
Online Scheduling for Multi-core
Shared Reconfigurable Fabric

Liang Chen, Thomas Marconi and Tulika Mitra
School of Computing

National University of Singapore

{chenliang,marconi,tulika}@comp.nus.edu.sg

Abstract—Processor customization in the form of application-
specific instructions has become a popular choice to meet the
increasing performance demands of embedded applications un-
der short time-to-market constraints. Implementing the custom
instructions in reconfigurable logic provides greater flexibility.
Recently, a number of architectures have been proposed where
multiple cores on chip share a single reconfigurable fabric that
implements the custom instructions. Effective exploitation of
this reconfigurable fabric requires runtime scheduling of the
tasks on the cores and allocation of reconfigurable logic for
custom instructions. In this paper, we propose an efficient online
scheduling algorithm for multi-core shared reconfigurable fabric
and show its effectiveness through experimental evaluation.

I. INTRODUCTION

The emergence of multi-cores in recent years has created

the opportunity for innovative application-specific instruction

set processors (ASIPs) architectures. In the simplest form,

the architecture can contain a set of homogeneous base cores

where each core has a dedicated reconfigurable fabric (see

Figure 1(a)) for implementation of custom instructions [1].

The user can thus create a heterogenous multi-core at runtime

by simply extending the instruction-set architecture (ISA) of

each core with different custom instructions. However, sharing

a single reconfigurable fabric among limited number of cores

(between 2 to 4) can achieve better utilization of resources

and hence improved acceleration of the application (see Figure

1(b)). Moreover, a combined shared fabric can accommodate

much larger custom instructions for individual tasks than is

possible with fragmented private fabrics. Recently, researchers

have proposed a number of architectures [2], [3], [4], [5] where

the reconfigurable fabric is shared among a group of cores. A

crucial issue in such architectures is the online scheduling of

the tasks.

Online scheduling for both multi-cores and reconfigurable

logic have been studied extensively in literature [6], [7], [8],

[9], [10]. In our context, however, a task requires both the base

processor core and the reconfigurable logic (implementing

custom instructions) to execute. In multi-core architectures

with dedicated reconfigurable fabric, the scheduling problem

is exactly identical to that of a homogeneous multi-core

architecture as the reconfigurable logic does not impose any

additional constraint. On the other hand, in traditional partially

reconfigurable FPGAs, the schedulers only need to place hard-

ware accelerator tasks in the fabric without any consideration

for the processor availability [7]. Scheduling both the software

component on processor core and the hardware component in

reconfigurable logic presents a difficult challenge. Moreover,

any online scheduler should minimize its runtime overhead.

Our goal is to design an efficient online scheduler for multi-

core shared reconfigurable logic.

Previous research on shared reconfigurable fabric in multi-

cores have either focused on offline scheduling [4] or task

scheduling in the reconfigurable fabric [5]. To the best of our

knowledge, ours is the first approach that considers runtime

scheduling of real-time tasks accelerated with custom instruc-

tions on multi-core platforms with shared reconfigurable logic.

Our online scheduler overcomes the dual constraint of the

availability of the processor and the fabric by intelligently

planning ahead and making resource reservation for the future.

Our extensive experimental evaluation with tasks extracted

from real-world applications confirms the effectiveness of our

online scheduling algorithm.

Related work: Sharing the reconfigurable fabric has

become a trend with the emergence of resource sharing for

multi-core processors. In [4], the authors compare the shared

and private reconfigurable fabric architectures, and show sig-

nificant acceleration achieved by using shared reconfigurable

fabric. Similar architectures for multi-core system with shared

reconfigurable fabric have been proposed in [2], [3], [5].

However, [2], [3], [4] consider offline task scheduling. The

only work that considers runtime scheduling in this context is

[5]; however, their approach using minority game theory does

not consider underlying realistic reconfigurable fabric model.

II. PROBLEM FORMULATION

We assume a multi-core architecture where the cores share

a single large reconfigurable fabric to implement the custom

instructions as shown in Figure 1(b). This fabric can be

partially reconfigured at run-time.

Core

Core

Core

Core
RF

RF RF

RF

a) Multi-core with private reconfigurable fabrics b) Multi-core with shared reconfigurable fabric

Core

Core

Core

Core C
RF

Fig. 1. Multi-core system with reconfigurable fabric (RF).

We assume that a sequence of independent tasks arrive in

the system. A task may or may not require support for custom

instructions. If a task employs custom instructions, it requires

978-3-9810801-8-6/DATE12/ c©2012 EDAA

both the processor core and part of the reconfigurable fabric

for execution. A task without any custom instructions simply

requires a free processor core. Thus we can define a task Ti

as a 4-tuple (ai, ei, di, wi) where

• ai: the arrival time of the task

• ei: the expected execution time of the task

• di: the deadline constraint for the task

• wi: the area required for custom instructions

We assume hard deadlines, i.e., a task that cannot meet

its deadline is considered to be rejected by the system. In

this work, we assume 1D area model for the reconfigurable

fabric. That is, the reconfigurable fabric is divided into equal

sized columns and a column is the basic unit for partial

reconfiguration. Thus wi denotes the number of columns

required to implement the custom instructions corresponding

to task Ti. If a task Ti does not require custom instructions,

then wi = 0. We further assume that we have P processor

cores and the reconfigurable fabric contains W columns. We

employ non-preemptive scheduling policy to avoid repeated

reconfigurations of the fabric due to preemptions.

The job of the online scheduler is to schedule the tasks

and place the the custom instructions for that task in the re-

configurable fabric. Thus the scheduler determines the starting

time si of execution of a task Ti and the starting column xi

where the custom function units (CFUs) of Ti are placed in

the reconfigurable fabric. The scheduler needs to satisfy the

following constraints.

• Arrival time and deadline constraint: Arrival time ai
and deadline di determine the time bounds for execution

of task Ti. ∀Ti : si ≥ ai AND si + ei ≤ di
• Processor constraint: At any point in time, we can have

at most P tasks in execution because there are P proces-

sor cores: |St| ≤ P where St = {Ti|si ≤ t ≤ si + ei}
• Boundary constraint: The CFUs corresponding to a task

Ti should be placed inside the reconfigurable fabric.

∀Ti : xi + wi ≤ W

• Disjoint placement constraint: The placement of CFUs

of different tasks that execute in parallel should not

overlap with each other. That is, ∀Ti, Tj where j �= i

[xi+wi ≤ xj]∨[xj+wj ≤ xi]∨[si+ei ≤ sj]∨[sj+ej ≤ si]

If the scheduler cannot find a suitable schedule and placement

of a task that satisfy the above constraints, then the task is

considered rejected. The goal of the online scheduler is to
minimize the rejection rate of the tasks.

III. ONLINE SCHEDULER

A. Drawbacks of priority-based scheduling

Most online scheduling algorithms employ some form of

task priority for scheduling. A widely used priority function

is based on deadline and the scheduling strategy is called

earliest-deadline-first (EDF) in which the task in the queue

with the closest deadline is scheduled first. This works well

in a system with only processor constraint (such as multi-

core without reconfigurable logic) because the highest priority

task will always be able to execute once a processor becomes

free. Unfortunately, enforcing the highest-priority task to be

scheduled first can have negative effect on the scheduling

quality in our system. When a task leaves the system, it may

not be possible to schedule the highest priority task T in the

queue due to the unavailability of reconfigurable logic. Now

T will prevent all the lower priority tasks in the queue from

being scheduled even if they are eligible.

A well-known fix to this problem in reconfigurable comput-

ing is the EDF-NF (Next-Fit) scheduling policy [7], [8], [9].

Here, if the highest priority task cannot be scheduled imme-

diately (due to reconfigurable logic constraint), the scheduler

scans through the priority queue till it finds a task that can be

scheduled at current time (or fails to find any schedulable task

in the queue). However, EDF-NF scheduling strategy has a

different problem. Once a lower priority task starts execution,

it may prevent the higher priority task to be scheduled by

occupying a processor and reconfigurable logic.

B. Co-scheduling

Instead of simply scheduling one task at a time, we can

schedule all the tasks in the queue together to obtain locally

optimal scheduling solutions. We call this strategy of schedul-

ing multiple tasks at a time co-scheduling. Rather than simply

scheduling and placing the tasks in the reconfigurable fabric

in a pre-defined order (e.g., EDF), we plan in advance the

schedule and placement of the tasks in the queue and reserve

resources accordingly.

Finding the optimal schedule (i.e., the one with minimal

rejection rate) for all the tasks in the queue can be modeled

as 2D rectangular strip packing problem (2D-SPP) with

additional processor and deadline constraints. In 2D-SPP, N
rectangles need to be packed in a rectangular bin with limited

height and width such that the rectangles do not overlap. In

our context, the width corresponds to reconfigurable logic area

and the height corresponds to the time.

Unfortunately, 2D-SPP is NP-hard problem and finding

the optimal solution for 2D-SPP (known as exact packing)

with large number of rectangles (tasks) is not computationally

feasible specially for online scheduling [11], [12]. Moreover,

even with 2D-SPP, we only get a local optima for the current

tasks in the queue as the behavior of the future tasks are

unknown to us. Thus, there is not much incentive to apply

2D-SPP for our problem. Nevertheless, 2D-SPP can provide a

good target for our online scheduler.

C. Sliding window-based scheduling framework

We now present our sliding window-based scheduling

framework that employs co-scheduling. The arriving tasks are

queued according to their priorities (EDF). Every time a new

task arrives, the queue is updated. Our scheduler focuses on

the first K entries in the queue, which we call the window.

The co-scheduler attempts to schedule all the tasks in the

window together. The scheduling decisions (starting time si

and the starting column xi for task Ti) for all the tasks in the

window are maintained in a reservation list. The execution

list maintains information about the currently executing tasks.

Once the clock reaches the starting time si of a task Ti in the

reservation list, Ti can start execution.

The co-scheduler is triggered only when the window gets

updated. The window is updated either when a new task arrives

and gets queued inside the window or when a task within the

window starts execution (and the window slides to include the

next higher priority task in the queue). In the worst case, co-

scheduling is triggered two times per task. We now describe

two co-scheduling algorithms: a heuristic-based approach and

an exact solution based on 2D-SPP.

D. Co-scheduling heuristic

Algorithm 1: Sliding window scheduler with heuristic

triggered by window update = True
Co_schedule(execution list, window)
1 K := number of tasks inside window; reservation list := NULL;
2 for i ← 1 to K do
3 MER := MER list creation(execution list, reservation list);
4 if (res := search list(MER, window[i]))! = NULL then
5 insert reservation list(res);
6 window update := False;

triggered by clock reaching starting time of T in reservation list
Start_execution(T)
1 delete reservation list(T); insert execution list(T);
2 if (queue− window) != NULL then
3 update window(); window update := True;

triggered by departure of executing task T
Finish_execution(T)
1 delete execution list(T);

triggered by arrival of task T
Insert_queue(T)
1 insert queue(T);
2 if T ∈ window then
3 window update := True;

Algorithm 1 presents a sliding window-based approach

where we employ a heuristic for co-scheduling. Once the

window gets updated due to arrival of a task inside the window

or starting of execution of a task within the window, the

co-scheduler is triggered. The co-scheduler generates future

resource reservation for all the tasks in the window. It goes

through the tasks in the window in order of their priorities

(EDF). For each task T in the window, the algorithm iden-

tifies all the maximal empty rectangles (MERs) available for

scheduling T taking into consideration the currently executing

tasks and the tasks for which reservations already exist. The

MERs are generated using the algorithm proposed in [10]. If

multiple MERs are available that satisfy all constraints, then

we can employ different strategies such as first fit, best fit or

worst fit to choose one MER.

E. Co-scheduling with 2D-SPP

To evaluate our heuristic, we also design a co-scheduling

algorithm based on 2D-SPP that provides locally optimal

schedule for the window. The optimal packing is identified

Algorithm 2: 2D-SPP based co-scheduling

triggered by window update = True;
Co_schedule(exec list, window)
1 K := number of tasks inside window; reserv list := NULL;
2 Global min reject = K;
3 DS_Exp(exec list, reserv list, window);

DS_Exp(exec list, reserv list, window)
4 MER := MER list creation(exec list, reserv list);
5 if |MER| = 0 then
6 min reject := number of tasks not scheduled in reserv list;
7 if min reject < Global min reject then
8 record reserv list; Global min reject = min reject;
9 return;

10 for i ← 1 to K do
11 for j ← 1 to |MER| do
12 if feasibility(window[i],MER[j])! = 0 then
13 res := create reservation(window[i], MER[j]);
14 insert reservation list(res);
15 DS_Exp(exec list, reserv list, window - window[i],

min reject);
16 delete reservation list(res);

with essentially a branch and bound algorithm as described

in [11] and [12]. Algorithm 2 presents the 2D-SPP based

co-scheduling algorithm. As the updates of the window are

identical to Algorithm 1, we do not include them again. The

goal is to find the solution with minimal rejection rate. As

the complexity grows exponentially with the number of tasks

(rectangles to be packed), we limit the window size to 6 tasks.

Basically, the algorithm performs a depth first search of

the design space (procedure DS Exp) for all the tasks in the

window. In DS Exp procedure, the algorithm finds all the

feasible MERs and generates all combinations of MERs and

tasks. The algorithm returns when all feasible combinations

have been explored. If, for a particular combination, the

rejection rate in minimal, it is maintained. So the algorithm

can identify the solution with the minimum rejection rate.

IV. EXPERIMENTAL EVALUATION

We use 17 kernels from MiBench and MediaBench to create

our task set. For each kernel, we manually generated custom

instructions for Stretch platform [13] by using Stretch C lan-

guage. Stretch processor incorporates Xtensa processor and the

Stretch Instruction Set Extension Fabric (ISEF). The ISEF is

software-configurable datapath based on programmable logic.

It consists of arithmetic/logic elements (ALU) and multiplier

elements (MU) interlinked in a programmable routing fabric.

A set of programmer defined custom instructions can be imple-

mented in this fabric. Once we define the custom instructions,

the profiler in Stretch provides us the execution time and the

hardware area (in terms of ALUs and MUs) for each kernel.

However, Stretch platform currently does not support partial

reconfiguration of the ISEF. To emulate partial reconfiguration,

we assume that the ISEF is organized as expression-grain

reconfigurable architecture (EGRA) [14]. Four ALUs and two

MUs are combined together to form a cell. A cell is the atomic

unit that is reconfigurable. Thus the reconfigurable fabric is

simply an 1D array of cells. We assume that a kernel requires

Kernel Number of cells Execution time (ms)
CRC32 10 2

GETMB 60 6

FIR 2570 38

DES 266 49

DCT 1509 280

ZZQ 253 1258

RGB2CMYK 85 1313

DJPEG 3107 1377

YCC2RGB 2082 1440

Filter 1593 1505

AUTOCOR 480 1878

DEQUANTIZE 1025 3370

ADPCM DEC 190 4428

Quantize 2880 4443

MDCT 1265 4464

CJPEG 2662 6103

RGB2YCC 712 8336

TABLE I
AREA REQUIREMENT (IN CELLS) AND EXECUTION TIME OF KERNELS.

Shared
EDF

Shared
EDF-NF Shared heuristic Shared 2D-SPP

running time
(ms/task) 0.001 0.26 0.31 2.7

TABLE II
RUNNING TIME FOR SHARED ONLINE SCHEDULING ALGORITHMS.

consecutive cells to implement its custom instructions. Table I

shows the execution time and the area requirements obtained

from Stretch profiler for the 17 kernels. The area requirement

is presented in terms of cells. Note that the reconfiguration

time for each task is included in its execution time.

We generate task sequences by randomly selecting the

kernels from Table I. The task arrival times are generated using

Poisson distribution, which assumes no relationship between

any two consecutive task requests. The parameter λ in Poisson

distribution directly affects the workload. The larger λ is, the

heavier is the workload. We carry out experiments for different

workload by increasing λ and we stop when the acceptance

rate drops below 0.1 for our approach. The laxity (difference

between deadline and execution time plus arrival time) is

generated using uniform distribution in the range [0, 10000].

We assume a 4-core platform where the cores share recon-

figurable fabric. The shared reconfigurable fabric consists of

3600 cells, which is sufficient to accommodate the kernel with

largest area requirement. We apply four different scheduling

algorithms: shared EDF, shared EDF-NF, shared heuristic
and shared 2D-SPP. The window size is set to 20 for shared
heuristic. However, as shared 2D-SPP has long running time,

we set the window size to 6. We confirmed experimentally that

increasing the window size further does not bring any benefit.

We attempted three different strategies (best-fit, worst-fit, and

first-fit) for choosing the maximal empty rectangle (MER)

in shared heuristic. However, we noticed that the different

strategies achieve quite similar acceptance rate. So we employ

best-fit strategy in all the experiments.

Figure 2(a) shows the experiment results for four scheduling

algorithms. The X-axis represents the workload in terms of the

parameter λ in Poisson distribution of arrival time of the tasks

and the Y-axis is the acceptance rate of the tasks. As expected,

the acceptance rate decreases as the workload increases.

We notice that the window-based algorithms (shared heuris-
tic and shared 2D-SPP) perform on an average 22% better

compared to those without windows (shared EDF and shared
EDF-NF). What is surprising, though, is that shared heuristic
is comparable to shared 2D-SPP even though the former is a

0

0.2

0.4

0.6

0.8

1

0.005 0.105 0.205 0.305 0.405 0.505

A
cc

ep
ta

nc
e

ra
te

Work load (��

Shared heuristic
Shared 2D-SPP
Shared EDF
Shared EDF-NF

Fig. 2. Comparison of different scheduling algorithms.

much simpler algorithm. Finding the local optima using 2D-

SPP does not help in global scheduling. Shared EDF is the

worst among the four algorithms. While shared EDF-NF could

bring around 8% benefit, it still has very low acceptance rate.

The runtime of the algorithms as measured on a 300MHz

Stretch processor is presented in Table II.

V. CONCLUSION

In this paper, we consider the online scheduling for multi-

core shared reconfigurable fabric. Compared to previous re-

search work, we consider both processor resources and re-

configurable resources. Our scheduling approach leads to sig-

nificantly better utilization of the shared reconfigurable fabric

compared to simple priority based scheduling.

ACKNOWLEDGMENTS

This work was partially supported by Singapore Ministry

of Education Academic Research Fund Tier 2 MOE2009-T2-

1-033.

REFERENCES

[1] Z. Chen, R. N. Pittman, and A. Forin, “Combining multicore and
reconfigurable instruction set extensions,” in FPGA, 2010.

[2] M. Watkins and D. Albonesi, “ReMAP: A reconfigurable heterogeneous
multicore architecture,” in MICRO, 2010.

[3] P. Garcia and K. Compton, “Kernel sharing on reconfigurable multipro-
cessor systems,” in FPT, 2008.

[4] L. Chen and T. Mitra, “Shared Reconfigurable Fabric for Multi-core
Customization,” in DAC, 2011.

[5] M. Shafiue, L. Bauer, W. Ahmed, and H. Jorg, “Minority-Game-
based Resource Allocation for Run-Time Reconfigurable Multi-core
Processors,” in DATE, 2011.

[6] T. P. Baker, “Multiprocessor EDF and Deadline Monotonic Schedula-
bility Analysis,” in RTSS, 2003.

[7] P. Mahr, S. Christgau, C. Haubelt, and C. Bobda, “Integrated Temporal
Planning, Module Selection and Placement of Tasks for Dynamic
Network-on-Chip,” in IPDPS, 2011.

[8] K. Danne and M. Platzner, “An EDF schedulability test for periodic
tasks on reconfigurable hardware devices,” in LCTES, 2006.

[9] ——, “A heuristic approach to schedule periodic real-time tasks on
reconfigurable hardware,” in FPL, 2005.

[10] Y. Lu, T. Marconi, G. Gaydadjiev, and K. Bertels, “An efficient algorithm
for free resources management on the FPGA,” in DATE, 2008.

[11] S. Martello, D. Pisinger, and D. Vigo, “The Three-Dimensional Bin
Packing Problem,” Operations Research, vol. 48, no. 2, 2000.

[12] S. Martello, M. Monaci, and D. Vigo, “An Exact Approach to the Strip-
Packing Problem,” Informs Journal on Computing, vol. 15, no. 3, 2003.

[13] R. E. Gonzalez, “A software-configurable processor architecture,” IEEE
Micro, vol. 26, no. 5, 2006.

[14] G. Ansaloni, P. Bonzini, and L. Pozzi, “Design and architectural
exploration of expression-grained reconfigurable arrays,” in SASP, 2008.

