QoS-Aware Stochastic Power Management for Many-Cores

*Anuj Pathania, †Heba Khadr, †Muhammad Shafique, ††Tulika Mitra, ‡Jörg Henkel

*Chair of Embedded System, Karlsruhe Institute of Technology, Germany
†Institute of Computer Engineering, Vienna University of Technology (TU Wien), Austria
††School of Computing, National University of Singapore, Singapore

Corresponding Author: anuj.pathania@kit.edu

ABSTRACT

A many-core processor can execute hundreds of multi-threaded tasks in parallel on its 100s - 1000s of processing cores. When deployed in a Quality of Service (QoS)-based system, the many-core must execute a task at a target QoS. The amount of processing required by the task for the QoS varies over the task’s lifetime. Accordingly, Dynamic Voltage and Frequency Scaling (DVFS) allows the many-core to deliver precise amount of processing required to meet the task QoS guarantee while conserving power. Still, a global control is necessitated to ensure that the many-core overall does not exceed its power budget.

Previously, only non-stochastic controls have been proposed for the problem of QoS-aware power budgeting in many-cores. We propose the first stochastic control for the problem, which has a computational complexity less than the non-stochastic control by a factor of $O(\ln n)$ but with equivalent performance. The proposed stochastic control can operate with 6.4x less overhead than the non-stochastic control for a 256-task workload.

CCS CONCEPTS

• Computer systems organization → Embedded systems;

KEYWORDS

Many-Core, Power Budgeting, Probabilistic Control

1 INTRODUCTION

A many-core processor comprises of 100s - 1000s of processing cores and can execute hundreds of multi-threaded tasks in parallel [8]. The many-core is expected to execute a task at a user-defined target Quality of Service (QoS) when deployed in a QoS-aware system. We choose to measure QoS of the task with the number of Instructions per Second (IPS) executed corresponding to the task.

Figure 1 denotes the changes in IPS of a single-threaded ferret benchmark (task) on a given frequency. Figure 1 shows that the fixed frequency cannot keep the task’s QoS consistent. This problem can be abated with the help of Dynamic Voltage and Frequency Scaling (DVFS). DVFS allows change in frequency of the cores executing the task to deliver variable amount of processing. DVFS can, therefore, be used for keeping QoS of the task close to the target QoS as shown in Figure 2. As the number of DVFS frequencies are limited, not every target QoS can be precisely attained. Power consumption of a core increases with the increase in its frequency. This results in the task consuming variable amount of power over its lifetime as also shown in Figure 2. Achieving QoS more than the task’s target QoS is an unnecessary waste of power.

Limited heat dissipation capacity of the many-core forces it to operate under a power budget called Thermal Design Power (TDP) [15]. Continuous operation beyond TDP leads to a thermal emergency wherein a hardware-triggered Dynamic Thermal Management (DTM) reduces all core frequencies to the minimum. Frequent triggering of DTM leads to deterioration in the many-core’s performance. When executing in parallel, individual tasks executing within TDP can violate the TDP in totality. Therefore, it is mandated to carefully budget the TDP between tasks while keeping their QoS requirements under consideration. An Operating System (OS) sub-routine called a Governor is tasked to manage the TDP.

Previously, only non-stochastic controls – centralized [11] or distributed [5] – have been employed in Governors for QoS-aware power budgeting in many-cores. A non-stochastic Governor involves monitoring of executing tasks for their QoS, power consumption and other similar parameters to make power budgeting decisions. Decisions dictate to each individual task the frequency to be used. As the number of tasks executing on the many-core increase, the non-stochastic Governor struggles to keep up due to increased computational overhead and thereby does not scale.

A stochastic Governor in contrast centrally optimizes distribution of the many-core’s total power consumption over time by manipulating executing tasks’ target QoS. Under the stochastic Governor, task decides locally which core frequency to use itself.

Figure 1: Execution profile of single-threaded ferret benchmark showing variation in its IPS during execution over a single fixed frequency.

Scaling (DVFS). DVFS allows change in frequency of the cores executing the task to deliver variable amount of processing. DVFS can, therefore, be used for keeping QoS of the task close to the target QoS as shown in Figure 2. As the number of DVFS frequencies are limited, not every target QoS can be precisely attained. Power consumption of a core increases with the increase in its frequency. This results in the task consuming variable amount of power over its lifetime as also shown in Figure 2. Achieving QoS more than the task’s target QoS is an unnecessary waste of power.

Limited heat dissipation capacity of the many-core forces it to operate under a power budget called Thermal Design Power (TDP) [15]. Continuous operation beyond TDP leads to a thermal emergency wherein a hardware-triggered Dynamic Thermal Management (DTM) reduces all core frequencies to the minimum. Frequent triggering of DTM leads to deterioration in the many-core’s performance. When executing in parallel, individual tasks executing within TDP can violate the TDP in totality. Therefore, it is mandated to carefully budget the TDP between tasks while keeping their QoS requirements under consideration. An Operating System (OS) sub-routine called a Governor is tasked to manage the TDP.

Previously, only non-stochastic controls – centralized [11] or distributed [5] – have been employed in Governors for QoS-aware power budgeting in many-cores. A non-stochastic Governor involves monitoring of executing tasks for their QoS, power consumption and other similar parameters to make power budgeting decisions. Decisions dictate to each individual task the frequency to be used. As the number of tasks executing on the many-core increase, the non-stochastic Governor struggles to keep up due to increased computational overhead and thereby does not scale.

A stochastic Governor in contrast centrally optimizes distribution of the many-core’s total power consumption over time by manipulating executing tasks’ target QoS. Under the stochastic Governor, task decides locally which core frequency to use itself.
based on its current and set target QoS. As the stochastic Governor operates on distributions, it is required to change QoS of tasks only when some task arrives or leaves the many-core. Decisions of the stochastic Governor also have a lower computational overhead than similar decisions of the non-stochastic Governor. As the tasks perform DVFS independent of the stochastic Governor, DVFS could be performed at fine granularity to save more power without additional governor-induced scheduling overheads.

The stochastic Governor works on an observation that power consumption of the many-core when executing hundreds of independent tasks in parallel is quite stable. Figure 3 shows instantaneous total power consumption of the many-core when running a 1024-thread workload comprising of 256 independent tasks each with its own QoS and performing independent DVFS stays very close to the average total power consumption. This observation can be attributed to the fact that even though the power consumption of an individual task to maintain its QoS can vary over time, it has no correlation with the power consumptions of the other executing tasks. At any given time, some of the tasks transit from a high-power consumption phase to a low-power consumption phase and vice versa without any synchronization. This lack of synchronization results in a predictable total power consumption behavior that can be optimized by the stochastic Governor.

Our Novel Contributions: We propose the first stochastic DVFS-based QoS-aware power budgeting Governor for many-cores called StoGov. StoGov has a computational complexity $O(\ln n)$ factor less than a non-stochastic Governor, while providing equivalent performance. Therefore, StoGov can scale up much better with the increase in the number of cores in many-cores.

2 RELATED WORK

The problem of QoS-aware power budgeting for multi/many-cores has been previously studied only from a non-stochastic perspective [16]. A non-stochastic governor can operate directly on feedback from power sensors often available at a core-, cluster- or chip-level granularity depending upon the hardware [11]. Feedback can be processed to make power budgeting decisions using techniques like online learning [5] or greedy-search [11].

Many works opt to use a PID (Proportional Integrate Derivative) controller as the non-stochastic control in their QoS-aware Governors [15]. The gains in the PID controller of the non-stochastic Governor need to be tuned properly for it to work. As gains tuned for one workload may not hold for another workload, it makes the Governor based on the PID controller impractical. The stochastic Governor on the other hand requires no such fine tuning.

We were the first to develop a stochastic power budgeting Governor for many-cores with the goal of maximizing speedup [14]. However, the introduced Governor – due to its inherent mathematical constructs – cannot be applied to QoS tasks and can operate only with two frequency levels – *High* and *Low*. StoGov Governor introduced in this work addresses both these shortcomings.

3 STOCHASTIC POWER BUDGETING

Task Model: Let T be a set of $|T|$ multi-threaded tasks executing on the many-core, indexed by the symbol t_i. Let I_{t_i} be a target IPS (QoS) for the task t_i measured in MIPS (Millions of Instruction per Second).

We assume a rigid task model [6], which means the task’s threads-to-cores mapping is immutable once it starts execution. We also assume that the task executes with one thread per-core model well-suited for the many-core [3].

Core Model: Let F be a set of $|F|$ discrete frequencies a core in the many-core can operate using DVFS, indexed by the symbol f_j. We assume all the cores in the many-core can perform independent DVFS like Intel Haswell processor [7]. Still by design, the cores assigned to a given task operate at the same frequency. The unused cores are always power-gated to save power.

Probabilistic DVFS Model: Let $p(t_i, f_j, I_{t_i})$ represent a probability that under an isolated execution without any power budget constraints the task t_i is using the frequency f_j when its QoS target is set at I_{t_i}. Mathematically $p(t_i, f_j, I_{t_i})$ represents fraction of total execution time spent by the task t_i in the frequency f_j to achieve the QoS I_{t_i}, and can be obtained using profiling. Figure 4
shows an exemplary calculation of the probability \(p(t_i, f_j, I_t) \). The probability is also dependent upon the input given to the task \(t_i \).

The task \(t_i \) acts as an independent Bernoulli trial that uses the frequency \(f_j \) with the probability \(p(t_i, f_j, I_t) \) and uses frequencies other than the frequency \(f_j \) with the probability \(1 - p(t_i, f_j, I_t) \). As the tasks in the many-core have different probabilities of using the frequency \(f_j \), the total usage of the frequency \(f_j \) shows a Poisson binomial distribution. Let \(\mu_{f_j} \) and \(\sigma_{f_j} \) be the mean and the standard deviation of the Poisson binomial distribution, respectively.

\[
\mu_{f_j} = \sum_{i=1}^{[T]} p(t_i, f_j, I_t)
\]
\[
\sigma_{f_j} = \sqrt{\sum_{i=1}^{[T]} (1 - p(t_i, f_j, I_t)) p(t_i, f_j, I_t)}
\]

The probability that \(K \leq [T] \) tasks would be using the frequency \(f_j \) is given by a Probability Mass Function (PMF) \(Pr_{f_j}(K) \) [17].

\[
Pr_{f_j}(K) = \sum_{A \in F_K} \prod_{t \in A} p(t_x, f_j, I_t) \prod_{t \not\in A} (1 - p(t_y, f_j, I_t))
\]

where \(F_K \) is a set of all combinations of \(K \) tasks selected from the set of \(T \) tasks. Set \(A^C \) is a complement set of \(A \). The complexity of obtaining the PMF \(Pr_{f_j}(K) \) directly has a factorial complexity of \(O(|T|!) \). Hence, it is infeasible to directly obtain PMF \(Pr_{f_j}(K) \) at runtime when \(|T| >> 1 \).

We overcome the complexity using central limit theorem [12], which applied here states that the PMF \(Pr_{f_j} \) will approximately exhibit a normal distribution if the following two conditions are met. First condition: all the tasks in the many-core should run independent of each other and hence their usage of the frequency \(f_j \) should exhibit no correlation. The condition holds very well on system paradigms such as InvasiveC computing [8] which support predictable execution [18] where shared-resource contentions do not manifest. This condition is not mandatory for the threads of a given task, which are inherently correlated. Second condition: there is large number of tasks executing in parallel that use the frequency \(f_j \) substantially, which holds on the many-core. Under these conditions, we assume that the discrete PMF \(Pr_{f_j}(K) \) can be approximated by a continuous Probability Density Function (PDF) of a normal distribution with the mean \(\mu_{f_j} \) and standard deviation \(\sigma_{f_j} \).

\[
Pr_{f_j}(K) = \frac{1}{\sqrt{2(\sigma_{f_j})^2 \pi}} e^{-\frac{(K-\mu_{f_j})^2}{2(\sigma_{f_j})^2}}
\]

Figure 5 shows an observed PMF and corresponding approximated PDF \(Pr_{1.8 \text{ GHz}}(K) \) for a 256-task (1024-thread) workload. Figure 5 shows that the approximation works well in practice.

Probabilistic Power Model: We now need to translate the PDF \(Pr_{f_j}(K) \) that represents the distribution of usage of the frequency \(f_j \) to the contribution of that usage to the many-core’s total power consumption. Using the normal approximation of PDF \(Pr_{f_j}(K) \), we can find the probability that \(K \leq [T] \) tasks would be using the frequency \(f_j \) but it does not tell us the composition of those \(K \) tasks. This makes translation of the PDF \(Pr_{f_j}(K) \) to the power consumption distribution difficult because different tasks can have different power consumption at the same frequency. Furthermore, a task can also have a different power consumption at a given frequency depending upon its current execution phase. An approximation would be to work out the expected power consumption of a task at the frequency \(f_j \) and assume all the \(K \) tasks in the PDF \(Pr_{f_j}(K) \) have the same expected power consumption. Due to the law of large numbers [12], the error introduced by this approximation will reduce with the increase in the number of independently executing tasks provided many scheduling epochs are observed.

Let \(\bar{W}(t_i, f_j, I_t) \) be an average power consumption of the task \(t_i \) at the frequency \(f_j \) with the target QoS set at \(I_t \). We use probability weighted power consumption of the task set \(T \) at the frequency \(f_j \) to obtain the expected power consumption of all tasks at that frequency. We then combine it with Equations (1) and (2) to calculate the mean \(\mu_{f_j} \) and standard deviation \(\sigma_{f_j} \) of the power consumption distribution due the use of the frequency \(f_j \), respectively.

\[
\mu_{f_j} = \mu_{f_j} \frac{\sum_{i=1}^{[T]} \bar{W}(t_i, f_j, I_t) p(t_i, f_j, I_t)}{\sum_{i=1}^{[T]} p(t_i, f_j, I_t)}
\]
\[
\sigma_{f_j} = \sigma_{f_j} \frac{\sum_{i=1}^{[T]} \bar{W}(t_i, f_j, I_t) p(t_i, f_j, I_t)}{\sum_{i=1}^{[T]} p(t_i, f_j, I_t)}
\]

The probability that a scheduling epoch will have a power consumption of \(X \) Watts due to the usage of the frequency \(f_j \) is given by a PDF \(Pr_{f_j}^{W}(X) \).

\[
Pr_{f_j}^{W}(X) = \frac{1}{\sqrt{2(\sigma_{f_j}^{W})^2 \pi}} e^{-\frac{(X-\mu_{f_j}^{W})^2}{2(\sigma_{f_j}^{W})^2}}
\]

Figure 6 shows an observed PMF and approximated PDF of power consumption distribution at a frequency \(Pr_{1.8 \text{ GHz}}^{W}(X) \) for a 256-task (1024-thread) workload. Figure 6 shows that the predicted PDF \(Pr_{f_j}^{W}(X) \) is very close to the observed PMF.

We assume the power consumption due to an individual frequency is a linear combination of power consumptions of a same set of independent tasks. Therefore, all the power consumption distributions due to the use of frequencies are jointly normal with each other. This implies a distribution of their sum which is the many-core’s total power consumption distribution is also normally
where \(W \) is given by PDF

\[
Pr^W(X) = \frac{1}{\sqrt{2\pi\sigma^W}} e^{-\frac{(X-\mu^W)^2}{2\sigma^W}}
\]

Figure 7 shows the observed and predicted PDF of total power consumption distribution \(Pr^W(X) \) for a 256-task (1024-thread) workload with covariance between frequencies considered. Figure 7 shows the error is minimal.

Probabilistic TDP Model: Let TDP of the many-core be symbolized by \(W \). The probability that a scheduling epoch will violate the TDP is given by a Q-function \(Q(W) \).

\[
Q(W) = 1 - \int_0^W Pr^W(X) \, dx
\]

Figure 8 shows the observed and predicted distribution of TDP violating epochs for a 256-task (1024-thread) workload. Figure 8 shows that our predicted distribution is quite accurate.

Power Budgeting Algorithm: The stochastic power budgeting used in \(StoGov \) is shown in Algorithm 1. \(StoGov \) cannot give a deterministic guarantee that TDP violation will never happen but it can reduce the probability of TDP violation to such low value that it never occurs in the lifetime of the many-core. Furthermore, TDP is a soft-constraint and a thermal emergency only occurs when TDP is violated for prolonged durations. A few TDP violating epochs spread out over time are benign. Hardware-triggered frequency throttling via DTM can act as backup if TDP violations under \(StoGov \) pushes chip temperature dangerously high. \(StoGov \) also allows for...
We must observe millions of scheduling epochs for a many-core worst-case space complexity of \(O(n) \). Algorithm 1 is executed only when some task enters or leaves the many-core. Note that DVFS is performed locally and independently for a 256-task (1024-thread) workload changes with different values of \(\delta \). As all the other steps result in \(\delta \) (or highest) frequency of 0.6 GHz (or 3.6 GHz). The simulations are used as tasks. To simulate independent execution of large number of tasks with a limited set of available benchmark types, tasks are executed with a random initial skew in the trace simulator. Granularity of scheduling epoch is set at 10 ms.

Comparative Non-Stochastic Governor: We choose to compare StoGov against the PGCapping Governor [11]; both being centralized Governors. PGCapping uses an effective non-stochastic Quicksearch greedy algorithm to perform DVFS-based QoS-aware power budgeting for multi-/many-cores. Quicksearch similar to StoGov assumes availability of per-core DVFS for power budgeting. Quicksearch operates on basis of power/performance ratios. Depending upon whether current power consumption of the many-core is above or below the TDP, Quicksearch calculate a ratio of power decrease to performance loss \(D_{\text{power-perf}} \) or a ratio of performance gain to power increase \(D_{\text{perf-power}} \) for all the cores, respectively. The frequency of the core with the highest power decrease to performance loss ratio \(D_{\text{power-perf}} \) (or the highest performance gain to power increase ratio \(D_{\text{perf-power}} \)) is decreased (or increased) if the power is expected to be above (or below) the TDP. \(D_{\text{power-perf}} \) (or \(D_{\text{perf-power}} \)) is then recalculated for the task whose frequency has been changed. Quicksearch algorithm is iteratively repeated till power consumption is just below the TDP.

As we operate with multi-threaded benchmarks with an assumption that all the cores assigned to a task operates at same frequency, we calculate ratios \(D_{\text{power-perf}} \) and \(D_{\text{perf-power}} \) for PGCapping at the task granularity rather than core granularity. Furthermore, PGCapping originally used product of core utilization and core frequency as a measure of performance (QoS), which we replace with IPS in this work for a fair comparison.

When the Quicksearch algorithm is implemented with help of quicksort and binary search algorithms, the worst-case computationally complexity of Quicksearch works out to be \(O((I/F)T \ln |T|) \), which theoretically is a factor of \(O((I/F)T \ln |T|) \) more than StoGov.

Stochastic vs. Non-Stochastic Performance: We simulate a many-core operating in a closed system [6] to compare efficacy of different Governors. Many-core attains peak performance (100%) when all QoS tasks executing on it achieve their target QoS at all times. Figure 10 shows how the many-core’s performance measured in percentage of target QoS sustained for a task on average for a 256-task (1024-thread) workload changes with different values.
We introduced a QoS-aware stochastic power budgeting Governor "StoGov" allowing trade-off of that risk with performance. Compared to a strong stochastic guarantees on the risk of TDP violation while scheduling overhead than PGCapping shows gem5 simulations performed on StoGov the worst-case scheduling overheads of in equal proportions which also results in better performance. StoGov resulting in several tasks operating far above their target QoS at the threshold \(\delta \). Thermal throttling on TDP violations can substantially deteriorate performance compared to StoGov even when the TDP risk threshold \(\delta \) is set to 0. PGCapping penalizes tasks asymmetrically whereas StoGov does not consider \(\delta \). As PGCapping does not consider \(\delta \), produces the same performance for all values of \(\delta \) whereas StoGov allows a tradeoff between the performance and TDP risk threshold \(\delta \). Increase in the TDP risk threshold \(\delta \) leads to increase in percentage of TDP violating epochs under StoGov as also shown in Figure 10. Ignoring the TDP beyond a certain level can lead to performance loss instead of gain as hardware-triggered thermal throttling on TDP violations can substantially deteriorate performance. This effect on many-core’s performance can be seen in Figure 10 for higher values of the TDP risk threshold \(\delta \).

It can be seen from Figure 10 that StoGov results in superior performance compared to PGCapping even when the TDP risk threshold \(\delta \) is set to 0. PGCapping penalizes tasks asymmetrically resulting in several tasks operating far above their target QoS at the cost of other tasks. StoGov on the contrary, penalizes all tasks fairly in equal proportions which also results in better performance.

Stochastic vs Non-Stochastic Scalability: Figure 11 shows the worst-case scheduling overheads of StoGov and PGCapping for varisized workloads obtained using representative cycle-accurate simulations performed on gem5. Our proof-of-concept simulations show StoGov is highly scalable and has nearly 6.48x less worst-case scheduling overhead than PGCapping for a 256-task workload.

5 CONCLUSION

We introduced a QoS-aware stochastic power budgeting Governor for many-cores called StoGov in this work. StoGov provides strong stochastic guarantees on the risk of TDP violation while allowing trade-off of that risk with performance. Compared to a non-stochastic Governor, StoGov provides equivalent performance but with a computational complexity reduced by a factor O (ln n). Therefore, StoGov can scale up more efficiently with the increase in number of cores in many-cores.

ACKNOWLEDGMENT

This work was supported in parts by the German Research Foundation (DFG) as part of the Transregional Collaborative Research Centre "Invasive Computing" (SFB/TR 89), and in parts by National Research Foundation, Prime Minister’s Office, Singapore under its Industry-IHL Partnership Grant and Huawei International Pte. Ltd. NRF2015-IIP003.

REFERENCES

DAC ’18, June 24–29, 2018, San Francisco, CA, USA ∗Anuj Pathania, †Heba Khdr, ‡Muhammad Shafique, †Tulika Mitra, ‡Jörg Henkel

Figure 10: System performance comparison between StoGov and PGCapping for different values of TDP risk threshold \(\delta \), when executing 256-task (1024-thread) workload with TDP \(W \) set at 45 W.

Figure 11: Measured worst-case scheduling overheads for StoGov for varisized workloads.

The TDP risk threshold \(\delta \). As PGCapping does not consider \(\delta \), produces the same performance for all values of \(\delta \) whereas StoGov allows a tradeoff between the performance and TDP risk threshold \(\delta \). Increase in the TDP risk threshold \(\delta \) leads to increase in percentage of TDP violating epochs under StoGov as also shown in Figure 10. Ignoring the TDP beyond a certain level can lead to performance loss instead of gain as hardware-triggered thermal throttling on TDP violations can substantially deteriorate performance. This effect on many-core’s performance can be seen in Figure 10 for higher values of the TDP risk threshold \(\delta \).

Stochastic vs Non-Stochastic Scalability: Figure 11 shows the worst-case scheduling overheads of StoGov and PGCapping for varisized workloads obtained using representative cycle-accurate simulations performed on gem5. Our proof-of-concept simulations show StoGov is highly scalable and has nearly 6.48x less worst-case scheduling overhead than PGCapping for a 256-task workload.