
QoS-Aware Stochastic Power Management for Many-Cores

*Anuj Pathania, *Heba Khdr, +Muhammad Shafique, †Tulika Mitra, *Jörg Henkel

*Chair of Embedded System, Karlsruhe Institute of Technology, Germany
+Institute of Computer Engineering, Vienna University of Technology (TU Wien), Austria

†School of Computing, National University of Singapore, Singapore
Corresponding Author: anuj.pathania@kit.edu

ABSTRACT
A many-core processor can execute hundreds of multi-threaded
tasks in parallel on its 100s - 1000s of processing cores. When de-
ployed in a Quality of Service (QoS)-based system, the many-core
must execute a task at a target QoS. The amount of processing
required by the task for the QoS varies over the task’s lifetime. Ac-
cordingly, Dynamic Voltage and Frequency Scaling (DVFS) allows
the many-core to deliver precise amount of processing required to
meet the task QoS guarantee while conserving power. Still, a global
control is necessitated to ensure that the many-core overall does
not exceed its power budget.

Previously, only non-stochastic controls have been proposed for
the problem of QoS-aware power budgeting in many-cores. We
propose the first stochastic control for the problem, which has a
computational complexity less than the non-stochastic control by
a factor ofO (lnn) but with equivalent performance. The proposed
stochastic control can operate with 6.4x less overhead than the
non-stochastic control for a 256-task workload.

CCS CONCEPTS
• Computer systems organization→ Embedded systems;

KEYWORDS
Many-Core, Power Budgeting, Probabilistic Control

1 INTRODUCTION
Amany-core processor comprises of 100s - 1000s of processing cores
and can execute hundreds of multi-threaded tasks in parallel [8].
The many-core is expected to execute a task at a user-defined target
Quality of Service (QoS) when deployed in a QoS-aware system. We
choose to measure QoS of the task with the number of Instructions
per Second (IPS) executed corresponding to the task.

Figure 1 denotes the changes in IPS of a single-threaded ferret
benchmark (task) on a given frequency. Figure 1 shows that the
fixed frequency cannot keep the task’s QoS consistent. This problem
can be abated with the help of Dynamic Voltage and Frequency

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DAC ’18, June 24–29, 2018, San Francisco, CA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5700-5/18/06. . . $15.00
https://doi.org/10.1145/3195970.3196097

0 20 40 60 80 100
2

4

6

·108

Cycles [x10 Million]

Q
oS

[I
ns
./S

ec
]

Figure 1: Execution profile of single-threaded ferret bench-
mark showing variation in its IPS during execution over a
single fixed frequency.

Scaling (DVFS). DVFS allows change in frequency of the cores
executing the task to deliver variable amount of processing. DVFS
can, therefore, be used for keeping QoS of the task close to the target
QoS as shown in Figure 2. As the number of DVFS frequencies
are limited, not every target QoS can be precisely attained. Power
consumption of a core increases with the increase in its frequency.
This results in the task consuming variable amount of power over
its lifetime as also shown in Figure 2. Achieving QoS more than the
task’s target QoS is an unnecessary waste of power.

Limited heat dissipation capacity of the many-core forces it to op-
erate under a power budget called Thermal Design Power (TDP) [15].
Continuous operation beyond TDP leads to a thermal emergency
wherein a hardware-triggeredDynamic ThermalManagement (DTM)
reduces all core frequencies to the minimum. Frequent triggering of
DTM leads to deterioration in the many-core’s performance. When
executing in parallel, individual tasks executing within TDP can
violate the TDP in totality. Therefore, it is mandated to carefully
budget the TDP between tasks while keeping their QoS require-
ments under consideration. An Operating System (OS) sub-routine
called a Governor is tasked to manage the TDP.

Previously, only non-stochastic controls – centralized [11] or
distributed [5] – have been employed in Governors for QoS-aware
power budgeting in many-cores. A non-stochastic Governor in-
volves monitoring of executing tasks for their QoS, power con-
sumption and other similar parameters to make power budgeting
decisions. Decisions dictate to each individual task the frequency
to be used. As the number of tasks executing on the many-core
increase, the non-stochastic Governor struggles to keep up due to
increased computational overhead and thereby does not scale.

A stochastic Governor in contrast centrally optimizes distribu-
tion of the many-core’s total power consumption over time by
manipulating executing tasks’ target QoS. Under the stochastic
Governor, task decides locally which core frequency to use itself

https://doi.org/10.1145/3195970.3196097

DAC ’18, June 24–29, 2018, San Francisco, CA, USA *Anuj Pathania, *Heba Khdr, +Muhammad Shafique, †Tulika Mitra, *Jörg Henkel

0 20 40 60 80 100
1

2

3

0

0.1

0.2

Cycles [x10 Million]

Fr
eq
ue
nc
y
[G

H
z]

Po
w
er

Co
ns
um

pt
io
n
[W

]

Frequency Power Consumption

Figure 2: Execution profile of single-threaded ferret bench-
mark showing need for different DVFS levels to maintain a
consistent QoS resulting in variable power consumption.

0 200 400 600 800 1,000

50

55

Cycles [x10 Million]

Po
w
er

Co
ns
um

pt
io
n
[W

]

Instantaneous Power Consumption Average Power Consumption

Figure 3: Total power consumption of a many-core when ex-
ecuting a 1024-thread workload from 256 tasks.

based on its current and set target QoS. As the stochastic Gover-
nor operates on distributions, it is required to change QoS of tasks
only when some task arrives or leaves the many-core. Decisions
of the stochastic Governor also have a lower computational over-
head than similar decisions of the non-stochastic Governor. As the
tasks perform DVFS independent of the stochastic Governor, DVFS
could be performed at fine granularity to save more power without
additional governor-induced scheduling overheads.

The stochastic Governor works on an observation that power
consumption of the many-core when executing hundreds of inde-
pendent tasks in parallel is quite stable. Figure 3 shows instanta-
neous total power consumption of the many-core when running a
1024-thread workload comprising of 256 independent tasks each
with its own QoS and performing independent DVFS stays very
close to the average total power consumption. This observation
can be attributed to the fact that even though the power consump-
tion of an individual task to maintain its QoS can vary over time,
it has no correlation with the power consumptions of the other
executing tasks. At any given time, some of the tasks transit from
a high-power consumption phase to a low-power consumption
phase and vice versa without any synchronization. This lack of
synchronization results in a predictable total power consumption
behavior that can be optimized by the stochastic Governor.

OurNovelContributions:Wepropose the first stochastic DVFS-
based QoS-aware power budgeting Governor for many-cores called
StoGov. StoGov has a computational complexity O (lnn) factor less
than a non-stochastic Governor, while providing equivalent per-
formance. Therefore, StoGov can scale up much better with the
increase in the number of cores in many-cores.

0 0.6 1.2 1.8 2.4 3 3.6

0

200

400
p(ferret-1, 1.8 GHz, 250 MIPS)

= 395/1000 = .395

DVFS Frequency [GHz]

O
cc
ur
re
nc
e
Fr
eq
ue
nc
y

Figure 4:HistogramofDVFS frequency used in ferret (single-
threaded) benchmark for a given QoS (250MIPS) along with
a sample calculation of probability for a frequency.

2 RELATEDWORK
The problem of QoS-aware power budgeting for multi/many-cores
has been previously studied only from a non-stochastic perspec-
tive [16]. A non-stochastic governor can operate directly on feed-
back from power sensors often available at a core-, cluster- or
chip-level granularity depending upon the hardware [11]. Feed-
back can be processed to make power budgeting decisions using
techniques like online learning [5] or greedy-search [11].

Many works opt to use a PID (Proportional Integrate Derivative)
controller as the non-stochastic control in their QoS-aware Gov-
ernors [15]. The gains in the PID controller of the non-stochastic
Governor need to be tuned properly for it to work. As gains tuned
for one workload may not hold for another workload, it makes the
Governor based on the PID controller impractical. The stochastic
Governor on the other hand requires no such fine tuning.

We were the first to develop a stochastic power budgeting Gov-
ernor for many-cores with the goal of maximizing speedup [14].
However, the introduced Governor – due to its inherent mathemat-
ical constructs – cannot be applied to QoS tasks and can operate
only with two frequency levels – High and Low. StoGov Governor
introduced in this work addresses both these shortcomings.

3 STOCHASTIC POWER BUDGETING
TaskModel: LetT be a set of |T | multi-threaded tasks executing on
themany-core, indexed by the symbol ti . Let Iti be a target IPS (QoS)
for the task ti measured inMIPS (Millions of Instruction per Second).
We assume a rigid task model [6], which means the task’s threads-
to-cores mapping is immutable once it starts execution. We also
assume that the task executes with one thread per-core model well-
suited for the many-core [3].

Core Model: Let F be a set of |F | discrete frequencies a core in
the many-core can operate using DVFS, indexed by the symbol fj .
We assume all the cores in the many-core can perform independent
DVFS like Intel Haswell processor [7]. Still by design, the cores
assigned to a given task operate at the same frequency. The unused
cores are always power-gated to save power.

Probabilistic DVFS Model: Let p (ti , fj , Iti) represent a proba-
bility that under an isolated execution without any power budget
constraints the task ti is using the frequency fj when its QoS tar-
get is set at Iti . Mathematically p (ti , fj , Iti) represents fraction of
total execution time spent by the task ti in the frequency fj to
achieve the QoS Iti and can be obtained using profiling. Figure 4

QoS-Aware Stochastic Power Management for Many-Cores DAC ’18, June 24–29, 2018, San Francisco, CA, USA

shows an exemplary calculation of the probability p (ti , fj , Iti). The
probability is also dependent upon the input given to the task ti .

The task ti acts as an independent Bernoulli trial that uses the
frequency fj with the probability p (ti , fj , Iti) and uses frequencies
other than the frequency fj with the probability 1−p (ti , fj , Iti). As
the tasks in the many-core have different probabilities of using the
frequency fj , the total usage of the frequency fj shows a Poisson
binomial distribution. Let µfj and σfj be the mean and the standard
deviation of the Poisson binomial distribution, respectively.

µfj =

|T |∑
i=1

p (ti , fj , Iti) (1)

σfj =

√√√
|T |∑
i=1

(1 − p (ti , fj , Iti))p (ti , fj , Iti) (2)

The probability that K ≤ |T | tasks would be using the frequency
fj is given by a Probability Mass Function (PMF) Prfj (K) [17].

Prfj (K) =
∑
A∈FK

∏
tx ∈A

p (tx , fj , Itx)
∏

ty ∈AC
(1 − p (ty , fj , Ity))

where FK is a set of all combinations of K tasks selected from the
set of T tasks. Set AC is a complement set of A. The complexity
of obtaining the PMF Prfj (K) directly has a factorial complexity
of O (|T |!). Hence, it is infeasible to directly obtain PMF Prfj (K) at
runtime when |T | >> 1.

We overcome the complexity using central limit theorem [12],
which applied here states that the PMF Prfj will approximately
exhibit a normal distribution if the following two conditions are
met. First condition: all the tasks in the many-core should run in-
dependent of each other and hence their usage of the frequency
fj should exhibit no correlation. The condition holds very well on
system paradigms such as InvasIC computing [8] which support
predictable execution [18] where shared-resource contentions do
not manifest. This condition is not mandatory for the threads of
a given task, which are inherently correlated. Second condition:
there is large number of tasks executing in parallel that use the fre-
quency fj substantially, which holds on the many-core. Under these
conditions, we assume that the discrete PMF Prfj (K) can be approx-
imated by a continuous Probability Density Function (PDF) of a
normal distribution with the mean µfj and standard deviation σfj .

Prfj (K) =
1√

2(σfj)2π
e
−

(K−µfj
)2

2(σfj)
2

(3)

Figure 5 shows an observed PMF and corresponding approxi-
mated PDF Pr1.8 GHz (K) for a 256-task (1024-thread) workload.
Figure 5 shows that the approximation works well in practice.

Probabilistic PowerModel:We now need to translate the PDF
Prfj (K) that represents the distribution of usage of the frequency
fj to the contribution of that usage to the many-core’s total power
consumption. Using the normal approximation of PDF Prfj (K), we
can find the probability that K ≤ |T | tasks would be using the
frequency fj but it does not tell us the composition of those K tasks.
This makes translation of the PDF Prfj (K) to the power consump-
tion distribution difficult because different tasks can have different

110 120 130 140 150 160

0

20,000

40,000

60,000 Average Error = 0.33%
Std. Dev. Error = 1.72%

Number of Tasks Using Frequency fj

N
o.
of

Sc
he
du

lin
g
Ep

oc
hs

Observed Predicted

Figure 5: Observed and predicted distribution for usage by
tasks of frequency fj = 1.8 GHz for a 256-task (1024-thread)
workload on a many-core.

power consumption at the same frequency. Furthermore, a task
can also have a different power consumption at a given frequency
depending upon its current execution phase. An approximation
would be to work out the expected power consumption of a task
at the frequency fj and assume all the K tasks in the PDF Prfj (K)

have the same expected power consumption. Due to the law of
large numbers [12], the error introduced by this approximation will
reduce with the increase in the number of independently executing
tasks provided many scheduling epochs are observed.

LetW (ti , fj , Iti) be an average power consumption of the task ti
at the frequency fj with the target QoS set at Iti . We use probability
weighted power consumption of the task set T at the frequency fj
to obtain the expected power consumption of all tasks at that fre-
quency. We then combine it with Equations (1) and (2) to calculate
the mean µWfj and standard deviation σWfj of the power consumption
distribution due the use of the frequency fj , respectively.

µWfj
= µfj

∑ |T |
ti=1W (ti , fj , Iti) p (ti , fj , Iti)∑ |T |

ti=1 p (ti , fj , Iti)
(4)

σWfj
= σfj

∑ |T |
ti=1W (ti , fj , Iti) p (ti , fj , Iti)∑ |T |

ti=1 p (ti , fj , Iti)
(5)

The probability that a scheduling epoch will have a power con-
sumption of X Watts due to the usage of the frequency fj is given
by a PDF PrWfj (X).

PrWfj
(X) =

1√
2(σWfj)

2π
e
−

(X−µWfj
)2

2(σWfj
)2

(6)

Figure 6 shows an observed PMF and approximated PDF of power
consumption distribution at a frequency PrW1.8 GHz (X) for a 256-
task (1024-thread) workload. Figure 6 shows that the predicted PDF
PrWfj

(X) is very close to the observed PMF.
We assume the power consumption due to an individual fre-

quency is a linear combination of power consumptions of a same
set of independent tasks. Therefore, all the power consumption
distributions due to the use of frequencies are jointly normal with
each other. This implies a distribution of their sum which is the
many-core’s total power consumption distribution is also normally

DAC ’18, June 24–29, 2018, San Francisco, CA, USA *Anuj Pathania, *Heba Khdr, +Muhammad Shafique, †Tulika Mitra, *Jörg Henkel

18 20 22 24 26 28 30

0

2,000

4,000
Average Error = 0.45%
Std. Dev. Error = 2.38%

Power Consumption at Frequency fj [W]

N
o.
of

Sc
he
du

lin
g
Ep

oc
hs

Observed Predicted

Figure 6: Observed and predicted power consumption distri-
bution due to the frequency fj = 1.8GHz for a 256-task (1024-
thread) workload on a many-core.

45 50 55 60

0

1,000

2,000
Average Error = 0.40%
Std. Dev. Error = 2.02%

Total Power Consumption Across All Frequencies [W]

N
o.
of

Sc
he
du

lin
g
Ep

oc
hs

Observed Predicted

Figure 7: Observed and predicted total power consumption
distribution for 256-task (1024-thread) workload.

distributed. Therefore, the mean µW of the total power consump-
tion distribution can be obtained by adding the means of power
consumption distributions due to the use of all frequencies.

µW =

|F |∑
j=1

µWfj
(7)

By design, when a task switches from one frequency to another,
it leads to decrease in power consumption due to the former fre-
quency with simultaneous increase in power consumption due to
the latter frequency. Therefore, all power consumption distributions
due to the use of different frequencies are negatively correlated with
each other. Therefore, standard deviation σW of the total power
consumption distribution can be obtained by adding the variance of
power distributions at the individual discrete frequencies adjusted
with their covariance.

σW =

√√√√ |F |∑
j=1

(σWfj
)2 + 2

∑
j<j′

ρWfj ,fj′
σWfj

σWfj′
(8)

where ρWfj ,fj′ is a correlation coefficient between power consump-

tion at the frequencies fj and fj′ . The correlation coefficient ρWfj ,fj′
can be learned by taking power samples online.

The probability that in a scheduling epoch the many-core will
have a power consumption X Watts is given by PDF PrW (X).

PrW (X) =
1√

2(σW)2π
e
−

(X−µW)2

2(σW)2 (9)

40 45 50 55 60 65

0

5 · 105

1 · 106

Many-Core TDP [W]

N
o.
of

TD
P
Vi
ol
at
in
g
Ep

oc
hs

Observed Predicted

Figure 8: Observed and predicted TDP violation distribution
for 256-task (1024-thread) workload on a many-core.

Algorithm 1 Stochastic power budgeting used in StoGov.
Input: T , Ŵ , δŴ ;
Output: ∆I ;
1: ∀ti ∈ T Read Profiled Data;
2: for ∆I = 1.0 to 0.0 do
3: for j = 1 to |F | do
4: Iti = Iti ∗ ∆I ∀ti ∈ T ▷ Discount QoS.
5: Calculate µfj using Equation (1);
6: Calculate σfj using Equation (2);
7: Calculate µWfj using Equation (4);

8: Calculate σWfj using Equation (5);

9: end for
10: Calculate µW using Equation (7);
11: Calculate σW using Equation (8);
12: Predict Q (Ŵ) using Equation (10);
13: Iti = Iti /∆I ∀ti ∈ T ▷ Reset Discounted QoS.
14: if Q (Ŵ) < δŴ then
15: break;
16: end if
17: ∆I = ∆I - .01;
18: end for
19: return ∆I ;

Figure 7 shows the observed PMF and predicted PDF of to-
tal power consumption distribution PrW (X) for a 256-task (1024-
thread) workload with covariance between frequencies considered.
Figure 7 shows the error is minimal.

Probabilistic TDP Model: Let TDP of the many-core be sym-
bolized by Ŵ . The probability that a scheduling epoch will violate
the TDP is given by a Q-function Q (Ŵ).

Q (Ŵ) = 1 −
∫ Ŵ

0
PrW (X) dx (10)

Figure 8 shows the observed and predicted distribution of TDP
violating epochs for a 256-task (1024-thread) workload. Figure 8
shows that our predicted distribution is quite accurate.

Power BudgetingAlgorithm: The stochastic power budgeting
used in StoGov is shown in Algorithm 1. StoGov cannot give a
deterministic guarantee that TDP violation will never happen but it
can reduce the probability of TDP violation to such low value that it
never occurs in the lifetime of the many-core. Furthermore, TDP is
a soft-constraint and a thermal emergency only occurs when TDP
is violated for prolonged durations. A few TDP violating epochs
spread out over time are benign. Hardware-triggered frequency
throttling via DTM can act as backup if TDP violations under StoGov
pushes chip temperature dangerously high. StoGov also allows for

QoS-Aware Stochastic Power Management for Many-Cores DAC ’18, June 24–29, 2018, San Francisco, CA, USA

PARSEC [1]

blackscholes

bodytrack

canneal

dedup

ferret

fluidanimate

freqmine

streamcluster

swaptions

vips

x264

gem5 [2] Bridge

McPat [10]

Power

Trace

Execution

Trace

Trace Simulator StoGov / PGCapping [11]

Result Trace

0.6GHz (0.447 V)

1.2GHz (0.63 V)

1.8GHz (0.803 V)

2.4GHz (0.972 V)

3.0GHz (1.139 V)

3.6GHz (1.305 V)

Figure 9: Experimental Setup.
a tradeoff between the TDP violation risk with the performance
using a TDP risk threshold δŴ .

Algorithm 1 takes as input the set of tasks executing on the
many-core T , the TDP Ŵ and the TDP risk threshold δŴ . It then
calculates the risk of TDP violationQ (Ŵ). If the risk is higher than
the TDP risk threshold δŴ then all the tasks are forced to pay equal
performance penalty by discounting their target IPS (QoS) by a
factor of ∆I . Higher the value of ∆I , higher is the performance.
Algorithm 1 is executed only when some task enters or leaves the
many-core. Note that DVFS is performed locally and independently
by the tasks themselves without any relation to Algorithm 1.

Computational Complexity: In Algorithm 1, as QoS discount
factor ∆I always take value between 1.0 and 0.0, the computational
complexity of the loop in Step 2 is constant. The worst-case com-
putational complexity of any step in the frequency loop at Step 3 is
O(|T |), so the loop’s complexity is O(|F | |T |). As all the other steps
have computational complexity less than the frequency loop, worst-
case computational complexity of StoGov algorithm is O(|F | |T |).
Use of centrally available stochastic profiles in StoGov result in
worst-case space complexity of O(|T |). The need to propagate de-
cisions to tasks and make online observation to learn covariance
result in worst-case communication complexity ofO (|T |). Note that
both the worst-case computation and communication complexity
is O (1) in scheduling epochs where no task enters or leaves the
many-core, or any online observation is performed.

4 EXPERIMENTAL RESULTS
We must observe millions of scheduling epochs for a many-core
processor executing hundreds of tasks in parallel to obtain various
distributions shown in this work. As anymany-core large enough to
test stochastic power budgeting does not exist at present, we must
rely on simulations. We are also bound to use trace-based simula-
tions as neither cycle-accurate [2] nor even interval simulations [4]
of such a large many-core is time-wise feasible.

Therefore, similar to prominent existing works [9, 13], we also
use a trace-based simulator as shown in Figure 9. The simulator
takes in isolated execution and power traces from cycle-accurate
simulations of a multi-core system as input. Cycle-accurate traces
are obtained from gem5 [2] cycle-accurate simulator bridged with
McPat [10] power simulator. Time constraints in obtaining cycle-
accurate traces forces the simulated shared-memory system in gem5

to be limited to amaximum of eight cores. Each core possesses 16 KB
L1 data and instruction cache, and supports Alpha ISA. The cores
share a 32KB L2 cache. A core can choose to run at one of six
frequencies listed in Figure 9. The 22 nm planar CMOS cores have
an in-order pipeline with a low-power design. The core’s maximum
power consumption is around 0.0065W (or 0.25W) at the lowest
(or highest) frequency of 0.6 GHz (or 3.6 GHz). The simulations are
performed in gem5’s Full System (FS) mode. The cycle-accurate
simulation traces are then combined with assumption of compos-
able execution [18] by the trace simulator to simulate a 1024-core
many-core. The ambient temperature is set at 40 °Cwhereas DTM is
triggered when many-core temperature exceeds 85 °C. The thermal
modeling parameters are set such that DTM will never be triggered
if many-core always operates within a TDP of 45W.

Random mixture of multi-threaded benchmarks (processing sim-
small input) from PARSEC benchmark suite [1] as listed in Figure 9
are used as tasks. To simulate independent execution of large num-
ber of tasks with a limited set of available benchmark types, tasks
are executed with a random initial skew in the trace simulator.
Granularity of scheduling epoch is set at 10ms.

Comparative Non-Stochastic Governor: We choose to com-
pare StoGov against the PGCapping Governor [11]; both being cen-
tralized Governors. PGCapping uses an effective non-stochastic
Quicksearch greedy algorithm to perform DVFS-based QoS-aware
power budgeting for multi-/many-cores. Quicksearch similar to
StoGov assumes availability of per-core DVFS for power budgeting.

Quicksearch operates on basis of power/performance ratios. De-
pending upon whether current power consumption of the many-
core is above or below the TDP, Quicksearch calculate a ratio of
power decrease to performance loss Dpower−per f or a ratio of per-
formance gain to power increase Dper f −power for all the cores,
respectively. The frequency of the core with the highest power de-
crease to performance loss ratioDpower−per f (or the highest perfor-
mance gain to power increase ratio Dper f −power) is decreased (or
increased) if the power is expected to be above (or below) the TDP.
Dpower−per f (or Dper f −power) is then recalculated for the task
whose frequency has been changed. Quicksearch algorithm is itera-
tively repeated till power consumption is just below the TDP.

As we operate with multi-threaded benchmarks with an assump-
tion that all the cores assigned to a task operates at same frequency,
we calculate ratios Dpower−per f and Dper f −power for PGCapping
at the task granularity rather than core granularity. Furthermore,
PGCapping originally used product of core utilization and core fre-
quency as a measure of performance (QoS), which we replace with
IPS in this work for a fair comparison.

When the Quicksearch algorithm is implemented with help of
quicksort and binary search algorithms, the worst-case computa-
tionally complexity of Quicksearch works out to be O (|F | |T | ln |T |),
which theoretically is a factor of O (ln |T |) more than StoGov.

Stochastic vs. Non-Stochastic Performance: We simulate a
many-core operating in a closed system [6] to compare efficacy of
different Governors. Many-core attains peak performance (100%)
when all QoS tasks executing on it achieve their target QoS at all
times. Figure 10 shows how the many-core’s performance mea-
sured in percentage of target QoS sustained for a task on average
for a 256-task (1024-thread) workload changes with different values

DAC ’18, June 24–29, 2018, San Francisco, CA, USA *Anuj Pathania, *Heba Khdr, +Muhammad Shafique, †Tulika Mitra, *Jörg Henkel

0 0.2 0.4 0.6 0.8 1

85

90

95

0

20

40

60

80

TDP Risk Threshold δŴ

M
an
y-
Co

re
Pe
rf
or
m
an
ce

[%
]

TD
P
Vi
ol
at
in
g
Ep

oc
hs

[%
]

StoGov PGCapping [11] StoGov TDP Violations

Figure 10: System performance comparison between StoGov
and PGCapping for different values of TDP risk threshold
δŴ when executing 256-task (1024-thread) workload with
TDP Ŵ set at 45W.

64 128 256 512
0

500

1,000

Number of Tasks

O
ve
rh
ea
d
[µ
s]

StoGov PGCapping [11]

Figure 11: Measured worst-case scheduling overheads for
StoGov for varisized workloads.
of the TDP risk threshold δŴ . As PGCapping does not consider
δŴ , produces the same performance for all values of δŴ whereas
StoGov allows a tradeoff between the performance and TDP risk
threshold δŴ . Increase in the TDP risk threshold δŴ leads to in-
crease in percentage of TDP violating epochs under StoGov as also
shown in Figure 10. Ignoring the TDP beyond a certain level can
lead to performance loss instead of gain as hardware-triggered
thermal throttling on TDP violations can substantially deteriorate
performance. This effect on many-core’s performance can be seen
in Figure 10 for higher values of the TDP risk threshold δŴ .

It can be seen from Figure 10 that StoGov results in superior
performance compared to PGCapping even when the TDP risk
threshold δŴ is set to 0. PGCapping penalizes tasks asymmetrically
resulting in several tasks operating far above their target QoS at the
cost of other tasks. StoGov on the contrary, penalizes all tasks fairly
in equal proportions which also results in better performance.

Stochastic vs Non-Stochastic Scalability: Figure 11 shows
the worst-case scheduling overheads of StoGov and PGCapping for
varisized workloads obtained using representative cycle-accurate
simulations performed on gem5. Our proof-of-concept simulations
show StoGov is highly scalable and has nearly 6.48x less worst-case
scheduling overhead than PGCapping for a 256-task workload.

5 CONCLUSION
We introduced a QoS-aware stochastic power budgeting Gover-
nor for many-cores called StoGov in this work. StoGov provides
strong stochastic guarantees on the risk of TDP violation while
allowing trade-off of that risk with performance. Compared to a
non-stochastic Governor, StoGov provides equivalent performance

but with a computational complexity reduced by a factor O (ln n).
Therefore, StoGov can scale up more efficiently with the increase
in number of cores in many-cores.

ACKNOWLEDGMENT
This work was supported in parts by the German Research Foun-
dation (DFG) as part of the Transregional Collaborative Research
Centre “Invasive Computing" (SFB/TR 89), and in parts by National
Research Foundation, Prime Minister’s Office, Singapore under its
Industry-IHL Partnership Grant and Huawei International Pte. Ltd.
NRF2015-IIP003.

REFERENCES
[1] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008. The

PARSEC Benchmark Suite: Characterization and Architectural Implications. In
Parallel Architectures and Compilation Techniques (PACT).

[2] Nathan Binkert et al. 2011. The gem5 Simulator. In SIGARCH Computer Architec-
ture News (CAN).

[3] Silas Boyd-Wickizer, Haibo Chen, Rong Chen, Yandong Mao, M Frans Kaashoek,
Robert Morris, Aleksey Pesterev, Lex Stein, Ming Wu, Yue-hua Dai, et al. 2008.
Corey: An Operating System for Many Cores. In Operating Systems Design and
Implementation (OSDI).

[4] Trevor E Carlson, Wim Heirman, and Lieven Eeckhout. 2011. Sniper: Exploring
the Level of Abstraction for Scalable and Accurate Parallel Multi-Core Simulation.
In International Conference for High Performance Computing, Networking, Storage
and Analysis (SC).

[5] Zhuo Chen and Diana Marculescu. 2015. Distributed Reinforcement Learning
for Power Limited Many-core System Performance Optimization. In Design,
Automation & Test in Europe Conference (DATE).

[6] Dror G Feitelson and Larry Rudolph. 1998. Metrics and Benchmarking for Parallel
Job Scheduling. Job Scheduling Strategies (1998).

[7] Daniel Hackenberg, Robert Schöne, Thomas Ilsche, Daniel Molka, Joseph
Schuchart, and Robin Geyer. 2015. An Energy Efficiency Feature Survey of
the Intel Haswell Processor. In International Parallel and Distributed Processing
Symposium Workshop (IPDPSW).

[8] Jörg Henkel, Andreas Herkersdorf, Lars Bauer, Thomas Wild, Michael Hübner,
Ravi Kumar Pujari, Artjom Grudnitsky, Jan Heisswolf, Aurang Zaib, Benjamin
Vogel, Vahid Lari, and Sebastian Kobbe. 2012. Invasive Manycore Architectures.
In Asia and South Pacific Design Automation Conference (ASP-DAC).

[9] Canturk Isci, Alper Buyuktosunoglu, Chen-Yong Cher, Pradip Bose, and Margaret
Martonosi. 2006. An Analysis of Efficient Multi-Core Global Power Management
Policies: Maximizing Performance for a Given Power Budget. In International
Symposium on Microarchitecture (MICRO).

[10] Sheng Li, Jung Ho Ahn, Richard D Strong, Jay B Brockman, Dean M Tullsen,
and Norman P Jouppi. 2009. McPAT: An Integrated Power, Area, and Timing
Modeling Framework for Multicore and Manycore Architectures. In International
Symposium on Microarchitecture (MICRO).

[11] Kai Ma and Xiaorui Wang. 2012. PGCapping: Exploiting Power Gating for Power
Capping and Core Lifetime Balancing in CMPs. In Parallel Architectures and
Compilation Techniques (PACT).

[12] Prem S Mann. 2007. Introductory Statistics. John Wiley & Sons.
[13] Santiago Pagani, Heba Khdr, Waqaas Munawar, Jian-Jia Chen, Muhammad

Shafique, Minming Li, and Jörg Henkel. 2014. TSP: Thermal Safe Power: Ef-
ficient Power Budgeting for Many-Core Systems in Dark Silicon. In Conference
on Hardware/Software Codesign and System Synthesis (CODES+ISSS).

[14] Anuj Pathania, Heba Khdr, Muhammad Shafique, Tulika Mitra, and Jörg Henkel.
2017. Scalable Probabilistic Power Budgeting for Many-Cores. In Design, Au-
tomation & Test in Europe (DATE).

[15] Amir-Mohammad Rahmani, Mohammad-Hashem Haghbayan, Anil Kanduri,
Awet Yemane Weldezion, Pasi Liljeberg, Juha Plosila, Axel Jantsch, and Hannu
Tenhunen. 2015. Dynamic Power Management for Many-Core Platforms in the
Dark Silicon Era: A Multi-Objective Control Approach. In International Sympo-
sium on Low Power Electronics and Design (ISLPED).

[16] Amit Kumar Singh, Muhammad Shafique, Akash Kumar, and Jörg Henkel. 2013.
Mapping on Multi/Many-Core Systems: Survey of Current and Emerging Trends.
In Design Automation Conference (DAC).

[17] Yuan HWang. 1993. On the Number of Successes in Independent Trials. Statistica
Sinica (1993).

[18] Andreas Weichslgartner, Deepak Gangadharan, Stefan Wildermann, Michael
Glaß, and Jürgen Teich. 2014. DAARM: Design-Time Application Analysis and
Run-Time Mapping for Predictable Execution in Many-Core Systems. In Confer-
ence on Hardware/Software Codesign and System Synthesis (CODES+ISSS).

	Abstract
	1 Introduction
	2 Related Work
	3 Stochastic Power Budgeting
	4 Experimental Results
	5 Conclusion
	References

