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Abstract—Applications containing compute-intensive kernels
with nested loops can effectively leverage FPGAs to exploit fine-
and coarse-grained parallelism. HLS tools used to translate these
kernels from high-level languages (e.g., C/C++), however, are in-
efficient in exploiting multiple levels of parallelism automatically,
thereby producing sub-optimal accelerators. Moreover, the large
design space resulting from the various combinations of fine-
and coarse-grained parallelism options makes exhaustive design
space exploration prohibitively time-consuming with HLS tools.
Hence, we propose a rapid estimation framework, MPSeeker, to
evaluate performance/area metrics of various accelerator options
for an application at an early design phase. Experimental results
show that MPSeeker can rapidly (in minutes) explore the complex
design space and accurately estimate performance/area of various
design points to identify the near-optimal (95.7% performance
of the optimal on average) combination of parallelism options.

I. INTRODUCTION

The flexibility offered by Field Programmable Gate Arrays
(FPGAs) enables designers to create application-specific sys-
tems that achieve high performance within the strict time-to-
market and non-recurring engineering constraints. However,
the formidable programming effort needed to achieve effi-
cient FPGA designs continues to be a significant hurdle in
its mass adoption. High-Level Synthesis (HLS) technology
has been developed in the recent years to ease the pro-
gramming effort. HLS tools can accept application specifica-
tion in high-level programming languages (such as C, C++,
SystemC) and directly target FPGAs without the need for
time-consuming manual register-transfer level (RTL) creation.
However, achieving an efficient design using HLS tools is still
a challenging proposition. The HLS tools provide various opti-
mization pragmas such as loop unrolling, loop pipelining and
array partitioning. The designer is responsible for exploring
the large number of potential design choices available for an
application with these pragmas while optimizing for perfor-
mance and/or area constraints. Unfortunately, the runtime of
the HLS tools is prohibitively large to exclude the possibility
of exhaustive design space exploration (DSE), especially for
larger and complex applications. The existing research in this
area has focused on pruning the design space before invoking
the HLS tools for the final synthesis step [12][14].

Given an application kernel to be synthesized on FPGAs,
there are two distinct scenarios with respect to the working
set of the data. In the first scenario, the working set of the
kernel can fit into on-chip storage (BRAM) and the kernel can
be synthesized as single processing engine (referred to as PE

hereafter) leveraging fine-grained parallelism via HLS prag-
mas. The downside of this approach is reduced performance if
the loop kernel does not have enough fine-grained parallelism
that can be easily exploited by HLS tools. The second scenario
involves kernels where the working set is too large to be
accommodated on-chip. A commonly deployed strategy is
Loop Tiling where the program is transformed (either by
programmer or compiler) to partition the iteration space of
the loop into smaller blocks (tiles) such that the working set
corresponding to a tile can easily fit in BRAM. Loop Tiling
explicitly exposes coarse-grained parallelism as different tiles
are independent. The parallelism can be exploited by instanti-
ating multiple PEs within resource budget to process the tiles
in parallel, while leveraging fine-grained parallelism inside
a PE with pragmas. This multi-level parallelism is crucial
to improved accelerator performance [9][12] especially when
individual PEs have limited fine-grained parallelism.

Clearly, the design space, already quite large, explodes
with multi-grained parallelism. Existing pre-HLS DSE works
mentioned earlier, focused on exploring either the fine-grained
or the coarse-grained parallelism, in isolation. The works
attempting to reap the benefit of multi-level parallelism [9][12]
rely on HLS tools to explore the various combinations of
fine-grained and coarse-grained parallelism to arrive at the
optimal setting. The runtime of HLS tools makes it difficult to
navigate the massive design space. Moreover, apart from loop
unrolling, other fine-grained parallelism opportunities such
as array partitioning and loop unrolling are ignored in the
process. We observe that these additional options, if exploited
prudently, can improve the performance even further.

We propose a high-level analysis framework, MPSeeker,
that considers both fine- and coarse-grained parallelism
on FPGAs to estimate accelerator performance and re-
source requirement from sequential code (C/C++) without
invoking HLS. The analysis enables rapid DSE (in minutes)
with various parameters such as tile size, number of PEs, loop
unrolling, loop pipelining and array partitioning, to identify the
optimal parallelism configuration. This chosen configuration is
passed on to the HLS tool for the final accelerator synthesis.

Our work builds on our recent performance analysis tool
Lin-Analyzer [15] that explores only fine-grained parallelism
without invoking HLS. As coarse-grained parallelism is ne-
glected, Lin-Analyzer is restricted to single-PE design per loop
kernel. The likely resource bottleneck (if any) for single-PE
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designs is the BRAM that accommodates the entire working
set and estimating BRAM demand is straightforward. Thus
Lin-Analyzer only needs to focus on performance estimation
of a design point as long as its working set can fit into BRAM.

The multi-level parallelism considerations bring in immense
additional complexity to the DSE process. The key ques-
tion is the trade-off between fine-grained and coarse-grained
parallelism. Opening up more parallelism per PE restricts
the number of PEs that can be synthesized due to resource
budget and vice versa. More importantly, as coarse-grained
parallelism is exposed through loop tiling, BRAM storage no
longer remains the bottleneck. Instead the datapath resources
(LUTs, FFs, and DSP blocks) become more precious as the
same datapath is replicated many times over with multiple
PEs. However, estimating the LUT and FF requirement of a
PE without HLS is hugely challenging due to the non-linear
relationship between the program features/parallelism settings
and resource demands (see Figure 1). We propose a novel
resource estimation model based on a machine learning
techniques called Gradient Boosted Machine (GBM) that
perfectly captures the resource demands given inherent
program features and the parallelism options. Experiments
show that our resource estimation model is accurate achieving
12.7%, 19.8%, 14.7% and 13.2% average error for DSP,
BRAM, FF and LUT prediction, respectively. Integrating this
new resource model with the existing performance model
empowers us to traverse through the complex multi-grained
parallelism terrain in the order of minutes to select the optimal
configuration under the resource constraints. Experimental
results confirm that our DSE approach can make near-optimal
recommendation for a range of application kernels.

II. MOTIVATING EXAMPLE

Listing 1: Tiled Matrix Multiplication Example
1 loopTop1 : f o r ( t 1 =0; t1<f l o o r ( 1 0 2 4 / TS ) ;++ t 1 ){
2 loopTop2 : f o r ( t 2 =0; t2<f l o o r ( 1 0 2 4 / TS ) ;++ t 2 ){
3 . . . / / I n i t i a l i z a t i o n
4 loopPE : f o r ( t 3 =0; t3<f l o o r ( 1 0 2 4 / TS ) ;++ t 3 ){
5 / / S t ep 1 : Copy d a t a from DDR t o l o c a l memory (A, B and C) ;
6 memcpy ( ddr a , A, o f f s e t A ) ; memcpy ( ddr b , B , o f f s e t B ) ;
7 / / S t ep 2 : K e r ne l Computa t ion
8 loop1 : f o r ( t 4 =0; t4<TS;++ t 4 ){
9 loop2 : f o r ( t 5 =0; t5<TS;++ t 5 ){

10 loop3 : f o r ( t 6 =0; t6<TS;++ t 6 ){
11 C[ t 4 ] [ t 5 ] += A[ t 4 ] [ t 6 ]∗B[ t 6 ] [ t 5 ] ; }}}}
12 / / S t ep 3 : Wr i t e d a t a from l o c a l memory t o DDR
13 memcpy (C , ddr c , o f f s e t C ) ;
14 }}

The complexity of multi-level parallelism extraction can be
illustrated with the tiled matrix multiplication (MM) kernel
example in Listing 1 with 1024 × 1024 matrix size and
TS × TS tile size. The yellow highlighted portion is the key

computation corresponding to a tile. The data needed for each
tile is brought into the local BRAM from off-chip memory
(line 6) and written back to off-chip memory (line 13) after the
computation for the tile is completed. The tile can be converted
into an accelerator or PE. In single-PE design (S-PE), the tiles
will be executed sequentially whereas in multi-PE design (M-
PE), multiple PEs are instantiated to be executed in parallel.

Figure 2 shows the comparison between the two. S-PE
design explores array partitioning, loop unrolling, pipelining
whereas M-PE design additionally includes tile size, number of
PEs. The Y-axis denotes performance speedup of the optimal
S-PE (red bar 21.7x) and M-PE design (green bar on the right
165.3x) normalized to the unoptimized design (no exploited
parallelism). Tuples in Figure 2 are pragma combinations:
(partitioning factor, unrolling factor, pipelining loop level).

The optimal S-PE chooses the biggest tile size (256×128)
that can fit into on-chip storage (91.4% BRAM usage), while
M-PE selects 16×16 tile size instead and instantiates 10 PEs.
This design is constrained by LUTs (98.1% LUT usage) rather
than BRAM. M-PE achieves 165.3x speedup compared to
21.7x for S-PE by exploiting multi-level parallelism. In order
to investigate the rationale behind this result, we look at the
speedup of S-PE with 16×16 tile size (middle green bar in Fig-
ure 2). Surprisingly, 16×16 S-PE shows comparable speedup
to 256×128 S-PE. This is because of dependencies within the
inner loop that limit exploitable fine-grained parallelism even
as tile-size increases. Hence, it is far more profitable to restrict
tile size and instantiate more PEs for this kernel.

Table I shows that it takes 35 hours to perform exhaustive
HLS-based DSE considering multi-level parallelism design
space (280 points). In contrast, our high-level rapid DSE
tool MPSeeker explores the complex design space in under
3 minutes and recommends the same optimal design point.

III. RELATED WORK
To estimate FPGA performance and area, many works

[5][9][11][15] start from high-level specifications (C/C++) and
focus on exploiting fine-grained parallelism by accelerating
the kernel on single PE. Hence, they do not exhaustively
exploit the capabilities of FPGAs that can support diverse
types of parallelism. Additionally, many of them are based on
static analysis[5][9], which suffer from inherently conservative
dependence analysis. This typically leads to false dependencies
between operations, thereby limiting the available parallelism
that can otherwise be exploited by FPGA-based accelerators.

Authors in [9] proposed a framework from C/C++ exploiting
multi-level parallelism. They used an analytical method based
on HLS results as inputs for area/performance estimation.
However, they only considered loop pipelining and ignored
resources consumed by registers and multiplexers. Moreover,
with only loop pipelining enabled, fine-grained parallelism
within a PE is not fully explored. Instead of taking sequential
high-level specifications, [12][13] correlate parallel program-
ming languages (OpenCL and CUDA) with FPGA perfor-
mance. As OpenCL and CUDA explicitly expose massive par-
allelism of applications, their works can easily exploit multi-
level parallelism on FPGAs. [13] proposed a performance
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Fig. 3: MPSeeker: An Automatic Design Space Exploration
Framework with Multi-level Parallelism

model starting from OpenCL, while [12] starts from CUDA.
As [13] does not support area model, their method relies
on designers to decide number of PEs and cannot perform
automatic DSE. [12] relies on HLS to provide performance
of a PE and might suffer from potential long HLS runtime,
especially when design space becomes more complex. [7]
proposed a template-based approach from domain specific
language. Their method uses as large number of memory banks
as possible, which incurs extensive BRAM usage. It might
reduce number of PEs and end up with sub-optimal designs.

Several works [5][12][14] proposed area estimation using
simple regression models with a small design space. As the
design space grows more complex, FPGA area shows the non-
linear behavior that makes the previous models no longer suit-
able for prediction. Therefore, Quipu [11] proposed statistical
methods to capture the non-linear behavior. However, as the
inherent program features collected in their tool are irrelevant
to HLS pragmas, Quipu cannot model area consumption
according to various pragmas. In contrast, we try to identify
program features that are relevant to pragmas and propose an
FPGA area model utilizing Gradient Boosted Machine (GBM).

IV. MPSEEKER FRAMEWORK

Overview: The proposed MPSeeker framework, shown in Fig-
ure 3, takes a high-level specification (C/C++) of an algorithm
in the form of nested loops (with loop tiling enabled), available
pragmas (tile size, unrolling, pipelining and array partitioning)
and FPGA resource constraints as inputs. In the Profiling
Stage, MPSeeker converts the input code into an intermediate
representation of Low-Level Virtual Machine (LLVM IR)
[8] and then instruments the IR for trace collection. With
Execution Engine, an LLVM Just-in-Time (JIT) compiler, the
instrumented IR is executed to obtain a dynamic trace that
includes information such as instruction opcodes, basic block
frequencies and memory (load/store) addresses. Since a trace
contains many instruction instances, MPSeeker extracts an
interesting sub-trace for analysis according to given pragmas.

With generated sub-trace, we exploit techniques in Lin-
Analyzer [15] for performance prediction. As [15] only pre-
dicts kernel computation, we extend it with data communica-
tion cost to predict the accelerator performance (clock cycles)
on a single PE with various pragma combinations. [15] also
estimates the DSP and BRAM usage of a PE, which we reuse
in our work. However, to exploit multi-level parallelism, FF

TABLE II: List of Program Features
No. Feature Range Description
1 ts {8, 16, 32, ..., 256} Tile size. Currently, we only consider square tile.
2 nLpL [1,∞) Number of loop levels.
3 instn (1,∞) Total number of instructions

4

fpRt;
intRt;
bwRt;
mRt;
brRt

[0, 1)

fpRt: Percentage of floating-point instructions (fadd, fsub, fmul, fdiv, etc.);
intRt: Percentage of integer instructions (add, sub, mul, div, modulo, etc.);
bwRt: Percentage of bit-wise instructions (xor, nor, and, shift, etc.);
mRt: Percentage of memory load/store instructions;
brRt: Percentage of branch instructions

5 avePar [1,∞) Average number of independent operations that can be executed in parallel
6 uf ≤ loop bound Loop unrolling factor. For area efficiency, we select divisors of loop bounds.

7 pl [0, k]
For a nested loop L = L1, L2, ..., Lk (k is the innermost level), pipelining
can be applied at any Li, i ∈ [1, k]. pl = 0 means pipelining disabled.

8 upf [1,∞) Unified array partitioning factor factor
9 IL [1,∞) Latency of a kernel returned by a scheduler

10 II [0,∞)
Initiation interval (II) of a kernel, where II is defined as the interval
between the start of consecutive loop iterations.

11 mAcc [1,∞) maximum number of accesses per memory bank among arrays in a kernel

12 mALd (0,∞)
We collect information about average number of load accesses per memory
bank of all arrays and select the maximum value from them as mALd

13 mASt (0,∞)
We collect information about average number of store accesses per memory
bank for all arrays and select the maximum value from them as mASt

14 tASize [1,∞) Total array size in bytes. It includes all arrays in a kernel.

and LUT usage become more crucial as mentioned in Section
I. A machine learning approach, gradient boosted machine
(Section IV-B), is employed to predict FF and LUT usage
of a PE. Using the predicted resource usage of single PE, we
calculate the maximum number of PEs within resource budget.

The DSE step is performed by estimating both performance
and area of a PE for each pragma combination. Finally,
MPSeeker recommends the best suited configuration for the
kernel considering multi-level parallelism provided by instan-
tiating multiple PEs. Lastly, the HLS tool is invoked with the
selected pragmas to generate the final synthesized accelerator.
A. Performance Estimation of a PE:

FPGA performance TPE of a PE is modeled as a sum of
kernel computation cost Tcomp and data communication cost
Tcomm. We use the concepts from [15] to obtain Tcomp on
a single PE with given pragma combinations. Tcomm, on the
other hand, is predicted by a new linear model proposed here.

1) Computation Estimation: Lin-Analyzer is a recently
proposed high-level FPGA performance estimation tool based
on dynamic analysis. It creates the corresponding dynamic
data dependence graph (DDDG) from the generated sub-trace
and performs essential optimizations. Then, it schedules nodes
on the optimized DDDG within resource budget (DSP and
BRAM) to obtain an early performance estimate of kernel
computation cost. In this work, we leverage Lin-Analyzer to
estimate kernel computation cost, Tcomp.

2) Data Communication Estimation: We assume that each
PE on FPGAs serves as a master accelerator that can request
and transfer data by itself. Transaction utilizes memory burst
mode, which can transfer up to 256 bytes data per memory
request. To enable data transfer, designers need to manually
insert memcpy function to original code as shown in Listing
2. copy and write functions are used to transfer data between
main memory (i.e. DDR) and local storage (i.e. BRAM).

Listing 2: Data Communication of MM kernel
1 /∗ T : TYPE ; TS : T i l e s i z e ∗/
2 /∗ Copy d a t a from main memory (DDR) t o l o c a l memory ∗/
3 vo i d copy ( . . . ) {
4 # pragma HLS p i p e l i n e
5 memcpy ( l o c a l a d d r 1 , ddr addr1 , o f f s e t 1 ) ;
6 memcpy ( l o c a l a d d r 2 , ddr addr2 , o f f s e t 2 ) ;}
7 /∗ Copy d a t a from l o c a l memory t o main memory (DDR) ∗/
8 vo i d w r i t e ( . . . ) { s i m i l a r t o copy f u n c t i o n ; }

Assume we have n arrays A = {A1, A2, ..., An} to be
transferred in function type t where t ∈ {copy, write}. bAi

is number of bytes in array Ai. We define α to be the cost



for transferring one byte data and βt, t ∈ {copy, write}
to be the extra cost to set up communication in function
type t. Based on empirical method, we use α = 0.25 and
βcopy = 6, βwrite = 4. These empirical values are collected
via Vivado HLS and we have tested for different Xilinx
devices, such as Virtex and ZYNQ7000 series. Then the
communication time T ′commt

of function type t is calculated
by the following Equation 1,

T
′
commt

= max
i∈[1,n]

(αbAi
) + βt (1)

Communication time Tcommt
of a PE is related to T ′commt

and number of invocations IVt of function type t,
Tcomm =

∑
t∈{copy,write}

T
′
commt

∗ IVt (2)

B. Area Estimation of a PE:

As mentioned in Section IV, we use Lin-Analyzer [15]
to predict DSP and BRAM usage, while leverage a ma-
chine learning method for FF and LUT estimation. Figure
1 plots FF usage of MM kernel while varying unrolling,
partitioning factors and pipeline levels. The plot shows non-
linear relationship between FF usage and different pragma
settings. LUT consumption exhibits a similar behavior. These
features make Gradient Boosted Machine (GBM) to be a
good solution to capture the correlation between FF/LUT
consumption and program features. We also explored several
techniques including multivariate polynomial regression, step-
wise regression and neural network. We found that GBM
consistently outperformed other techniques. Hence we employ
GBM to predict FF and LUT usage of a PE.

GBM [6] technique consists of a gradient-based optimiza-
tion and a boosting step that is typically used in regression or
classification problems. Gradient-based optimization tries to
minimize a loss function of a training model with gradient
computations, while boosting collects an ensemble of tree
models, to generate a solid learning system for inferring.

1) Feature Definition: It is challenging to determine a list
of program features that can be used in GBM to predict the
FPGA area as there is no algorithmic way to find a proper set
of features [11]. We started from a set of features (Number
1-4 in Table II) used in [11]. HLS tools can employ unroll and
pipelining pragmas to exploit inherent parallelism in a kernel;
however, they might incur extensive resource consumption in
absence of memory bandwidth constraint. HLS tools typically
use BRAM or distributed RAM to store data. As they have
limited number of read/write ports, low memory bandwidth
usually prohibits HLS tools from instantiating more functional
units even if there is plenty of parallelism inside a kernel.
By increasing partitioning factor, HLS tools can exploit more
parallelism in the kernel and require more resources. Based on
these intuitions, we define a set of plausible features that might
have a great impact on area consumption as listed in Table II.
It should be noted that bit width of operations also has impact
on resource consumption. However, in current implementation,
we focus on single-precision floating-point kernels; the bit
width is set to be 32. Therefore, we do not include bit width
in Table II. In future, we will study the effect of bit width.

TABLE III: Key hyperparameters of the GBM models
FF LUT Description

ntrees 125 150 number of trees to grow
max depth 10 8 maximum depth to grow the tree
nbins 15 15 minimum number of bins in a built histogram
distribution gamma gamma distribution function of the response
learn rate 0.1 0.16 learning rate

avePar: As FPGAs can exploit diverse types of parallelism
within applications, we define avePar to capture degree of
parallelism in kernels. We reimplement the algorithm in [1]
on a generated sub-trace to calculate the average number of
independent operations as avePar that can be executed in
parallel. With larger avePar, HLS typically generates higher
performance accelerators at the cost of more area.
mAcc, mALd and mASt: These three features are related

to the memory bandwidth requirement of kernels and hence
affect partitioning pragma. Without loss of generality, we
assume that each memory partition has two read ports and
one write port. Designers can leverage partitioning pragma
to split arrays into multiple banks so that several memory
accesses can be executed simultaneously. We map addresses of
load/store instructions in the sub-trace to bank IDs according
to partitioning factors and collect information, such as number
of accesses per bank, to describe memory access features.
Larger values of mAcc, mALd and mASt mean that more data
shares the same memory resource and HLS needs to allocate
more FPGA resources (i.e., wider multiplexers).
IL and II: Iteration latency (IL) and initiation interval (II)

of a kernel are relevant to optimization pragmas and sub-traces
extracted. With proper pragmas, HLS can generate good-
quality designs with lower IL or II and exploit parallelism of
the kernel by either increasing memory bandwidth or dupli-
cating functional units at the cost of more area consumption.
upf : Each array Ai in a kernel can be implemented with

partitioning factor pfi, i ∈ [1, n], where n is number of arrays.
In this work, we utilize a unified partition factor upf , which
weights partitioning effect on arrays. upf is calculated by∑n
i wi ∗ pfi, where wi is a weight of Ai. A weight wi is

defined by the ratio of number of memory accesses (load/store)
on Ai to the total memory accesses across all arrays.

2) GBM Implementation Details: A GBM is an ensemble
of tree-based models and it has a set of configurations that
have great impact on model quality. These configurations, for
example number of trees to grow, are called hyperparameters.
We utilized Cartesian Hyperparameter Grid Search (GS)[4] to
automatically choose hyperparameter combinations that leads
to the highest quality. Table III lists values of the key pa-
rameters after grid search. To validate and improve prediction
quality of GBM, we leveraged K-Fold Cross-Validation (CV)
[6]. The method splits data into K equal-size partitions. It
chooses the k-th (k = 1, 2, ...,K) partition as a validation
set with the remaining K-1 partitions as a training set and
calculates the prediction error of the trained model. This
process repeats K times and combines the K prediction errors.
In this work, we selected 5-Fold Cross Validation.

For implementations of GBM, GS and CV, we leveraged
H2O package [4] in R environment. The training and testing
sets used are mutually exclusive and detailed in Section V.



TABLE IV: Design Options used in Our Work
Options Range
Tile Size [16x16, 32x32, 64x64, 128x128]

Loop unrolling factor ≤ loop bound N
Loop pipelining [0, k], as mentioned in Row 7, Table II

Array partitioning factor: [1::2::16] (the set of values from 1 to 16 in steps of 2)
type: {cyclic, block, complete}

C. Putting It All Together

After obtaining the performance and area estimates for
single PE that exploits various fine-grained parallelism, we
proceed to calculate the maximum number C of PEs that can
be instantiated and run simultaneously on the FPGA under a
given resource constraint. This is modeled by Equation 3 as:

C = min
tp

⌊
REStp

max

Restp
PE

⌋
, tp ∈ {DSP,BRAM,FF,LUT} (3)

where REStpmax is the maximum available resource of type tp
for a given device, RestpPE is resource of type tp required by
a PE.
Total execution time of an FPGA-based accelerator exploiting
multi-level parallelism is calculated by Equation 4,

TFPGA =
N

C
∗ TPE (4)

where N is the total number of invocations of a single PE.
V. EXPERIMENTAL RESULTS

We use the Xilinx ZC702 Evaluation Kit [18] along with
Vivado HLS version 2015.2 for experiments. Accelerators are
set to run at 100MHz. Experiments are conducted on a PC
with an Intel Xeon CPU E5-2620 core at 2.10Hz with 64GB
RAM, running Ubuntu 14.04 OS. We select mutually exclusive
training and testing sets as described below.
Training Set: We explore nested loops in several benchmark
suites including Polybench[17], MachSuite[3], Stream[10],
Livermore Loops[16] and testing cases in Pluto[2]. 34 kernels
are selected from these benchmark suites. We also developed
10 microbenchmarks to examine resource consumption of loop
structures with different bounds, communication interfaces,
operation units, etc.. Thus, we used 44 kernels in total. These
kernels are modified with functions in Listing 2 for data
communication. For training, we invoke the proposed tool for
feature extraction and Vivado HLS for obtaining performance
and area information per design point. The various pragma
combinations (loop unrolling, pipelining and array partition-
ing) lead to a total of 3244 design points in the final data
set. We randomly selected 80% data points from this set for
training while the rest were used for validation.
Testing Set: As we consider large data size and exploit multi-
level parallelism, testing kernels should be tiled. Therefore, we
selected five applications: DCT1D, MM from Xilinx[18] and
DERICHE1, GEMVER1, MVT kernels from Polybench[17] as
the testing kernels. DCT1D and MM have three nested loop
levels, while DERICHE1, GEMVER1 and MVT have two loop
levels. The input data size of MM, DCT1D, DERICHE1 is
1024x1024, while we use 2048x2048 in GEMVER1 and MVT.
As large data cannot fit into FPGA devices, we performed
loop tiling for kernels with Pluto[2] and inserted functions in
Listing 2 for data communication. We consider square tiles.
Loop tiling explicitly exposes coarse-grained parallelism to
HLS and also avoids exceeding BRAM resource.

TABLE V: Performance/Area Esti. Accuracy and DSE Time
Benchmark Absolute value of the relative error (%) DSE Time

DSP BRAM FF LUT Execution Cycle HLS (hours) MPSeeker (min.)
DCT1D 13.7 15.3 14.5 13.4 11.1 31.7 3.0
DERICHE1 6.4 18.0 12.2 15.7 7.5 26.7 0.6
GEMVER1 20.0 25.8 19.6 14.5 15.8 23.2 3.3
MM 4.8 16.1 14.9 10.5 16.1 35.9 0.5
MVT 18.8 23.8 12.3 12.1 13.5 22.9 0.6
Average 12.7 19.8 14.7 13.2 12.8 28.1 1.6

The design space of the testing data set considered is shown
in Table IV. With the design options, each kernel in the testing
set has 280 design points.
A. Performance/Area Estimation Accuracy

To evaluate estimation accuracy of the proposed model,
we calculate the relative error between the actual (by Vivado
HLS) and predicted results: RelativeError = |Actual −
Predicted|/Actual ∗ 100.

FPGA performance (execution cycle) prediction: The
proposed model can generally provide accurate execution
cycle estimation. However, we observed some notable discrep-
ancies in a few design points when applying the pragmas in
Table IV to Vivado HLS. The reasons and extra optimizations
enabled in Vivado HLS are summarized below.
• Static Analysis in Vivado HLS: As mentioned earlier, this

might add false loop-carried dependence between opera-
tions when considering partitioning pragma and limit the
exploitable parallelism of a kernel [15]. To resolve this, we
enabled set directive dependence pragma in Vivado HLS
to explicitly disable false dependences. As our approach is
based on dynamic analysis, all the data dependences are
known after obtaining the trace.

• Expression balance: In some cases (DERICHE1 and
GEMVER1) with only unrolling enabled, Vivado HLS fails
to perform expression balance optimization to decrease
height of long expression chains, and hence omits poten-
tial parallelism [5] for floating-point operations. Thus, we
explicitly unroll the original code when unrolling is enabled.
After incorporating these additional optimizations, the rela-

tive error, shown in Table V, ranges from 7.5% to 16.1% and
average error is 12.8% across all the benchmarks considered,
which demonstrates high accuracy of our performance model.

FPGA area prediction: Table V shows the accuracy of
our area estimation model for single PE across the testing set
kernels. Each kernel has a design space of up to 280 data
points considering both fine- and coarse-grained parallelism.
As shown in the table, our GBM model is able to predict FF
and LUT consumption with high accuracy among testing set
kernels over diverse design options and achieves an average
relative error of 14.7% and 13.2%, respectively. DSP and
BRAM usage predictions are extracted from Lin-Analyzer’s
scheduling stage and Table V shows an average error of
12.7% and 19.8%, respectively. Among these results, BRAM
prediction has the highest average error that primarily comes
from the unpredictable behavior of BRAM duplication in
Vivado HLS while we calculate BRAM usage based on array
size and its partitioning factor. Although the average error is
relatively high, BRAM prediction still follows the actual trend.

B. Quality of the GBM Model
Figure 4 shows the training, validation and cross-validation

(CV) errors of the GBM model for LUT prediction as a



function of training set size. The FF prediction model shows
similar behavior. The training error increases slightly with
more training samples, while validation and CV errors de-
crease. With less training samples (<20% of training set), the
gap between training and CV errors is large, indicating that
the GBM model suffers from high variance. This issue can be
resolved by sampling more training data [6] that reduces the
original gap to roughly 5% when using the whole training set.

C. Rapid DSE with Multi-level Parallelism
Figure 5 shows the DSE results obtained from three meth-

ods, S-PE, Optimal and MPSeeker. S-PE shows the best per-
formance with single PE (exploiting fine-grained parallelism
only), while Optimal denotes the best performance with multi-
ple PEs (exploiting both fine- and coarse-grained parallelism).
Both S-PE and Optimal are obtained by the exhaustive HLS-
based DSE approach and serve as the baseline. The results of
MPSeeker are obtained by a single invocation of Vivado HLS
with the suggested configurations as predicted by the proposed
approach. The design space we considered here is described
in Table IV. The left Y-axis in Figure 5 denotes performance
speedup normalized to the optimal design of single PE, while
the right Y-axis shows number of PEs in each design.

The performance of Optimal for all benchmarks is notably
superior to that of S-PE. The best speedup is achieved for MM:
7.58x compared to S-PE. This confirms that considering fine-
grained parallelism only might lead to sub-optimal designs.

Tuples in Figure 5 are configurations recommended by
S-PE, Optimal and MPSeeker approaches that can achieve
the best performance within area budget. The configuration
format is (tile width, partitioning factor, unrolling factor and
loop pipelining). As shown in Figure 5, the recommended
configurations of Optimal and MPSeeker are identical for
MM and MVT benchmarks. For DCT1D, DERICHE1 and
GEMVER1 benchmarks, the suggested configurations are dif-
ferent compared to those of Optimal. Differences reside in
tile width and partitioning factor for DCT1D and unrolling
factor for DERICHE1, while for GEMVER1, it is in tile width.
Although the suggested configurations from our proposed
approach cannot exactly match the best suited configurations
by exhaustive-HLS method, the FPGA performance with
the suggested configurations can achieve 90.9%, 95.4% and
92.4% of the optimal performance for DCT1D, DERICHE1
and GEMVER1, respectively. On average, the configurations
predicted by MPSeeker can achieve 95.7% of the optimal
performance from exhaustive DSE for all the applications.
This demonstrates that the proposed approach can identify
the near-optimal set of parallelism options without exhaustive
HLS-based DSE.
Training Time: The total training time to build GBM mod-
els is roughly 660 seconds. However, this is only one-time
overhead. Additionally, the inferring time is negligibly small.

Table V compares the exploration time between the exhaus-
tive HLS-based and proposed MPSeeker. The exploration time
of our method includes the profiling overhead. Vivado HLS
failed to synthesize some design points with very complex

Fig. 4: Learning curves
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Fig. 5: DSE result.

pragma combinations and we removed their runtime when
reporting its DSE time. As shown in Table V, our approach
reduces the exploration time from hours or even days to a few
minutes, while achieving near-optimal performance.

VI. CONCLUSION
This paper proposes MPSeeker, a rapid performance/area

estimation framework, to evaluate FPGA-based accelerators
at an early design stage. MPSeeker explores various fine-
grained (loop pipelining, array partitioning and loop unrolling)
and coarse-grained (loop tiling) parallelism options in an
application without invoking HLS tools. Our results show that
MPSeeker recommends same or closely similar combination
of pragma settings in minutes instead of hours or sometimes
even days taken by exhaustive HLS-based techniques.
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