
INVITED Time-Predictable Computing by Design:
Looking Back, Looking Forward

Tulika Mitra
School of Computing, National University of Singapore

tulika@comp.nus.edu.sg

ABSTRACT
We present two contrasting approaches to achieve time pre-
dictability in the embedded compute engine, the basic build-
ing block of any Internet of Things (IoT) or Cyber-Physical
(CPS) system. The traditional approach offers predictability
on top of unpredictable processors with numerous optimiza-
tions for enhanced performance and programmability at the
cost of huge variability in timing. Approaches such as Worst-
Case Execution Time (WCET) analysis of software have been
struggling to model the complex timing behavior of the un-
derlying processor to provide guarantees. On the other hand,
the inevitable slowdown of Moore’s Law and the end of
Dennard scaling have curtailed the performance and energy
scaling of the processors. This stagnation in conjunction
with the importance of cognitive computing have motivated
widespread adoption of non-von Neumann accelerators and
architectures. We argue that these emerging architectures
are inherently time-predictable as they depend on software
to orchestrate the computation and data movement and are
an excellent match for the real-time processing needs.
ACM Reference Format:
Tulika Mitra. 2018. INVITED Time-Predictable Computing by De-
sign: Looking Back, Looking Forward. In Proceedings of ACM De-
sign Automation Conference (Mitra ’19). ACM, New York, NY, USA,
4 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
The Internet of Things (IoT) and Cyber-Physical Systems
(CPS) revolution is rapidly ushering in myriad of new appli-
cations that need to interact with the physical environment
in real time but are as prevalent as smartphones. Examples of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
Mitra ’19, June 02–06, 2019, Las Vegas, NV
© 2018 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-9999-9/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

such time-critical systems range from personal smart-drones,
medical devices, robots to industrial IoT, in addition to the tra-
ditional real-time systems such as avionics, automotive. All
these emerging applications have irrefutable safety concerns
associated with the failure to meet timing deadlines. Thus
predictable response time of a computing system has become
the first-class design target for diverse application scenarios
rather than being relegated to only a selected few [11].
Real-time systems require strict timing guarantees for

the computation performed on the underlying computer
architecture. In particular, given a software program imple-
menting the computation and an architecture on which the
program will execute, one needs to find out the worst-case
execution time (WCET) of the program on the architecture.
As long as the WCET is less than the deadline, it is safe
to deploy the software in the real-time system. The WCET
value is influenced by two primary factors: (a) the input to
the program that determines the path that is taken through
the program, and (b) the characteristics of the underlying
architecture. Thus, we can estimate the WCET value by first
determining the execution time of each instruction in the
program through accurate timing models of the architec-
ture. Next, we determine the worst-case path through the
program, given the timing properties of the individual in-
structions. Identifying the wost-case path, while challenging,
can be achieved through a variety of techniques including
Integer Linear Programming (ILP) formulation [9]. This is
a mature technology and we will assume the existence of
robust and sophisticated worst-case path analysis approach
in the rest of the article. Instead, our focus here is on the
timing behavior of the architecture, which is very complex
and difficult to model.

2 LOOKING BACK
In the beginning, the real-time embedded systems were built
with very simple micro-controllers, where each instruction
executes for a fixed and known clock cycles. Thus, it was
trivial to compute the WCET of each individual instruction
and the main challenge was in finding the worst-case path
through the program. The period between 1985 to early 2000
witnessed a golden revolution in the micro-architecture of
the processors that resulted in roughly 52% performance
improvement per year [7]. This astonishing performance

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

Mitra ’19, June 02–06, 2019, Las Vegas, NV Tulika Mitra

trajectory was fueled by two factors. First, Moore’s Law en-
sured that the number of transistors incorporated in a chip
approximately doubles every 18-24 months, resulting in an
exponential increase in transistor density. As the processing
speed is inversely proportional to the distance between the
transistors on an integrated circuit, the implication is that
the clock frequency of the processors also doubled every 24
months. Second, the simple Reduced Instruction Set Com-
puter (RISC) instruction-set architecture (ISA) emerged in
this era. The simplified ISA allowed the micro-architectural
optimizations to flourish that exploited the instruction-level
parallelism (ILP) in the program through various hardware
mechanisms such as pipeline, memory hierarchy including
on-chip caches, branch prediction, out-of-order execution,
speculation to name a few. As the ISA remained unchanged
across generations and the performance gain was achieved
by harvesting parallelism by the micro-architecture under
the hood, the optimizations were not exposed to the pro-
grammers. This separation of concern between functionality
(that programmers need to focus on) and performance (that
is automatically boosted across processor generations with-
out programmer involvement) was the biggest force behind
the success of the micro-architectural changes. The real-time
systems community could not remain immune to this dra-
matic performance advances and had to embrace these new
generation processors with simple ISA and complex micro-
architecture. Ironically, while the transparent performance
growth was the biggest asset in the general-purpose com-
puting domain with substantial legacy code, it created con-
siderable complications in the context of real-time systems
and in particular WCET estimations.

Recall that the WCET estimation of a program requires us
to compute the WCET of each individual instruction. Prior
to the introduction of the micro-architectural optimizations,
there was no variation in the execution time an instruc-
tion. The pipeline, caches, and the additional performance-
enhancing features in a processor are focused on improving
the average-case performance; but in the process they in-
troduce significant variability in the execution time of an
instruction. Consider a memory load instruction as an exam-
ple. In the absence of caches, it has a pre-determined latency,
which is equal to the high latency of accessing the off-chip
main memory (we ignore the access latency variations in
modern DRAM chips used in main memory design for the
moment). When the processor includes on-chip caches, the
memory access can be a hit or a miss depending on whether
the data is already present in the cache or not. The hit has
very low latency, while the miss has high latency due to off-
chip main memory access to bring the data on-chip. More
importantly, the same memory load instruction may have dif-
ferent latency at different instances of execution (e.g., within
a loop) depending on the context. In order to estimate the

average-case execution time of the program, one can simply
profile the execution with representative inputs and find
the cache hit rate. Unfortunately, one cannot rely on an ap-
proach based on representative inputs for the worst-case
analysis because it is unsafe (i.e, may miss corner cases that
result in worse execution time). The same problem arises for
other micro-architectural features including pipeline, branch
prediction, out-of-order execution etc. and their interaction.
Abstract Interpretation (AI) is currently the preferred

approach that employs static analysis to estimate the dy-
namic timing properties of the instructions in a program in a
context-sensitive fashion. Let us consider the cache behavior
prediction via AI [1]. The concrete cache state at a program
point depends on the context through which it is reached,
i.e., the paths taken before reaching the program point. Thus
a program point can have an exponential number of con-
crete cache states for all the different contexts, which makes
any analysis based on concrete cache states infeasible. The
AI-based static analysis maintains an abstract cache state
at each program point that approximates all the concrete
cache states into a single abstract state. To be more specific,
the WCET estimation requires three different abstract cache
states: the may, must, and persistent states that differ in the
direction of approximation. The may state captures the data
that are present in at least one context, while the must state
only includes data that are present in all the contexts. The
persistent state is required for memory accesses that are cold
miss in the first instance and hit in all subsequent instances. It
is easy to observe that a data that is present in themust state
is guaranteed to be always hit, a data that is missing from
the may state is guaranteed to be always miss, and persistent
data will have one miss. The remaining data accesses are
conservatively assumed to the cache miss. Similar abstract
states can be created for pipeline, out-of-order execution etc.
for full modeling of the micro-architectural features.

While the WCET analysis has made tremendous progress
in the last two decades, there are several inherent shortcom-
ings. First, the analysis assumes perfect knowledge of the
underlying micro-architectural optimizations. In reality, the
processor vendors do not expose all the details of the micro-
architecture because they treat the ISA as the functional
interface between hardware and software. As mentioned
earlier, the micro-architectural advances are meant to be
transparent to the external world and provide the competi-
tive edge to the processor architecture. Recently, there has
been call to expose the micro-architectural details, both from
timing analysis and security perspectives (e.g., Spectre and
Meltdown attacks), as part of an extended ISA. At present,
however, one needs to rely on extensive reverse engineering
efforts and micro-benchmarking to uncover the parameters
and secrets of the underlying architecture, including some-
times simple parameters such as cache block size, number

INVITED Time-Predictable Computing by Design: Looking Back, Looking ForwardMitra ’19, June 02–06, 2019, Las Vegas, NV

of sets, replacement policy etc. Second, the WCET analysis
becomes increasingly challenging with growing complex-
ity of the processors. For example, the popularity of shared
memory multi-core processors in real-time systems demand
the WCET analysis to be extended to model shared resources
such as the bus, the network-on-chip, and the shared caches.
This is far more complicated than uni-processor timing mod-
eling. In summary, the WCET analysis techniques are per-
petually attempting to catch up with the hardware progress.
An alternative to the present approach is to design ar-

chitectures that are inherently predictable in nature but
still provides sufficient performance. It is not possible to
go back to the days of the micro-controllers as embedded
real-time systems today perform intensive computations that
require high-performance architectures. In the past, there
have been efforts towards both time-predictable architec-
tural components as well as complete architectures. In the
memory hierarchy, cache locking [4], cache partitioning [13],
and software-controlled scratchpad memory (SPM) [14] are
the popular approaches to predictability. Cache locking loads
selected content in the cache and then locks it to prevent
changes due to cache replacement policy. Cache partitioning
isolates the cache content for each task so that a task cannot
replace another task’s content in the cache. Finally, in SPM,
the memory content is divided with frequently accessed con-
tent placed in the on-chip SPM and the remaining data in
the off-chip memory. In all these cases, the software controls
the content in the on-chip memory and hence the latency of
each memory access is known depending on where in the
memory hierarchy the corresponding data has been placed.

For a complete processor core, Edwards and Lee [5] argues
the case for precision timed (PRET) machines in time-critical
systems. Their vision is an architecture that provides cycle-
accurate timers, a predictable memory hierarchy based on
SPM, and an interleaved pipeline that provides predictable
hardware-efficient concurrency. The PRET machine needs
support from a C-like programming language extended to
include user-specified timing constraints and concurrency. A
multi-core version of PRET is presented in [2] with temporal
semantics at micro-architecture level, in the memory hierar-
chy, in on-chip communication, and in the instruction-set
architecture. Other examples of time-predictable architec-
tures include T-CREST [12], MERASA [15], Kalray [3], and
SPECTRUM [16].

However, all these approaches still remain firmly situated
in the traditional von Neumann architecture domain.

3 LOOKING FORWARD
At present, the architectural landscape is going through a
radical transformation and we argue that the future looks
bright from the timing predictability prospects.

For almost thirty years, Moore’s Law was aided by Den-
nard Scaling to keep the processor power within limit. The
breakdown of Dennard Scaling has curtailed the rise in clock
frequency due to thermal limits and instead the progress has
shifted to multi- and many-core architectures to take advan-
tage of the abundance of transistors as Moore’a Law is still
alive. However, we are slowly but surely reaching the end of
the road in terms of performance gain from general-purpose
processors to a meager 3% per year [7]. There are several con-
straints that have contributed to this fall including memory
wall, power wall, and the ILP wall as well as speedup limit
of parallel code due to sequential bottleneck in accordance
with Amdahl’s Law. Together, these technology trends have
led to the emergence of heterogeneous computing where
general-purpose processor cores coexist on-chip with vari-
ous accelerators including GPU, reconfigurable computing,
digital-signal processors as well as domain-specific accelera-
tors (e.g., Neural Processing Unit, Video encoding/decoding
units etc.) [10]. From real-time systems viewpoint, the hetero-
geneity seems to add another level of complexity and timing
unpredictability; indeed, the whole system-level timing anal-
ysis becomes somewhat more challenging. Nonetheless, a
closer look reveals that the current trend is actually beneficial
for predictability as the individual hardware accelerators are
no longer tied to the von Neumann architecture and either
expose sufficient architectural states at the software level or
expose very little but have limited timing variability. The
kernels are offloaded to these accelerators and hence accu-
rate timing analysis of the computation on the accelerators
becomes the major element in providing timing guarantees.

Let us first consider reconfigurable computing in the form
of popular Field Programmable Gate Arrays (FPGA) and
Coarse-Grained Reconfigurable Arrays (CGRA) that are be-
coming ubiquitous in real-time embedded systems. In case
of FPGAs, the high-level synthesis (HLS) techniques per-
form both spatial and temporal mapping of the computation
onto the reconfigurable substrate. The entire computation
schedule is pre-orchestrated including memory transfers.
Moreover, the clock frequency that covers the critical path in
a clock cycle is also known. In other words, as the FPGA ar-
chitecture with all the details of the timing properties is made
available fully to the HLS tools, the timing guarantees are ob-
tained naturally as part of the synthesis process. A CGRA [8]
can be thought of as an array of very simple processing ele-
ments (PE) with a simple interconnect (typically 2D mesh).
Different from the bit-level reconfiguration in FPGA, the PEs
and the interconnect in the CGRA are reconfigured at word
level (hence the term coarse-grained) each cycle. Again, the
compiler is responsible to come up with cycle-by-cycle spa-
tial and temporal mapping of the loops onto the CGRA fabric
through software pipelining. The mapping determines the
Initiation Interval (II), which is the number of cycles between

Mitra ’19, June 02–06, 2019, Las Vegas, NV Tulika Mitra

two consecutive loop iterations. Unlike the FPGA, where
the clock frequency is determined by the critical path after
mapping, the clock frequency is fixed for the CGRA. Thus
the II value dictates the execution time of the loop and there
is no timing variation from the underlying architecture. In
summary, FPGA and CGRA can be though of as a broader
class of software-defined hardware architectures where the
timing variability is completely eliminated.

Finally, we move the spotlight to the emerging workloads
and the domain-specific accelerators that are primarily re-
sponsible to execute them. Traditionally, the real-time guar-
antees have beenmostly required for the control systems part
of the embedded CPS and IoT devices. The control systems
software generally is not heavy in terms of computation
but is full of control divergent branches. The new gener-
ation of CPS and IoT systems, specially in domains such
as self-driving cars, 5G baseband processing etc., perform
substantial computation that is mapped to domain-specific
accelerators and should be processed in real-time. Another
dominant trend is the inclusion of cognitive computing and
in particular, deep learning as part of the workload. The
self-driving cars deploy deep neural network (DNN) infer-
ence for real-time object detection to avoid obstacles on road.
These workloads are executed either on the GPU or dedi-
cated neural-network accelerators with real-time deadlines.
At present, GPUs present challenges [6] towards its inte-
gration into real-time systems (partially hindered again by
the lack of propriety micro-architectural details including
thread scheduling). But the neural processing units, such
as Google TPU (Tensor Processing Unit) [7] are inherently
far more predictable. The TPU architecture is minimalist
in nature and precludes sophisticated micro-architectural
features such as caches, branch prediction, out-of-order ex-
ecution, multiprocessing, speculative pre-fetching, address
coalescing, multi-threading, context switching, etc. that im-
prove average-case performance but does nothing to the
worst-case performance. Essentially, the TPU is very large
two-dimensional multiply unit at its heart with decoupled
access-execute model to bring in data from the off-chip mem-
ory while concurrently executing time-predictable matrix
multiplication. The simple and repeatable execution model of
the TPU makes it easy to provide response time guarantees
for DNN inferences. Interestingly, the TPU brings back into
vogue the Complex Instruction-Set Computer (CISC) ISA
with the domain-specific complex instructions and avoids
the timing predictability pitfalls of RISC machines compris-
ing of complex internal hardware-level optimizations and
reordering of the instructions.

4 CONCLUSION
In summary, the real-time systems community in the past
has struggled to develop software with provable timing guar-
antees in the face of increasingly complex but invisible ar-
chitectural details. As the architectural landscape evolves
towards hardware accelerators in response to the emerg-
ing application workloads, the research in providing tim-
ing predictability for software needs to move in tandem to
fully exploit and embrace these exciting new opportunities.
Greater synergy, understanding, and co-operation among
the architecture, design automation, and real-time software
community are essential to reach the predictability goals.

ACKNOWLEDGMENTS
This work was supported by the National Research Founda-
tion, Prime Ministers Office, Singapore under its Industry-
IHL Partnership Grant NRF2015-IIP003.

REFERENCES
[1] Martin Alt, Christian Ferdinand, FlorianMartin, and ReinhardWilhelm.

1996. Cache behavior prediction by abstract interpretation. In SAS.
[2] Dai Bui, Edward Lee, Isaac Liu, Hiren Patel, and Jan Reineke. 2011.

Temporal isolation on multiprocessing architectures. In DAC.
[3] Benoît Dupont de Dinechin, de Massas, et al. 2013. A distributed

run-time environment for the kalray mppa®-256 integrated manycore
processor. Procedia Computer Science 18 (2013).

[4] Huping Ding, Yun Liang, and Tulika Mitra. 2012. WCET-centric partial
instruction cache locking. In DAC.

[5] Stephen A Edwards and Edward A Lee. 2007. The case for the precision
timed (PRET) machine. In DAC.

[6] Glenn A Elliott and James H Anderson. 2011. Real-world constraints
of GPUs in real-time systems. In RTCSA.

[7] Norman P Jouppi, Cliff Young, Nishant Patil, and David Patterson. 2018.
A domain-specific architecture for deep neural networks. Commun.
ACM (2018).

[8] Manupa Karunaratne, Aditi Kulkarni Mohite, Tulika Mitra, and Li-
Shiuan Peh. 2017. Hycube: A cgra with reconfigurable single-cycle
multi-hop interconnect. In DAC.

[9] Yau-Tsun Steven Li and Sharad Malik. 1995. Performance analysis of
embedded software using implicit path enumeration. InACM SIGPLAN
Notices, Vol. 30. ACM, 88–98.

[10] Tulika Mitra. 2015. Heterogeneous multi-core architectures. Informa-
tion and Media Technologies 10, 3 (2015).

[11] Tulika Mitra, Jürgen Teich, and Lothar Thiele. 2018. Time-critical
systems design: A survey. IEEE Design & Test 35, 2 (2018).

[12] Martin Schoeberl et al. 2015. T-CREST: Time-predictable multi-core
architecture for embedded systems. Journal of Systems Architecture
(2015).

[13] Vivy Suhendra and Tulika Mitra. 2008. Exploring locking & partition-
ing for predictable shared caches on multi-cores. In DAC.

[14] Vivy Suhendra, Tulika Mitra, Abhik Roychoudhury, and Ting Chen.
2005. WCET centric data allocation to scratchpad memory. In RTSS.

[15] Theo Ungerer et al. 2010. Merasa: Multicore execution of hard real-time
applications supporting analyzability. IEEE Micro 30, 5 (2010).

[16] Vanchinathan V and T Mitra A Kulkarni, LS Peh. 2019. SPECTRUM:
A Software Defined Predictable Many-core Architecture for LTE Base-
band Processing. In LCTES.

	Abstract
	1 Introduction
	2 Looking Back
	3 Looking Forward
	Acknowledgments
	References

