] and gener-
ate two outputs: (1) LLVM-IR segments for each of the MU that can
be passed on to the CGRA compiler, and (2) Instrumented Binary
to capture the execution details in the granularity of MU and basic
blocks in the host processor. The CGRA compiler (specific to the
target CGRA) generates all possible Mapping Unit Schedules (MUS
with dimensions: 1x2,...,4x4 etc. depending on the PE array size) for
each MU. Note that in reality, the CGRA compiler is invoked on a
need to know basis as the mapping algorithm explores the different
MUs and it is not necessary to generate all possible MUS a-priori.
The execution of the instrumented binary provides the number
of host cycles to execute an MU. Using these inputs, DNestMap
Alg.1 finds the optimal subset of MUS that provides the maximum
performance benefit. The actual performance benefit is calculated

by executing the partitioned application with the chosen MUS on
the CGRA and the remaining MUs on the host processor.

In order to obtain concrete performance results, we use ARM-
Cortex M3 (common in wearable platforms, running at 48 MHz) as
the host processor and our previously designed 4 × 4 HyCUBE[12]
as the CGRA. The communication interface between the host and
the CGRA is modelled as a standard AMBA-AHB[1] connection that
could transfer 32bits per cycle for transferring array variables and
16bits per cycle for transferring scalar variables (address and data
alternate every cycle). HyCUBE can achieve 4X lower II compared
to the regular CGRAs for the same kernel due to the single-cycle,
multi-hop communication between distant PEs and hence impose
less demand on the CMEM due to the lower II. Thus, if DNestMap
framework shows performance improvement with HyCUBE, the
improvement will be more pronounced with regular CGRAs that
require more CMEM per kernel. We modified the architecture by
extending the data memory connectivity to all the PEs in a given
row (with negligible area overhead), such that any subset of the
PEs that gets activated can use the memory as if it was a sub-CGRA.
As only one MU is activated at a given point of time, there is no
conflict for data memory access among the MUs.

We use typical wearable applications that demand an energy-
efficient execution platform for our evaluation: (1) FFT : is essential
to all sensory data computations and is typically used in applications
like gesture recognition. (2) AES: Encryption is a critical function
that guarantees security of personal data collected. (3) DCT: is used
for general compression of natural data collected. (4) SVD: is the
ideal algorithm for characterising features of wearable sensory data.

We compare DNestMap with existing approaches: (1) CacheIn-
ner1: Most CGRA compilers[7, 11, 12] target the innermost loops.
More recent works [4, 13, 16] have used the CMEM as a cache to
store the configuration context of recent innermost loops. This
baseline evaluates the performance when the innermost loops are
dynamically cached in the CMEM using perfect LRU policy. (2)
CacheInner2: Some recent works[6, 17] consider one level be-
yond the innermost loops to achieve better performance. To eval-
uate potential benefits, we combine this with caching to mitigate
the CMEM constraints, similar to the previous baseline. (3) Stat-
icTemporal: This is a static caching approach that partitions the
CMEM along the temporal axis by placing the most executed MUs
mapped to full CGRA dimensions of 4x4. This approach is used
to understand the tradeoff between dynamic caching CacheInner1,
CacheInner1 versus static caching and to evaluate the impact of
spatio-temporal partitioning in the DNestMap approach compared
to a pure temporal partitioning technique.

We consider four differentCMEM sizes. Table 2 shows theCMEM
power compared to the total power of the CGRA for HyCUBE run-
ning at 50MHz. TheCMEM power is estimated using CACTI 6.5 [10]
while the rest of the chip power is derived from RTL synthesis and
layout (onto 40nm, using Synopsys DC for synthesis and Cadence
Encounter for P&R) results. Clearly,CMEM is a significant contrib-
utor to the CGRA power. Fig.9 shows the accelerated execution

Figure 8: The DNestMap Framework.5



time breakdown (in terms of cycles taken for segments executed on
host, CGRA, data and context communications) as a fraction of the
execution time completely on the host processor. Table.2 shows the
performance improvements (averaged across all kernels) when exe-
cuted on CGRAs with differentCMEM size. On average, DNestMap
is 1.58X faster compared to CacheInner1 and 1.7X faster compared
to CacheInner2. With limited CMEM , dynamically caching 2-levels
of innermost loops can result in overall performance degradation
due to frequent cache replacements compared to CacheInner1, as
majority of their execution time is spent on context swaps as shown
in Fig.9. Moreover, StaticTemporal performs better than dynamic
caching with smaller CMEM , exhibiting the cost of configuration
replacements. However, DNestMap delivers 30% better performance
than StaticTemporal due to the superior spatio-temporal packing.
For FFT, DNestMap performs worse than CacheInner2 and CacheIn-
ner1 with 2KB and 1KB CMEM . FFT contains two nested loops and
their execution is one after the other. Thus the cache is replaced
only once when the control flows from the first nested loop to the
next. This dual phase behaviour enables the mapping of the loop
kernels using all the PEs for each nested loop and therefore per-
forms slightly better than DNestMap where it attempts to pack-in
more loops statically. The SVD kernel consists of 58 MUs and some
MUs are considerably larger than the rest of the kernels. Therefore
the two dynamic caching approaches suffer significantly (even slow-
ing down the execution) when they are mapped indiscriminately.
DNestMap is able to select the most beneficial MUs and gain an
average performance improvement of 50% for SVD.

The three baselines use all the PEs of CGRA for each of the MUs.
Moreover, power gating of the PEs that are not used seems to be
impractical on a cycle-by-cycle basis (due to delays involved in
changing the states of SRAM : deep-sleep to active). Most of the PEs
at least have routing configuration in the control word if not for
an operation. However, DNestMap schedules the MUs on a subset
of PEs and gurantees that the rest of the PEs could be power gated
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Figure 9: Accelerated runtime breakdown normalized to
host-only runtime

Table 2: Power and performance characteristics
CMEM
Size

HyCUBE Power Speedup w.r.t host-only execution

CMEM Total Cache
Inner1

Cache
Inner2

Static
Temporal

DNest
Map

4KB 4.7 mW 11.76 mW 2.3X 3.99X 3.57X 4.5X
3KB 3.6 mW 10.66 mW 2.24X 3.05X 2.87X 4.03X
2KB 2.5 mW 9.56 mW 1.86X 2.78X 2.11X 2.68X
1KB 1.4 mW 8.46 mW 1.60X 0.54X 1.34X 1.84X

during the execution of the MUS. Therefore, DNestMap can achieve
38.54% reduction in total energy consumption, on an average across
the benchmarks (-31.80% vs StaticTemporal, -55.42% vs CacheInner1
and -28.39% vs CacheInner2) for the same CMEM size. Moreover,
on an average DNestMap achieves 4.11X performance-per-watt
compared to host-only execution for CMEM size of 4KB.
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7 CONCLUSION
CGRAs provide high performance, energy-efficient execution of the
innermost loops of an application, making them good candidates
for IoT and wearable devices. However, most application kernels
comprise of deeply-nested loop structures with inter-loop data com-
munications. We proposed DNestMap, a partitioning and mapping
tool for ultra-low power CGRAs with limited on-chip configura-
tion memory, that judiciously extracts the most beneficial code
segments from a deeply-nested loop structure. DNestMap achieves
1.58X performance improvement compared to dynamic caching
of configuration contexts of the innermost loops on CGRAs with
limited on-chip memory.
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