
PANORAMA: Divide-and-Conquer Approach for Mapping
Complex Loop Kernels on CGRA

Dhananjaya Wijerathne, Zhaoying Li, Thilini Kaushalya Bandara, and Tulika Mitra
{dmd,zhaoying,thilini,tulika}@comp.nus.edu.sg

National University of Singapore

ABSTRACT
CGRAs are well-suited as hardware accelerators due to power effi-
ciency and reconfigurability. However, their potential is limited by
the inability of the compiler to map complex loop kernels onto the
architectures effectively. We propose PANORAMA, a fast and scal-
able compiler based on a divide-and-conquer approach to generate
quality mapping for complex dataflow graphs (DFG) representing
loop bodies onto larger CGRAs. PANORAMA improves the through-
put of the mapped loops by up to 2.6x with 8.7x faster compilation
time compared to the state-of-the-art techniques.

1 INTRODUCTION
The interest for flexible and power-efficient accelerators is ever in-
creasing with the advent of IoT and edge computing technology in
the global market. Coarse-Grained Reconfigurable Arrays (CGRAs)
have the potential to become a prominent hardware accelerator in
this domain since they can offer a good balance between flexibility,
power efficiency, and performance [1–13]. CGRA is a spatial accel-
erator consisting of many reconfigurable processing elements (PE)
concurrently executing a single application or application kernel.
FPGAs are the closest contender but have poor power and area
efficiency due to the bit level reconfigurability overhead [1].

CGRA consists of a PE arraywhere the compute and interconnect
elements are runtime reconfigurable according to a static schedule
created at compile time. Figure 1 shows an example of CGRA archi-
tecture with a 4x4 PE array. PEs typically includes simple ALU as
a Functional Unit (FU), register file (RF) as the local storage, and
switches to communicate with the other PEs. All these elements
are runtime reconfigurable through a predetermined sequence of
configurations stored in the configuration memory. At runtime,
this sequence of configurations is repeated cyclically. A subset of
processing elements can access shared memory banks, which acts
as the communication channel between the accelerator and the rest
of the system (host processor, main memory).

As CGRAs repeatedly cycle through a small set of configurations,
application loop kernels are the perfect candidates for acceleration.
Application loop kernels are represented as Dataflow Graph (DFG),
where the nodes represent operations, and the edges represent
the dependencies between operations. Figure 2 shows snippets of
DFGs. The compiler maps the DFG onto CGRA, i.e., assigns DFG
nodes onto spatio-temporal PE coordinates while assuring valid

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
DAC ’22, July 10–14, 2022, San Francisco, CA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9142-9/22/07.
https://doi.org/10.1145/3489517.3530429

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

M
EM

O
R

Y
B

A
N

K
S

Config. Memory

RF

Sw
itch

N

E

W

S

Sw
itch

N

E

W

S
`

ALU
R

R

Figure 1: 4x4 CGRA Architecture.

 x

 + x

 +

 x

 x

 +

 x

 x

 +

 x

 x

 +

 x

 x

 +

 x

 x

 S

 + x

 + x

 + x

 + x

 + x

 + x

 S

 + x

 + x

 + x

 + x

 + x

 + x

 S

 + x

 + x

 + x

 + x

 + x

 + x

 S

 + x

 + x

 + x

 + x

 + x

 + x

 S

 +

 +

 +

 +

 +

 +

 S

 L

 L L

 L L

 L L

 L L

 L L

 L L

 L

 L

 L

 L

 L

 L

 L

 L

 L

 L

 L

 L

 L

 L

 L

 L

 L

 L

 L

 L

 L

 L

 L

 L

 L

 L

 L

 L

 L

 L

 L

 L

 L

 L

 L

(a)

 L

 S C

 C

 C

 C

 +

 C

 << << << << << << <<

 C

 C

 C

 C

 <<

 +

 C

 C

 ||

 - +

 C

 C

 C

 +

 + + +

 L

 C

 C C C C C C

 C C

 C C

 C C

 +

 C

 ||

 + -

 +

 C

 ||

 + - C

 ||

 -

 +

 C

 ||

 C

 ||

 C

 C

 +

 >>

 &

 +

 C

 >>

 C

 &

 C

 - +

 C

 + +

 >>

 &

 +

 C

 >> C

 &

 C

 >>

 C

 >>

 &

 +

 C

 >>

 C

 &

 C

 C

 + +

 >>

 &

 +

 C

 C

 &

 +

 >>

 &

 +

 >>

 &

 +

 C

 >> C

 &

 C

 - +

 C

 +

 >>

 &

 +

 C

 >>

 C

 &

 C

 C -

 x

 +

 C

 >>

 C

 &

 C

 C

 + +

 >>

 &

 +

 C

 >>

 C

 &

 C

 >>

 &

 +

 C

 >>

 C

 &

 C

 >>

 &

 -

 -

 - C

 + C

 C

 + -

 - +

 - +

 C

 x

 +

 >>

 &

 -

 + -

 C

 - +

 C

 x

 +

 >>

 &

 -

 C

 x

 +

 >>

 &

 C

 x

 +

 >>

 &

 C

 C C S

 +

 C

(b)

Figure 2: Example dataflow graphs.

data paths are available through PE interconnects to route the data
dependencies. Therefore, the achievable performance and power
efficiency of CGRA rely heavily on the quality of the compiler.

However, the compiler has become the main barrier preventing
CGRA from reaching its full potential, particularly when scaling up
to complex DFG and larger CGRA. Noticeably, most of the previous
works on CGRA focused on either small CGRA sizes or small appli-
cation kernels [2–11]. HiMap [16] has proposed a scalable CGRA
compiler through a hierarchical mapping approach. However, they
focus on kernels with regular (lattice-like) inter-iteration dependen-
cies, as shown in figure 2a. They identify the repeatable patterns
in the regular DFG and replicate the unique iteration mappings to
reduce the compilation complexity. Therefore, the applicability of
the compiler is limited to multi-dimensional kernels that form such
regular DFGs. Figure 2b shows a complex loop kernel DFG with
irregular dependencies, more prevalent in embedded applications.
The scalability issue in the compiler has resulted in non-optimal
performance and longer mapping time, hindering the scalability of
CGRAs from supporting diverse, complex, and bigger workloads.

In this paper, we introduce a fast and scalable CGRA compiler,
Panorama, for mapping complex loop kernels on CGRA. Panorama
allows the mapper to see an all-encompassing global view, i.e., a
Panoramic view of complex DFGs, and use a divide-and-conquer
approach to generate quality mappings. The higher-level mapping
partitions the DFG onto the CGRA clusters and guides the lower-
level mapping, reducing overall complexity. Panorama is a portable
solution that can be combined with existing low-level CGRA map-
pers to achieve enhanced performance in a shorter compilation
time. We demonstrate the advantage of Panorama in combina-
tion with two state-of-the-art low-level mapping approaches, re-
sulting in up to 2.6x performance increase with 8.7x faster com-
pilation time. The framework is open-source and available from
https://github.com/ecolab-nus/panorama.

https://doi.org/10.1145/3489517.3530429
https://github.com/ecolab-nus/panorama

DAC ’22, July 10–14, 2022, San Francisco, CA, USA Dhananjaya Wijerathne, Zhaoying Li, Thilini Kaushalya Bandara, and Tulika Mitra

1 2

3

7

12

8

4

6

10 11

16 17

13

15

5

9

14

1 2

3

7

12

8

4

6

10 11

16 17

13

15

5

9 14

PE1 PE2 PE3 PE4 PE5 PE6

1 2

3

7

12

8

4

6

10 11

16 17

13

15

5

9 14

PE1 PE2 PE3 PE4 PE5 PE6

Cycle 1

Cycle 2

Cycle 3

Cycle 4

Cycle 5

PE Cluster 1 PE Cluster 2

Cycle 1

Cycle 2

Cycle 3

Cycle 4

Cycle 5

Failed routing

II

1’ 2’ 1’ 2’

A

D

C
E

B

2 3

2

1
5

II

(a) DFG

1 2

3

7

12

8

4

6

10 11

16 17

13

15

5

9

14

1 2

3

7

12

8

4

6

10 11

16 17

13

15

5

9 14

PE1 PE2 PE3 PE4 PE5 PE6

1 2

3

7

12

8

4

6

10 11

16 17

13

15

5

9 14

PE1 PE2 PE3 PE4 PE5 PE6

Cycle 1

Cycle 2

Cycle 3

Cycle 4

Cycle 5

PE Cluster 1 PE Cluster 2

Cycle 1

Cycle 2

Cycle 3

Cycle 4

Cycle 5

Failed routing

II

1’ 2’ 1’ 2’

A

D

C
E

B

2 3

2

1
5

II

(b) CDG

1 2

3

7

12

8

4

6

10 11

16 17

13

15

5

9

14

1 2

3

7

12

8

4

6

10 11

16 17

13

15

5

9 14

PE1 PE2 PE3 PE4 PE5 PE6

1 2

3

7

12

8

4

6

10 11

16 17

13

15

5

9 14

PE1 PE2 PE3 PE4 PE5 PE6

Cycle 1

Cycle 2

Cycle 3

Cycle 4

Cycle 5

CGRA Cluster 1 CGRA Cluster 2

Cycle 1

Cycle 2

Cycle 3

Cycle 4

Cycle 5

Failed routing

II
=

4

1’ 2’ 1’ 2’

A

D

C
E

B

2 3

2

1
5

II
=

4

(c)

1 2

3

7

12

8

4

6

10 11

16 17

13

15

5

9

14

1 2

3

7

12

8

4

6

10 11

16 17

13

15

5

9 14

PE1 PE2 PE3 PE4 PE5 PE6

1 2

3

7

12

8

4

6

10 11

16 17

13

15

5

9 14

PE1 PE2 PE3 PE4 PE5 PE6

Cycle 1

Cycle 2

Cycle 3

Cycle 4

Cycle 5

CGRA Cluster 1 CGRA Cluster 2

Cycle 1

Cycle 2

Cycle 3

Cycle 4

Cycle 5

Failed routing

II
=

4

1’ 2’ 1’ 2’

A

D

C
E

B

2 3

2

1
5

II
=

4

(d)

Figure 3: Mapping examples on a time-extended 6x1 CGRA.
(c) A failed mapping instance generated by a conventional
mapper. (d) A successful mapping result generated by
Panorama approach.

2 MOTIVATING EXAMPLE
We first present the intuitions behind the Panorama mapping ap-
proach using a motivation example. Figure 3a shows the DFG corre-
sponding to a loop body where the nodes represent the operations
and edges represent the dependency between two operations. We
compare themappings of the DFG on a 6x1 linear CGRA, which only
allows single-cycle single-hop data transfers. Mapping schedules
are illustrated on time-extended CGRA where the CGRA resources
are replicated along the time dimension. The target Initiation Inter-
val (II) of both mapping schedules is 4, where the schedule repeats
every four cycles, i.e., a new loop iteration can be initiated every
four cycles. The conventional mapping algorithms place DFG nodes
one by one on CGRA PEs, searching for the best placement for each
node. Figure 3c shows a failed mapping instance generated by a
mapper with such a narrow perspective. In this placement, it is
not possible to find a valid route for node 14. Node 14 is placed
three hops away from its parent (node 4), and data cannot reach
in two cycles since CGRA only allows single-cycle single-hop data
transfers. For the same reason, node 14 cannot be placed in any
other available PEs. Thus it needs to remap the nodes to reach a
valid mapping. The main reason behind such failures is the lack of
a global view of the mapper. The local view of the mapper attempts
to place nodes to closest PEs to reduce the routing cost of data
dependencies. However, this may lead to requiring significant addi-
tional resources to route far-flung data dependencies that might be
encountered later during the mapping. The narrow perspective also
leads to closely packed nodes in a subset of CGRA PEs without fully
exploiting the available resources. A closely packed schedule causes
more routing congestions for the DFG nodes that are mapped later.

In contrast, we provide a global view of the DFG to the map-
per by partitioning the DFG into clusters (a community of closely
connected nodes). Node colors in the DFG represent the different
clusters. Figure 3b shows the Cluster Dependency Graph (CDG)
where nodes represent clusters of DFG nodes and edge weights

represent the number of DFG edges between two clusters. The CDG
consists of five nodes A, B, C, D, and E. We first map the CDG to
CGRA clusters considering the structure of the CDG and CGRA
clusters. Figure 3d shows a successful mapping result generated by
our approach. Here the clusters A, B, and C are mapped onto CGRA
cluster 1 {PE1, PE2, PE3}. The clusters D and E are mapped onto
CGRA cluster 2 {PE3, PE4, PE5}. This ensures closely connected
nodes are placed in the closely connected CGRA PEs. In this case,
node 14 can find a placement with a valid route because nodes 4,
7, 8 have moved right to be closer to 14. This global view lets the
mapper fully utilize the available CGRA resources and allows the
mapper to reach a valid mapping faster.

3 PANORAMA COMPILER
Problem Formulation:We define DFG𝐷 = (𝑉𝐷 , 𝐸𝐷) as a directed
acyclic graph with𝑉𝐷 representing operations and 𝐸𝐷 representing
dependencies between operations. CDG is a directed acyclic graph
𝐷

′
= (V, E) where the vertices V represent the cluster of nodes

and the edges E represent the dependencies between clusters. Mod-
ulo Routing Resource Graph (MRRG) 𝐻𝐼 𝐼 = (𝑉𝐻 , 𝐸𝐻) is a resource
graph of the CGRA 𝐺 that is time extended to 𝐼 𝐼 cycles [6]. 𝑉𝐻
consists of two types of nodes: FUs (𝑉 𝐹

𝐻
) in each PE and ports (𝑉 𝑃

𝐻
)

in interconnects and RFs. CGRA cluster graph is represented by
𝐺

′
𝑅×𝐶 = (𝑃, 𝐿) where elements of 𝑃 are the physical CGRA clusters,

and 𝐿 represents the link between clusters. 𝑅 and 𝐶 denote the
number of CGRA cluster rows and columns.

Problem Definition: Given a DFG 𝐷 and a CGRA 𝐺 , the prob-
lem is to construct a minimally time extended MRRG 𝐻𝐼 𝐼 with
a mapping 𝜙 = (𝜙𝑉 , 𝜙𝐸) from 𝐷 = (𝑉𝐷 , 𝐸𝐷) to 𝐻𝐼 𝐼 . 𝜙𝑉 denotes
the operation to FU mapping (placement), where each operation
𝑣 ∈ 𝑉𝐷 should have one-to-one mapping to an FU 𝜙𝑉 (𝑣) ∈ 𝑉 𝐹

𝐻
. 𝜙𝐸

denotes the data dependency mapping (routing), where each data
dependency edge (𝑣𝑝 , 𝑣𝑞) ∈ 𝐸𝐷 should map to a set of ports 𝑆 ⊂ 𝑉 𝑃

𝐻
connecting 𝜙𝑉 (𝑣𝑝) and 𝜙𝑉 (𝑣𝑞). We decompose the problem into
three sub-problems: clustering DFG 𝐷 to CDG 𝐷

′
, finding a map-

ping 𝜙
′
from 𝐷

′
to CGRA 𝐺

′
𝑅×𝐶 , and finally mapping DFG nodes

within CDG nodes to PEs within the CGRA cluster. 𝜙
′
denotes the

many-to-many CDG to CGRA cluster mapping, where each cluster
𝑣
′ ∈ V should have a mapping to physical CGRA cluster 𝜙

′ (𝑣 ′) ∈ 𝑃 .
Mapping Algorithm: In this section, we present the details of

each algorithm step. The input for the algorithm is the DFG of the
target loop kernel and the architecture description of the CGRA.
First, we partition the DFG to form the CDG. Then CDG is mapped
onto the CGRA clusters using a graph drawing-based mapping tech-
nique. Finally, in the lower-level mapping, the DFG nodes within
each CDG node are mapped to the CGRA PEs satisfying the con-
ditions for a valid mapping 𝜙 . Algorithm 1 presents the overview
of the Panorama mapping. We use Spectral Clustering [15] to par-
tition the DFG, i.e., divide the DFG nodes into non-overlapping
clusters such that the number of edges across clusters is minimized.
We explore clustering solutions with different numbers of clusters
to find the most balanced partitions with near equal cluster sizes
(number of DFG nodes in a cluster)(lines 2-4).

However, it is possible to have different cluster sizes even in
the most balanced clustering solution. Figure 4 shows an example
of cluster mapping with such an imbalanced clustering solution.

PANORAMA: Divide-and-Conquer Approach for Mapping Complex Loop Kernels on CGRA DAC ’22, July 10–14, 2022, San Francisco, CA, USA

Algorithm 1: Panorama Mapping
Input: DFG, Arch: CGRA Architecture, R: CGRA cluster rows, C: CGRA

cluster columns, m: maxDFGClusters
Output: DFG mapped on minimally unrolled MRRG

1 k = R
2 while 𝑘 <𝑚 do
3 𝐶𝐷𝐺𝑘 = SpectralClustering(DFG, k);
4 𝑘 + +;
5 for each CDG in Top3BalancedPartitions(𝐶𝐷𝐺𝑟 , ..,𝐶𝐷𝐺𝑚) do
6 Success = False, 𝜁1 = 1, 𝜁2 = 1
7 while !Success do
8 Success, ClusMap = ClusterMapping(CDG, r, c, 𝜁1, 𝜁2)
9 𝜁1 + +; 𝜁2 + +;

10 CGRA_Mapping(DFG,𝐶𝑙𝑢𝑠𝑀𝑎𝑝𝑤𝑖𝑡ℎ𝑀𝑖𝑛𝜁1𝜁2 , Arch);

A DFG cluster with a comparatively bigger cluster size should
be allocated more CGRA resources to fully utilize the CGRA (Eg.
cluster 𝐷 is assigned to two CGRA clusters). Similarly, DFG clusters
with comparatively smaller cluster sizes should be able to share
a single CGRA cluster (Eg. cluster 𝐴 and 𝐵 share the same CGRA
cluster). Therefore, we propose many to many CDG to the CGRA
cluster mapping algorithm. Cluster mapping is done with the top 3
balanced partitions (clustering solutions) (lines 5-9).

Finally, the cluster mapping solution with the least inter-cluster
edge routing complexity is used to guide the lower-level CGRA
mapping. Cluster mapping solution with minimum 𝜁1 and 𝜁2 values
have the least inter-cluster edge routing complexity (explained in
following sections). Lower-level CGRA mapping assigns the DFG
nodes to FUs in CGRA PEs (within the assigned cluster) and routes
the data dependencies within and across the clusters using the ports
in interconnects and RFs. Panorama higher-level mapping can be
used to guide any existing lower-level mapping technique. The
details of the main algorithms are given in the following sections.

A

D

CB

2 3

2

1

A

D

C

B
2

3

2

1

Cluster Dependency
Graph (CDG)

CDG to CGRA Cluster
mapping

Data Flow Graph (DFG)

4x4 CGRA with 2x2 Clusters

DFG node placement
on CGRA PEs

4x4 CGRA with 2x2 Clusters

Figure 4: Cluster mapping with imbalanced clusters.

3.1 DFG Clustering
The objective of the clustering algorithm is to group the closely
connected community of DFG nodes so that they can be placed
and routed in closely connected PEs. We employ spectral clustering
to partition the DFG. Spectral clustering has become a prominent
clustering algorithm since it outperforms many other traditional
clustering algorithms [15]. Spectral clustering uses the spectrum
(eigenvalues) of the data’s similarity graph, which needs to be
clustered. In our case, the DFG is the similarity graph as it represents
the relationship between nodes.

The inputs for the spectral clustering algorithm are the DFG and
the number 𝑘 of clusters to construct. The algorithm first computes
the Laplacian matrix 𝐿 of the adjacency matrix of the DFG. Then
the first 𝑘 eigenvectors of 𝐿 are computed to form a matrix𝑈 using
eigenvectors as columns. The row 𝑖 of the matrix 𝑈 defines the
features of the DFG node 𝑖 . Then the graph nodes are clustered
based on these features using the k-means algorithm.

4 6 8 10 12 14 16
0

10

20

30

40

Number of Clusters

Im
ba
la
nc
e
Fa
ct
or

%

jpegidst cordic edn fir

Figure 5: Imbalance factor variation with number of clusters.

Choosing the number of clusters is a crucial step as it defines the
complexity of the final mapping. Spectral clustering gives the near-
optimal clustering solution minimizing the inter-cluster edges for a
given 𝑘 number of clusters. However, minimizing the inter-cluster
edges is not sufficient as the clustering solutions can reach two
extremes, with almost all the DFG nodes in one cluster or many
clusters with small cluster sizes. Both these extremes diminish the
effect of higher-level mapping and are against our goal of simplify-
ing the mapping problem. Thus, we choose the number of clusters
based on the size imbalance factor (𝐼𝐹). The 𝐼𝐹 is the relative dif-
ference between cluster sizes in the smallest and largest clusters
(relative to total DFG nodes). Figure 5 shows the variation of 𝐼𝐹 of
four DFG kernels against the number of clusters. A low 𝐼𝐹 denotes
more balanced cluster sizes. We set the minimum number of clus-
ters to the number of CGRA cluster rows (𝑅) since the column-wise
scattering step in the cluster mapping algorithm requires at least
𝑅 number of clusters (explained in the next section). We explore
clustering solutions between 𝑅 and𝑚 number of clusters where𝑚
is an input to the algorithm. For all the evaluated kernels, clustering
solutions exist with a 𝐼𝐹 of less than 20%, proving the effectiveness
of spectral clustering in partitioning the DFGs.

3.2 Cluster Mapping
The ultimate goal of the cluster mapping step is to equally distribute
the DFG nodes on CGRA, reducing inter-cluster edge distance so
that lower-level mapping would be less complex. Our cluster map-
ping algorithm is inspired by the graph drawing technique called
split & push algorithm [14]. We note that SPKM [11] has also used
split & push algorithm for kernel mapping on spatial-only CGRAs.
However, SPKM is a one-to-one mapping from DFG nodes to PEs.
Our problem requires many-to-many mapping between the CDG
nodes and CGRA clusters. Thus, our objectives are fundamentally
different and hence require very different formulations.

A

D

C

E
B

2 3

2

1
5

A
D

C E
B

A D

C E

B
2

3

2

1 5

A D

C E

B

Column-wise
Scattering

Row-wise
Scattering

Cluster Dependency
Graph (CDG)

CDG to CGRA mapping

Data Flow Graph
(DFG)

4x4 CGRA with 2x2 Clusters

Figure 6: Illustration of cluster mapping algorithm.

Figure 6 shows the flow of the cluster mapping algorithm. The
algorithm has two main steps called column-wise scattering and
row-wise scattering. It starts by putting all the CDG nodes in a

DAC ’22, July 10–14, 2022, San Francisco, CA, USA Dhananjaya Wijerathne, Zhaoying Li, Thilini Kaushalya Bandara, and Tulika Mitra

single CGRA cluster at cluster coordinate (1,1). Then it splits the
CDG nodes into two groups (𝐵,𝐴, 𝐷 and 𝐶, 𝐸) and pushes one of
the groups (𝐶, 𝐸) into the adjacent CGRA cluster in the same col-
umn. This step is repeated until all the CGRA clusters in the first
column are filled with nodes (column-wise scattering). Then the
nodes allocated in the first column are scattered row-wise to obtain
the final mapping (row-wise scattering). The crucial step of the
algorithm is how it splits the nodes into two groups in column-wise
scattering. If the split-step cuts adjacent edges (edges that share a
common node), it will result in diagonal edges. For example, since
column-wise scattering cuts 𝐴−𝐶 and 𝐷 −𝐶 edges, either 𝐴−𝐶 or
𝐷 −𝐶 edge becomes a diagonal edge in the final mapping. Diagonal
edges would increase the routing complexity in the lower-level
mapping as they would require more routing resources than direct
edges. Diagonal edges can be minimized by finding a matching
cut. The matching cut is defined as a set of non-adjacent edges
(edges without common node) whose removal makes the graph
disconnected.

Both column-wise scattering and row-wise scattering are formu-
lated as ILP problems, as explained in the following sections. The
ILP formulates the problem of finding a many-to-many mapping
with the following conditions: 1) distribute cluster nodes across the
CGRA clusters proportionate to cluster sizes, 2) minimize diagonal
edges, and 3) minimize the distance between dependent clusters
based on the number of inter-cluster DFG edges.
3.2.1 Column-wise Scattering. In this step, we distribute the
CDG nodes across the CGRA clusters in a single column. It starts
with all the nodes in one cluster, and in each repetition, the nodes are
separated and pushed to the next CGRA cluster. The ILP formulation
aims to find a matching cut to separate the nodes into two sets.

Boolean Decision Variable: 𝑣𝑖𝑟𝑐 is 1 if 𝑖-th CDG node 𝑣𝑖 ∈ V
is not pushed onto the CGRA cluster 𝑝 (𝑟+1)𝑐 from 𝑝𝑟𝑐 , 0 otherwise
(𝑝 (𝑟+1)𝑐 , 𝑝𝑟𝑐 ∈ 𝑃). 𝑟 and 𝑐 are CGRA cluster row and column ids.

Objective Function:𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 |∑𝑣𝑖 ∈V 𝑣𝑖𝑟1 ∗ |𝑣𝑖 | − (|𝑉𝐷 |/𝑅) |
where |𝑣𝑖 | denotes cluster size of 𝑣𝑖 , |𝑉𝐷 | denotes the total num-

ber of DFG nodes. The objective function allows the cluster nodes
to distribute across the CGRA cluster rows proportionate to the
cluster size. Thus the DFG nodes are distributed evenly across the
CGRA cluster rows.

Constraints: Following two constraints are used to reduce the
number of diagonal edges by finding a matching cut. These con-
straints are derived from the fork minimization algorithm in [11, 14]
and applied to multi-degree nodes (nodes with degrees higher than
one). The key idea is to minimize the number of adjacent edges (of
a multi-degree node) cut by the matching cut.∑

𝑣𝑗 ∈𝑎𝑑 𝑗 (𝑣𝑚𝑖) (𝑣 𝑗𝑟1 + 𝑣𝑚
𝑖𝑟1) ≤ 𝜁1 + 𝜂 ∗ 𝑣𝑚

𝑖𝑟1∑
𝑣𝑗 ∈𝑎𝑑 𝑗 (𝑐𝑚𝑖) (𝑣 𝑗𝑟1 + 𝑣𝑚

𝑖𝑟1) ≥ 2 ∗ 𝑑𝑒𝑔(𝑣𝑚
𝑖𝑟1) − 𝜁2 − 𝜂 ∗ (1 − 𝑣𝑚

𝑖𝑟1)
where 𝑣𝑚

𝑖
is the multi degree node. 𝑎𝑑 𝑗 (𝑣𝑚

𝑖
) are the set of nodes

adjacent to 𝑣𝑚
𝑖

and𝑑𝑒𝑔(𝑣𝑚
𝑖
) is the degree of 𝑣𝑚

𝑖
. 𝜂 is a large constant

value used to linearize the equations. 𝜁1 and 𝜁2 are integer variables
used to control the number of diagonal edges allowed. If 𝜁1 = 𝜁2 = 1,
no diagonal edges would be allowed. We increase the 𝜁1 and 𝜁2
values until we find a feasible solution to ILP.

3.2.2 Row-wise Scattering. Column-wise scattering assigns each
CDG node to a CGRA cluster row. The row-wise scattering dis-
tributes those assigned CDG nodes across the row to set the final

Algorithm 2: CGRA Mapping
Input: DFG, Arch, Cluster Mapping
Output: DFG mapped on minimally unrolled MRRG

1 minII = Minimum(recurrenceMII, resourceMII)
2 while iterate do
3 MRRG = UnrollGraph(Arch, minII);
4 for each node in orderedDFGNodes do
5 for each unmapped FU in MRRG do
6 if Cluster(node) is mapped to Cluster (FU)) then
7 EstimateLeastCostPlacement();
8 ScheduleAndPlaceNode();
9 while currentTemp > minTemp do
10 overuse= PathFinderRouting();
11 if overuse == 0 then
12 mapSuccess = true;
13 else
14 simAnnealingPlacement();
15 currentTemp = updateTemperature();
16 minII++; iterate = (!mapSuccess && minII < maxII);

cluster coordinate for each CDG node. Row-wise scattering is also
formulated as an ILP.

Boolean Decision Variable: 𝑣𝑖𝑟𝑐 is 1 if 𝑖th CDG node 𝑣𝑖 ∈ V
is mapped onto CGRA cluster column 𝑐 at the row 𝑟 fixed in the
column-wise scattering.

Objective Function:
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 |∑(𝑣𝑖 ,𝑣𝑗) ∈E

∑𝐶
𝑐=1𝑤 (𝑣𝑖 , 𝑣 𝑗) × 𝑐 × (𝑣𝑖𝑟𝑐 − 𝑣 𝑗𝑟𝑐) |

where𝑤 (𝑣𝑖 , 𝑣 𝑗) is the number of inter cluster DFG edges between
CDG nodes 𝑣𝑖 and 𝑣 𝑗 . The objective function minimizes the distance
between dependent clusters allowing dependent CDG nodes with
more inter-cluster edges to be placed in closer CGRA clusters.

Constraints:
∀𝑖 ∈ V,

∑𝐶
𝑐=1 𝑣𝑖𝑟𝑐 = |𝑣𝑖 |/(|𝑉𝐷 |/𝑅 ×𝐶), ∑

∀𝑣𝑖 ∈V 𝑣𝑖𝑟𝑐 ≥ 1
The first constraint allows one to many mappings, i.e., one CDG

node, to map onto multiple columns based on the cluster size.
(|𝑉𝐷 |/𝑅 ×𝐶) gives the average number of DFG nodes each CGRA
cluster should have when the DFG nodes are equally distributed.
The second constraint allows many-to-one mapping, i.e., multiple
CDG nodes can be placed on the same CGRA cluster.

3.3 CGRA Mapping
Panorama is a portable higher-level mapper which can be com-
bined with any lower-level CGRA mapper. This section explains
how Panorama guides a CGRA mapper implemented based on SPR
(Schedule, Place, and Route) [2]. The algorithm 2 shows the main
body of the mapping process. The inputs are the DFG of the target
kernel, cluster mapping result, and detailed architecture description
of the target architecture. The minimum II (minII) is found based on
the DFG and CGRA characteristics (line 1) [22]. We incrementally
increase the minII if the subsequent steps fail to find a valid map-
ping. For each minII, MRRG is created by unrolling the Architecture
resource graph into II cycles (line 3).

To guide the CGRA mapping with Panorama higher-level map-
ping result, we restrict DFG nodes to all functional units within the
CGRA cluster decided from the cluster mapping algorithm (line 6).
To obtain the initial mapping, we find the least cost placement for
each DFG node out of the designated functional units respecting
latency constraints arising from recurrence relationship, i.e., inter-
iteration dependencies (lines 4-8) [22]. Then, we use PathFinder-
Routing() to find a valid route for all the edges between DFG nodes,

PANORAMA: Divide-and-Conquer Approach for Mapping Complex Loop Kernels on CGRA DAC ’22, July 10–14, 2022, San Francisco, CA, USA

0.6

0.8

1

Q
oM

(M
II/
II)

SPR* Pan-SPR*

ed
n

idc
tC
ols

idc
tR
ow
s

con
v2
D
mfi
lte
r

mm
ul

cor
dic

km
ea
ns fir

jpe
gfd
ct1

jpe
gfd
ct2

jpe
gid
ctf
st

inv
ert
ma
t

av
era
ge

100
101
102

Co
m
pi
la
tio

n
Ti
m
e
(h
)

Figure 7: Comparison with SPR*.

including inter-cluster edges (line 10) [24] . The inter-cluster edges
and back edges (representing inter-iteration edges) are prioritized
for using the inter-cluster communication links (if available). We al-
low routing resources to be overused when establishing valid routes.
If the PathFinderRouting() finds routes with resource overuse, the
placement is changed using the simulated annealing-based cooling
schedule (line 14) [23]. The simulated annealing-based placement is
repeated until a PathfinderRouting() comes up with zero resource
overuse routing. The process is terminated if the cooling tempera-
ture is less than the minimum temperature allowed.

4 EXPERIMENTAL EVALUATION
We implemented Panorama using a diverse set of tools. DFGs are ex-
tracted from annotated C kernels using a DFG generator written in
LLVM 10.0 [19]. We implemented DFG clustering and cluster map-
ping using python libraries, Scikit-Learn [17] for spectral clustering,
and gurobipy [18] as an ILP solver. The CGRA lower-level mappers
are implemented in C++. The representative loops (Table 1a) are
selected from standard DSP benchmark suite mediabench [20] and
modern embedded benchmark suite embench [21]. The loop kernels
are unrolled to take advantage of larger CGRA and have an average
of 432 nodes. To provide an idea of the relative DFG complexity
maximum degree of the DFG nodes is also listed. We map kernels
onto 16x16 CGRA with 4x4 clusters. Each CGRA cluster has a 4x4
PE array, local memory bank, and PEs in the left-most PE column
that can access the memory. We measure the runtime of compilers
on the Intel Xeon Gold CPU (2.60GHz).

DFG Clustering and Cluster Mapping: Table 1a summarizes
the results of DFG clustering, cluster mapping, and compilation
time. K, Inter-E, Intra-E, and STD denote the number of clusters,
dependencies across clusters, dependencies within clusters, and
standard deviation of cluster size, respectively. The number of de-
pendencies within clusters (Intra-E) is significantly higher than the
number of dependencies across clusters (Inter-E), showing the clus-
tering algorithm’s effectiveness. Cluster mapping results show how
many DFG clusters (CDG nodes) are mapped to each CGRA cluster.
The clustering solutions with higher STD results in many-to-many
mappings. The average compilation time for clustering plus cluster
mapping is 9.23 seconds.

Comparison with Architecture Adaptive Compiler: Archi-
tecture adaptive compilers can support a variety of CGRAs, given
the architecture description as the input. Table 1b shows the sum-
mary of prominent architecture adaptive CGRA compilers proposed
in the literature [2, 5–9, 11]. SPR [2] is the most scalable compiler

ed
n

idc
tC
ols

idc
tR
ow
s

con
v2
D
mfi
lte
r

mm
ul

cor
dic

km
ea
ns fir

jpe
gfd
ct1

jpe
gfd
ct2

jpe
gid
ctf
st

inv
ert
ma
t

av
era
ge

0

1

2

Po
w
er

Effi
ci
en
cy

SPR*, 9×9 CGRA Pan-SPR*, 9×9 CGRA SPR*, 16×16 CGRA Pan-SPR*, 16×16 CGRA

Figure 8: Power efficiency comparison.

evaluated on benchmark kernels with an average of 263 nodes
and 16x16 CGRA. We refer to our implementation of SPR as SPR*.
Note that SPR* compilation time is comparable with other works
for smaller DFG and CGRA sizes. With SPR*, we use a detailed
CGRA architecture description, where each PE has RF with eight
registers and four read/write ports. All PEs have a neighbor to neigh-
bor connections. Also, six inter-cluster links connect PEs between
neighboring clusters. We compare the SPR* with Pan-SPR*. In Pan-
SPR*, Panorama higher-level mapping guides the SPR* lower-level
mapping, as explained in section 3.3. Figure 7 shows the Quality
of Mapping (QoM = Minimum possible II (MII)/ Mapped II) and
the compilation time in log scale. Pan-SPR* can generate better
mappings (lower or equal II) for all the benchmarks compared to
SPR*. Pan-SPR* achieves MII for all benchmarks exceptmmulwhere
SPR* only achieves MII for four benchmarks.mmul has high fanout
nodes (high max. degree), causing more routing congestions, con-
sequently failing to achieve MII. Pan-SPR* brings down SPR*’s on
average 112 hours long compilation time down to a more manage-
able 12 hours. On average, Pan-SPR* achieves 22% better mapping
quality with 8.7x faster compilation time than SPR*. This shows
that Panorama can substantially enhance both the performance
and compilation time of architecture adaptive compiler.

Figure 8 shows the power efficiency (MOPS/mW) comparison
between 9x9 CGRA and 16x16 CGRA (normalized with power ef-
ficiency of SPR* mappings on 9x9 CGRA). We implemented two
CGRA architectures in RTL and synthesized them onto a commer-
cial 40nm process using Synopsys toolchain to obtain the power
numbers at 100MHz frequency. The power efficiency of 16x16 CGRA
is 68% higher than the 9x9 CGRA, which shows the benefit of scal-
ing up the CGRA size. The Pan-SPR* achieves 16% power efficiency
improvement over SPR* compilation on 16×16 CGRA.

Comparison with Architecture Specific Compiler: Ultra-
Fast [3] is a recently published compiler specifically designed for
HyCUBE CGRA [4] and claims orders of magnitude improvement in
compilation time. In Pan-UltraFast, Panorama higher-level mapping
guides the Ultra-Fast lower-level mapping. Our goal is to demon-
strate the versatility and effectiveness of our approach for different
architectures and easy integration with diverse low-level mapping
techniques in the literature.

However, we note that Ultra-Fast assumes extreme single-cycle
multi-hop connection, allowing single-cycle communication be-
tween any two PEs in the entire array. This assumption simplifies
the 3D mapping problem into a 2D mapping problem and substan-
tially reduces the mapping time. It also uses a completely abstract
representation of HyCUBE with unlimited registers per PE and
again reduces the compilation complexity. These broadly simplify-
ing architectural assumptions can dramatically reduce the compi-
lation time and are expected to reduce II values. Surprisingly, we

DAC ’22, July 10–14, 2022, San Francisco, CA, USA Dhananjaya Wijerathne, Zhaoying Li, Thilini Kaushalya Bandara, and Tulika Mitra

(a) Summary of DFG characteristics, clustering, and cluster mapping results

DFG Characteristics Clustering Results Compilation Time (s)Kernel Nodes Edges Max Deg. K Inter-E Intra-E STD
Cluster Mapping Result

(CDG nodes per CGRA cluster) Clustering Clus Map
edn 507 633 25 10 76 557 22.6 [2,2,1,1],[2,1,1,2],[2,1,1,1],[2,1,2,1] 7.6 1.15
idctcols 403 580 23 29 85 495 17.5 [3,3,2,3],[1,2,1,3],[3,1,2,1],[1,3,5,1] 7.25 1.07
idctrows 427 694 40 10 61 633 33 [1,1,1,2],[2,1,1,2],[1,1,1,2],[2,1,1,2] 7.11 1.16
2-D convolution 512 666 36 12 98 568 15.6 [1,1,2,1],[1,1,1,1],[1,1,1,1],[2,2,1,4] 8.92 1.18
matched filter 501 572 75 16 85 487 17.7 [1,1,1,2],[1,1,1,1],[1,1,1,1],[1,1,1,4] 10.26 1.12
matrix multiply 503 609 53 16 116 493 11.1 [2,1,1,2],[2,1,1,2],[2,2,1,1],[1,1,1,1] 7.88 1.1
cordic 294 491 14 22 81 410 10.5 [3,3,1,2],[3,1,1,2],[3,1,1,1],[3,1,2,2] 8.21 1.18
k-means clust. 461 545 42 16 96 449 12.5 [1,1,1,2],[1,1,1,1],[1,1,1,3],[1,1,1,1] 10.4 1.19
fir 256 310 49 16 62 248 2.5 [1,1,1,1],[1,1,1,1],[1,1,1,1],[1,1,1,1] 7.75 1.1
jpegfdct 440 593 35 10 54 539 37.4 [1,1,1,3],[2,1,1,2],[1,1,1,2],[1,1,1,2] 7.46 1.1
jpegidctfst 486 626 27 15 86 540 32.7 [1,1,1,2],[1,1,1,2],[1,1,1,1],[1,1,1,6] 7.16 1.17
invertmat 389 610 37 24 103 507 9.9 [2,1,1,4],[1,1,1,3],[1,1,1,1],[3,2,2,7] 7.23 1.09
averege 432 578 38 16 83 494 18.5 8.1 1.13

(b) Summary of previous works

DFG
Nodes

CGRA
Size

Compilation
Time

CGRA-ME [7] 12 4x4 NA
SPKM [11] 16 4x4 ∼1s
G-Minor [5] 35 4x4, 16x16 0.2s, 7s
EPIMAP [8] 35 4x4, 16x16 54s, 23min
DRESC [6] 56 4x4 ∼15min
EMS [9] 4∼142 4x4 ∼37min
SPR [2] 263 16x16 NA
SPR* 30 4x4 30s

Table 1

0

0.5

1

Q
oM

(M
II/
II)

Ultra-Fast Pan-UltraFast

ed
n

idc
tC
ols

idc
tR
ow
s

con
v2
D
mfi
lte
r

mm
ul

cor
dic

km
ea
ns fir

jpe
gfd
ct1

jpe
gfd
ct2

jpe
gid
ctf
st

inv
ert
ma
t

av
era
ge

100
101
102
103

Co
m
pi
la
tio

n
Ti
m
e
(s
)

Figure 9: Comparison with Ultra-Fast.

observe that compared to SPR* compilation for a detailed and realis-
tic architecture, Ultra-Fast compilation for abstract (and potentially
unrealizable) architecture still generates significantly higher II val-
ues ranging from 1.1x to 13x across all kernels (i.e., much lower
throughput) due to its greedy placement strategy (compare QoM
metric in Figures 7 and 9).

Nonetheless, compared to Ultra-Fast, PAN-Ultrafast improves the
quality of mapping by 2.6x and reduces the compilation time by 4.8x.
This shows the portability and the effectiveness of Panorama higher-
level mapping irrespective of the choice of the low-level mapper.
Figure 9 shows the QoM and the compilation time in logscale for
these two approaches.

5 RELATEDWORK
Many works in FPGA synthesis use cluster-based mapping (also
known as packing) to assign technology mapped netlist onto FPGA
configurable logic blocks (CLB) [25]. The packing algorithms try
to pack nodes in the netlist to each CLB to its full capacity to
minimize the number of CLBs needed. The algorithms used to solve
the packing problem are not applicable to CGRA because CGRA
allows temporal mapping. The goal of the CGRA mapping is to
distribute the nodes equally without trying to fully pack the part of
resources. Few works in CGRA mapping also use DFG clustering
to achieve different objectives [2, 9].

6 ACKNOWLEDGEMENTS
This research is partially supported by the National Research Foun-
dation, Singapore under its Competitive Research Program Award
NRF-CRP23-2019-0003.

7 CONCLUSION
CGRAs are promising as accelerators due to the excellent balance be-
tween power efficiency, flexibility, and performance. However, the
complexity of the mapping problem limits the scalability of CGRAs.
Panorama is a fast, scalable, and portable compiler solution that en-
ables existing compilers to support complex application kernels on
larger CGRAs. We demonstrated the capability of Panorama in com-
bination with two state-of-the-art low-level mapping approaches.

REFERENCES
[1] L. Liu et al., “A survey of coarse-grained reconfigurable architecture and design:
Taxonomy, challenges, and applications,” in CSUR’19

[2] S. Friedman et al., “SPR: an architecture-adaptive CGRAmapping tool,” in FPGA’09
[3] J. Lee and T. E. Carlson , “Ultra-Fast CGRA scheduling to enable run time, pro-
grammable CGRAs,” in DAC’21

[4] M. Karunaratne et al., “HyCUBE: A CGRA with reconfigurable single-cycle multi-
hop interconnect,” in DAC’17

[5] L. Chen and T. Mitra, “Graph minor approach for application mapping on CGRAs,”
in TRETS’14

[6] B. Mei et al., “DRESC: A retargetable compiler for coarse-grained reconfigurable
architectures,” in FPT’02

[7] S. A. Chin et al., “CGRA-ME: A unified framework for CGRA modelling and
exploration,” in ASAP’17

[8] M. Hamzeh et al., “EPIMap: Using epimorphism to map applications on CGRAs,”
in DAC’12

[9] H. Park et al., “Edge-centric modulo scheduling for coarse-grained reconfigurable
architectures,” in PACT’08

[10] Z. Li et al., “LISA: Graph neural network based portable mapping on spatial
accelerators,” in HPCA’22

[11] J. W. Yoon et al., “A graph drawing based spatial mapping algorithm for coarse-
grained reconfigurable architectures,” in VLSI’09

[12] T. K. Bandara et al., “REVAMP: a systematic framework for heterogeneous CGRA
realization,” in ASPLOS’22

[13] Z. Li et al., “Chordmap: Automated mapping of streaming applications onto
CGRA,” in TCAD’21

[14] G. Di Battista et al., “A split & push approach to 3D orthogonal drawing,” in
Graph Algorithms And Applications 2’04

[15] U. Von Luxburg, “A tutorial on spectral clustering,” in Statistics and computing’07
[16] D. Wijerathne et al., “Himap: Fast and scalable high-quality mapping on CGRA
via hierarchical abstraction,” in DATE’21

[17] L. Buitinck et al., “API design for machine learning software: experiences from
the scikit-learn project,” in arXiv’13

[18] Gurobi optimizer reference manual, https://www.gurobi.com
[19] C. Lattner and V. Adve , “LLVM: A compilation framework for lifelong program
analysis & transformation,” in CGO’04

[20] C. Lee et al., “Mediabench: A tool for evaluating and synthesizing multimedia
and communications systems,” in MICRO’97

[21] Embench: A modern embedded benchmark suite, https://www.embench.org/
[22] B Ramakrishna Rau, “Iterative Modulo Scheduling: An algorithm for software
pipelining loops,” in MICRO’94

[23] S. Kirkpatrick et al., “Optimization by simulated annealing,” in Science’83
[24] L. McMurchie and C. Ebeling, “Pathfinder: A negotiation-based performance-
driven router for FPGAs,” in Reconfigurable Computing’08

[25] A. Marquardt et al., “Using cluster-based logic blocks and timing-driven packing
to improve FPGA speed and density,” in FPGA’99

	Abstract
	1 Introduction
	2 Motivating Example
	3 Panorama Compiler
	3.1 DFG Clustering
	3.2 Cluster Mapping
	3.3 CGRA Mapping

	4 Experimental Evaluation
	5 Related Work
	6 Acknowledgements
	7 Conclusion
	References

