
Prediction-Based Task Migration
on S-NUCA Many-Cores

Martin Rapp∗, Anuj Pathania†, Tulika Mitra†, Jörg Henkel∗
∗Karlsruhe Institute of Technology, Germany, †National University of Singapore, Singapore
martin.rapp@kit.edu, pathania@comp.nus.edu.sg, tulika@comp.nus.edu.sg, henkel@kit.edu

Abstract—Performance of a task running on a many-core with
distributed shared Last-Level Cache (LLC) strongly depends on
two factors: the power budget needed to guarantee thermally
safe operation and the LLC latency. The task’s thread-to-core
mapping determines both the factors. Arrival and departure of
tasks on a many-core deployed in an open system can change its
state significantly in terms of available cores and power budget.
Task migrations can thereupon be used as a tool to keep the
many-core operating at the peak performance. Furthermore,
the relative impacts of power budget and LLC latency on a
task’s performance can change with its different execution phases
mandating its migration on-the-fly.

We propose the first run-time algorithm PCMig that increases
the performance of a many-core with distributed shared LLC
by migrating tasks based on their phases and the many-core’s
state. PCMig is based on a performance-prediction model that
predicts the performance impact of migrations. PCMig results in
up to 16 % reduction in the average response time compared to
the state-of-the-art.

Index Terms—Cache Memory, Processor Scheduling, Power
Dissipation, Thermal Stability

I. INTRODUCTION

Increasing power densities ended the race to higher and
higher processor frequencies. Instead, the number of cores
in processors kept on rising to satisfy the never-ending need
for more computational power. Many-core processors with
dozens to hundreds of cores housed on a single die emerged as
promising parallel processing platforms [1]. With such large
numbers of cores, the one-thread-per-core model is commonly
used [2]. The task-to-core mappings are the key to derive
maximum performance out of many-cores.

The task arrivals and departures, as well as the tasks
themselves, are not known in advance in open systems [3].
Furthermore, the mappings need to be constantly readjusted at
run-time by task migrations to cope with changing state of the
many-core and task requirements. Mapping multiple tasks to
multiple cores optimally is an NP-hard problem in the general
case [4]. Therefore, we are required to develop fast heuristics
for run-time task migrations in many-cores.

Power Budgets: Increasing power densities cause elevated
on-chip temperatures, which above a critical temperature can
cause permanent damage to the chip and thereby necessitate
run-time thermal management. One way to ensure thermal
safety on many-cores is through the use of power budgets
that constrain the power consumption of cores. We use in this
work a mapping-determined non-uniform power budget called

Due to space constraints, not all of the originally submitted content is
included in this IP paper.

Core
L1-D L1-I
LLC Bank

Core
L1-D L1-I
LLC Bank

Core
L1-D L1-I
LLC Bank

Core
L1-D L1-I
LLC Bank

Core
L1-D L1-I
LLC Bank

Core
L1-D L1-I
LLC Bank

DRAM

Many-Core

Fig. 1: An abstract block digram of a many-core architecture
with physically-distributed, yet logically-shared LLC.

Thermal Safe Power (TSP) [5], which maximizes the sum of
all per-core power budgets under a thermal constraint.

Many-Core Architecture with S-NUCA: Figure 1 presents
an overview of a many-core architecture with a distributed
shared LLC. The many-core consists of tiles, each containing
a core with its associated caches. The L1 caches are private to
the core on the tile. The shared L2 cache (LLC) is physically
distributed among all tiles with each tile holding one LLC
bank. All the tiles are connected by a Network-on-Chip
(NoC) with a router in every tile. Memory controllers on the
periphery provide DRAM access. Static Non-Uniform Cache
Access (S-NUCA) is a scalable policy for managing physically
distributed, yet logically shared LLCs. It determines a static
mapping of memory address to LLC bank at design-time [6].

The latency of an LLC access under S-NUCA depends
upon the hop count on the NoC between the tile where the
thread is running and the tile where the LLC bank containing
the memory address is located. The hop count is measured
by the Manhattan Distance (MD). The average LLC latency
experienced by a thread executing at a core depends upon
its Average Manhattan Distance (AMD) to all tiles of a the
many-core. The closer a core is to the center of the many-
core, the lower is its AMD and thereby the lower is the average
LLC latency for threads running on it. Therefore, the S-NUCA
policy imposes an inherent heterogeneity on the otherwise
perfectly homogeneous many-core. In order to minimize their
average LLC latency, tasks should be mapped to cores as close
as possible to the center of the many-core [7].

However, mapping all the tasks to the center of the many-
core creates a thermal hotspot, which reduces their power
budgets and therefore degrades their performance. The tasks
need to be mapped as far away as possible from each other to
maximize their power budgets. However, this causes cores near
the corners of many-core to be used excessively, which are

4 5 6 7
2

3
2

3

4

·109

AMD [#hops] Core
Power

Budget

[W
]

Pe
rf

or
m

an
ce

[I
PS

] Slave Threads

Master Thread

ab

Fig. 2: Performance of both blackscholes master and slave
threads strongly depends on the power budget and AMD.
However, the master thread is more sensitive to the AMD,
while the slave threads are more sensitive to the power budget.

also the cores with a high AMD and therefore a high average
LLC latency. Therefore, a trade-off needs to be made between
minimizing the LLC latency and maximizing the power budget
for a task in order to maximize its performance [8]. In our
previous work [8], we proposed a task mapping algorithm
PCMap which exploits this trade-off. However, this algorithm
does not employ task migration and hence is not able to react
to changing workload and thread characteristics.

The relative impacts of power budget and LLC latency in
this trade-off depend upon the thread characteristics. Figure 2
shows the performance (measured in Instructions per Second
(IPS)) for PARSEC [9] blackscholes master and slave threads
depending on the power budget and the AMD of the core on
which they are executing. The master threads prepares data,
which is processed by the slave threads. Due to more frequent
LLC accesses, the master thread is more sensitive to the AMD.
With a high power budget, the performance of the master
thread drops significantly with increasing AMD whereas slave
threads’ performance remains nearly constant for all AMD
values (Lines a in Figure 2). Contrarily, the slave threads,
which mainly perform computations, are more sensitive to the
power budget. For a low AMD, the performance of the master
thread saturates early with increasing power budget whereas
the performance of the slave threads saturates at a higher
power budget (Lines b in Figure 2). Thread characteristics
must be considered to determine the performance-maximizing
trade-off between power budget and LLC latency.

Arriving or departing tasks in an open system can cause
sudden changes in the workload that require adjustments to
the current mappings in order to maximize the many-core’s
performance. Furthermore, the characteristics of a certain task
may change over time as the task proceeds through various
phases in its execution. This may change the trade-off between
power budget and LLC latency at run-time for the task and
can only be satisfactorily addressed by changing its mapping.
Therefore, performance of a many-core in an open system can
only be maximized by dynamically adapting the mappings of
its executing tasks using task migrations.

Authors of [10] propose to perform defragmentation of the
many-core. Thereby, already running tasks are migrated in
order to let the idle cores form a contiguous shape. This allows
new arriving tasks to be mapped in a contiguous shape. Defrag

(a) Resp. Time.: 201 ms

(b) Resp. Time.: 193 ms

Bodytrack
Arrives

Map
Bodytrack

Canneal
Terminates

Rigid

Mapping

MigrateBodytrackIdle Core
Bodytrack
Canneal

Fig. 3: Canneal finishes during the execution of bodytrack.
Migrating bodytrack to better suited cores (b) decreases its
response time by 3.8 % compared to the rigid mapping (a).

assumes message passing between threads of a task. On such
a system, a contiguous mapping reduces the communication
latency and thus increases the performance. However, this is
not the case in S-NUCA many-cores. Furthermore, they do
not consider thermal effects.

No approach has been proposed that employs task migration
to increase the performance on S-NUCA many-cores.

Contributions: We are first to explore the performance
potential of thread migrations on a many-core with distributed
shared LLC and within this context we propose a lightweight
run-time task migration algorithm that uses a performance-
prediction model to improve the many-core’s performance.

We highlight the importance of our contributions using two
examples in the following section.

II. MOTIVATIONAL EXAMPLES

Figure 3 shows an example where task migration allows a
many-core to react to workload changes. PARSEC canneal,
which is very sensitive to the LLC latency, is mapped to the
cores close to the center. During its execution, an instance of
PARSEC bodytrack arrives and needs to be mapped. Canneal
then finishes execution while bodytrack is still continuing
execution, which results in two changes on the many-core.
First, the cores in the center are now idle, which changes
the power budgets. Second, these cores are now free to be
used by another task. We can now improve the performance
of bodytrack by migrating its threads closer to center as shown
in Figure 3b. This migration results in 3.8 % improvement in
performance compared to rigid mapping shown in Figure 3a.

Figure 4 shows an example of exploiting changing thread
characteristics at run-time using task migration. Single-
threaded PARSEC x264 shows five distinct execution phases,
which are distinguishable in the IPS trace shown in Figure 4a.
Phases 1 and 4 have higher IPS due to relatively fewer LLC
accesses. Contrarily, during Phases 2, 3 and 5, higher LLC
accesses cause the core to wait and therefore reduces the IPS.
Figure 4b shows the many-core state during the execution of
x264. An 8-threaded instance of PARSEC swaptions is running
in parallel to x264 and is mapped to cores near the center of the
many-core. Two candidate cores were examined for the map-

0 50 100 150 200 250
0

1

2

3

4
·109

1 2 3 4 5

Time [ms]

Pe
rf

or
m

an
ce

[I
PS

]

(a) Execution phases of x264 (if running on Core A)

Idle Core
X264
Swaptions

Core A:
AMD = 5.5
Pb = 2.74W

Core B:
AMD = 4
Pb = 2.07W

(b) Mappings of the tasks

Phase 1 2 3 4 5

Core A:
IPS [·109]

3.22
(+9.6 %) 2.13 2.54 3.08

(+6.1 %) 2.36

Core B:
IPS [·109] 2.94 2.43

(+13.7 %)
2.64

(+4.1 %) 2.90 2.53
(+7.0 %)

(c) IPS of the phases under different mappings

Fig. 4: X264 shows different phases during its execution,
which results in changing impacts of power budget and LLC
latency on its performance. Migrating x264 in each phase to
the core best suited for that phase increases the per-phase
performance by up to 14 %.

ping of x264. Core A is farther away from other active cores
and therefore has a higher power budget. Core B has a lower
AMD and therefore a lower average LLC latency. Figure 4c
shows the performance of the different phases when mapped
to Core A or B. During Phases 1 and 4, x264 performs better
on Core A, where it benefits from the higher power budget.
Contrarily, a low AMD is more beneficial during phases 2, 3
and 5, which results in higher performance on Core B. Most
importantly, the optimal mapping for x264 changes during its
execution. A rigid task mapping algorithm cannot address this
exhibited phase behavior, but task migrations are needed to
maximize the performance.

III. IPS PREDICTION MODEL

A key necessity of our task migration approach is a model
that predicts the IPS of a thread if migrated to another core.
This model needs features for both the target core and the
thread characteristics to distinguish different thread behaviors.
Cores of a many-core with S-NUCA differ in their AMDs, as
well as in their mapping-dependent power power budgets PB .
Hence, we use these two values to describe the target core.

Cycle stacks [11] divide the cycles needed to execute a set of
instructions into the base cycle count and a set of components
that represent cycles losses, such as cache misses. The thread
characteristics are represented by the thread’s current IPS
on its current core, as well as the LLC-related component
c̃LLC of the normalized cycle stack, which reflects the relative
performance loss due to LLC accesses. The IPS and c̃LLC

depend on the core on which the thread is currently running.

Hence, we add the AMD and power budget PB of this core to
the set of our features. Details on the internals of this model
have been omitted due to space constraints.

IV. ONLINE TASK MIGRATION ALGORITHM

Our run-time task migration algorithm PCMig is based on
the IPS prediction model. Task migration periodically traverses
the following steps:

First, migration candidates are created. There are O(n|T |)
possible migrations in a many-core with n cores and set
of threads T . The number of migrations is too large to be
explored in its entirety. We therefore limit our algorithm to
only migrate one thread at a time or swapping two threads.
This reduces the number of possible migrations to O(n·|T |).

All these migration candidates need to be rated in order to
select the most promising one. Let M0 be the mapping before
migration. A migration candidate m is defined by the changed
mapping Mm. The IPS prediction model is used to rate each
migration candidate. The AMDs and power budgets before and
after migration can be determined from the mappings M0 and
Mm. The IPS and c̃LLC before migration are obtained from
performance counters. Migration of a thread does not only
affect this thread, but also all other threads because their power
budgets may change as well. Therefore, the model is used
to predict the IPS of all threads before and after migration.
In order to be able to select one migration, we calculate the
average relative IPS improvement ∆IPS(m) among all threads
for all migration candidates m.

∆IPS(m) =
∑

t∈T

(
IPS(t,Mm)
IPS(t,M0)

− 1
)

Note that no actual migration is performed to calculate this
metric, but the IPS prediction model IPS(t,M) described in
Section III is used instead. Finally, the migration with the
highest IPS improvement ∆IPS(m) is selected. However, this
migration is executed only if ∆IPS(m) > δ. The threshold δ
prevents migrations with only very little expected speedup,
where the performance penalty of the migration itself is likely
to outweigh the expected benefit. Also, it prevents oscillations
due to small prediction inaccuracies. We set δ to 3 %.

System Integration: Thread characteristics are not avail-
able during the initial mapping of a task. Therefore, our IPS
model cannot be used. Instead, we use PCMap [8], which is a
task-agnostic mapping algorithm to decide the initial mapping.

Migrating a thread causes a performance penalty due to cold
caches. It takes some time until the caches are warm and the
thread reaches its peak performance, which strongly depends
on the size of the L1 caches and the LLC latency. On our
infrastructure, it takes less than 0.2 ms for the IPS to saturate
after a migration. The migration interval is set to 10 ms, which
is small enough to react fast to changes, but large enough to
maintain a reasonable overhead.

V. EVALUATION

Experimental Setup: We perform the evaluation using
HotSniper [12], which offers multi-threaded multi-program
simulation of many-cores with full modeling of shared re-
source contentions. HotSniper combines the Sniper many-core

2 4 6 8 10
1

1.1

1.2

Average Task Arrival Rate (per 1000 ms)

N
or

m
.A

vg
.

R
es

p.
Ti

m
e

PCMig PCMap [8] Defrag [10]

Fig. 5: Performance with different management algorithms.

simulator [13] with McPAT [14] for power estimation and
HotSpot [15] for thermal simulation. We simulate a 8×8-
core many-core. The L1-I and L1-D caches have a capacity
of 16 KiB, each. The LLC has a total capacity of 8 MiB and
consists of 64 LLC-banks with 128 KiB each. The NoC latency
is 1.5 ns per hop (6 CPU cycles @ 4.0 GHz). The NoC link
width is 256 Bit. The many-core is modeled to be fabricated in
the 14 nm technology node. The area of each core is 0.81 mm2.
Thermal Design Power (TDP) is set at 100 W. Idle cores
consume 0.3 W due to the active LLC cache bank. Ambient
and maximum temperature are 45°C and 70°C, respectively.
Dynamic Voltage and Frequency Scaling (DVFS) sets core
frequencies from 1.0 GHz to 4.0 GHz in steps of 100 MHz.

State-of-the-Art Comparison: We compare our proposed
algorithm PCMig to the state-of-the-art algorithms Defrag [10]
and PCMap [8]. Defrag is the closest approach that uses task
migration, while PCMap is the closest approach on S-NUCA
many-cores. We adapted them to work on our infrastructure.

We use the PARSEC tasks blackscholes, bodytrack, canneal,
dedup, fluidanimate, streamcluster, swaptions, and x264 with
simsmall inputs for the evaluation. The tasks facesim and
raytrace were skipped since they do not offer a simsmall input
and hence take unreasonably long to execute. The tasks ferret,
freqmine, and vips were skipped due to unresolvable instru-
mentation errors. Two workloads consisting of 20 randomly
selected tasks with randomly selected numbers of threads
are executed with varying arrival rates. Thereby, the average
(peak) utilization is varied from 10 % (58 %) to 38 % (100 %).

Figure 5 presents the average response time with the three
management algorithms. For all task arrival rates, the proposed
PCMig results in the lowest average response time with up
to 7 % and 16 % improvement over PCMap and Defrag,
respectively. PCMap uses task-agnostic rigid mappings and
therefore does not consider task characteristics and cannot
react to changing workloads or thread characteristics. Defrag
assumes message passing between threads and does not con-
sider temperatures. In order to obtain a contiguous shape of the
idle cores, active tasks are migrated to cores near the border
of the system, which have a igh average LLC latency with
S-NUCA. Furthermore, contiguous mappings cause thermal
hotspots and hence reduces the power budget. PCMig avoids
both these drawbacks and thus achieves a higher performance.

VI. CONCLUSION

To maximize the performance on a many-core deployed in
an open system, task migration is required to react to changing

workloads and thread characteristics. Performance of a thread
strongly depends on the power budget and the AMDs of its
core. However, both factors affect the performance of different
threads differently. We proposed a run-time task migration
algorithm PCMig that uses a performance-prediction model to
rate potential migration candidates prior to actual migration.
Our algorithm results in up to 16 % improvement in the
response time compared to the state-of-the-art.

ACKNOWLEDGMENTS

This work was supported by the German Research Founda-
tion (DFG) as part of the Transregional Collaborative Research
Centre “Invasive Computing” (SFB/TR 89), by the National
Research Foundation, Prime Ministers Office, Singapore under
its Industry-IHL Partnership Grant and by Huawei Interna-
tional Pte. Ltd. NRF2015-IIP003.

REFERENCES

[1] J. Henkel, A. Herkersdorf, L. Bauer, T. Wild, M. Hübner, R. K. Pujari
et al., “Invasive Manycore Architectures,” in Asia and South Pacific
Design Automation Conference (ASP-DAC), 2012.

[2] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, M. F. Kaashoek, R. Morris
et al., “Corey: An Operating System for Many Cores,” in Symp.
Operating System Design and Implementation (OSDI), 2008.

[3] D. G. Feitelson and L. Rudolph, “Metrics and Benchmarking for Parallel
Job Scheduling,” in Workshop on Job Scheduling Strategies for Parallel
Processing. Springer, 1998.

[4] M. R. Garey and D. S. Johnson, “Complexity Results for Multiprocessor
Scheduling under Resource Constraints,” SIAM Journal on Computing,
1975.

[5] S. Pagani, H. Khdr, J.-J. Chen, M. Shafique, M. Li, and J. Henkel, “Ther-
mal Safe Power (TSP): Efficient Power Budgeting for Heterogeneous
Manycore Systems in Dark Silicon,” IEEE Transactions on Computers
(TC), 2017.

[6] C. Kim, D. Burger, and S. W. Keckler, “An Adaptive, Non-Uniform
Cache Structure for Wire-Delay Dominated On-Chip Caches,” in Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS), 2002.

[7] A. Pathania and J. Henkel, “Task Scheduling for Many-Cores with S-
NUCA Caches,” in Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2018.

[8] M. Rapp, A. Pathania, and J. Henkel, “Pareto-Optimal Power- and
Cache-Aware Task Mapping for Many-Cores with Distributed Shared
Last-Level Cache,” in Int. Symp on Low Power Electronics and Design
(ISLPED), 2018.

[9] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC Benchmark
Suite: Characterization and Architectural Implications,” in Parallel Ar-
chitectures and Compilation Techniques (PACT), 2008.

[10] J. Ng, X. Wang, A. K. Singh, and T. Mak, “Defragmentation for Efficient
Runtime Resource Management in NoC-Based Many-Core Systems,”
Transactions on Very Large Scale Integration (VLSI) Systems, 2016.

[11] W. Heirman, T. E. Carlson, S. Che, K. Skadron, and L. Eeckhout, “Using
Cycle Stacks to Understand Scaling Bottlenecks in Multi-Threaded
Workloads,” in Int. Symp. on Workload Characterization (IISWC), 2011.

[12] A. Pathania and J. Henkel, “HotSniper: Sniper-Based Toolchain for
Many-Core Thermal Simulations in Open Systems,” IEEE Embedded
Systems Letters (ESL), 2018.

[13] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Exploring
the Level of Abstraction for Scalable and Accurate Parallel Multi-
Core Simulation,” in Conf. High Performance Computing, Networking,
Storage and Analysis (SC), 2011.

[14] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “The McPAT Framework for Multicore and Manycore
Architectures: Simultaneously Modeling Power, Area, and Timing,”
Transactions on Architecture and Code Optimization (TACO), 2013.

[15] W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K. Skadron,
and M. R. Stan, “HotSpot: A Compact Thermal Modeling Methodol-
ogy for Early-Stage VLSI Design,” Transactions on Very Large Scale
Integration (VLSI) Systems, 2006.

