
Unified Thread- and Data-Mapping
for Multi-Threaded Multi-Phase Applications

on SPM Many-Cores
Vanchinathan Venkataramani

National University of Singapore
vvanchi@comp.nus.edu.sg

Anuj Pathania
National University of Singapore

pathania@comp.nus.edu.sg

Tulika Mitra
National University of Singapore

tulika@comp.nus.edu.sg

Abstract—Scratchpad Memories (SPMs) are more scalable
than caches as they offer better performance with lower power
and area overheads. This scalability advocates their suitability
as on-chip memory in many-cores. However, SPM many-cores
delegate the responsibility of thread- and data-mapping to the
software. The mapping is especially challenging in the case
of multi-threaded multi-phase applications. Threads from these
applications exhibit both inter- and intra-phase data-sharing
patterns. These patterns intricately intertwine thread- and data-
mapping across phases. The accompanying qualitative mapping is
the key to extract application performance on SPM many-cores.

State-of-the-art framework for SPM many-cores performs
thread- and data-mapping independently. Furthermore, it can
only operate with single-phase multi-threaded applications. We
are the first to propose in this work, a unified thread- and
data-mapping framework for NoC-based SPM many-cores when
executing multi-threaded multi-phase applications. Experimental
evaluations show, on average, 1.36x performance improvement
compared to the state-of-the-art framework for multi-threaded
multi-phase applications.

Index Terms—SPM, many-core, low-power, task mapping

I. INTRODUCTION

Scratchpad Memories (SPMs), unlike caches, do not pro-
vide any hardware-based coherency. SPMs, therefore, have
a much lower area and power overheads than traditional
caches. These lower overheads make them scalable. This
scalability makes them ideal candidates for use as on-chip
memories in many-cores with tens or hundreds of cores [1].
However, an SPM also delegates the responsibility for the
thread- and data-mapping to the software [2]. An SPM-based
many-core has the potential to provide much higher application
performance than an equivalent cache-based many-core [3]
when provided with an optimized thread- and data-mapping. It
also allows for predictable [4] and composable execution [5].
Unsurprisingly, many state-of-the-art many-core architectures
such as Adapteva’s Epiphany [6], Kalray’s MPPA [7], and
SPECTRUM [8] now employ SPMs as their on-chip memories.

Figure 1 shows an abstract block diagram for a generalized
SPM many-core architecture with a physically distributed on-
chip memory. The architecture comprises of several processing
tiles connected using a 2D grid Network-on-Chip (NoC) [9].
Each tile contains a processing core, an NoC router, and an
SPM. A memory controller(s) provides access to the main
memory by interfacing with a tile(s) on the periphery. SPM,

R R R R

R R R R

R R R R

R R R R

Core

SPM

R

Mem.
Ctrl.

DRAM

Host
Core(s)

Fig. 1: An abstract block diagram for a generalized NoC-based
SPM many-core architecture.

unlike caches, do not have a tag array. Therefore, every SPM
address space maps to a disjoint portion of the entire memory
address space. SPM requires the software to manage the data
in its address space. Software is also responsible for moving
data from/to off-chip using Direct Memory Access (DMA).
Cores can also access data from the remote SPMs in the tiles
other than their own via the NoC. Cores execute only one
thread at a time and do not support context-switching.

Many-core applications are generally multi-threaded. The
threads from these applications exhibit extensive intra-phase
data-sharing patterns. These patterns entangle thread- and data-
mapping in a complex interdependent relationship. The map-
ping of threads on cores affects the mapping of data on SPMs
and vice-versa. State-of-the-art data-mapping framework [10]
for SPM many-cores requires a fixed thread-mapping as an
input. Optimization of data-mapping, which is independent
of thread-mapping, misses out on significant optimization
potential [11]. In this work, we are the first to present a
framework that performs thread- and data-mapping for multi-
threaded applications on SPM many-cores in unison.

Furthermore, several multi-threaded many-core applications
now also have multiple phases. Several data variables are
common across these interdependent phases. Therefore, the
threads from a phase also exhibit extensive inter-phase data-
sharing patterns with threads from the subsequent phases.
Thread- and data-mapping for a phase, therefore, should also
be done per inter-phase data-sharing patterns besides the
intra-phase data-sharing patterns. Data-mapping across phases
should minimize the DMA overheads involved in moving vari-

0 20 40 60 80

T0

T2

T4

T6

T8

T10

T12

T14

T16

Execution Time (X1000 cycles)

Th
re

ad
 In

de
x

0 1 2 3

0

1

2

3

0 1 2 3

0

1

2

3

T0
V0

T1
V0,V16

T2
V1

T3
V2

T4
V0,V3

T5
V0,V4

T6
V0,V5

T7
V6

T8
V0,V7

T1 T16T2 …
P1

T0

P0

Var.
(int)

Acc.
Type

Sharers
(Threads)

#Acc.
Per

Thread

V0
[200]

RW T0 2000

R T1 - T16 4000

V1-V16
[200]

RW Adj. thds.
In P1

2000

(a) Application Details

(b) SNAP

(c) Unified Phase-Aware Mapping

DMA Replication
AccessLatency ContDelay

T9
V8

T10
V9

T11
V0,V10

T12
V11,V12

T13
V0,V13

T14
V0

T15
V0,V14

T16
V0,V15

0 1 2 3

0

1

2

3

0 1 2 3

0

1

2

3

T0
V0

T7
V0,V7

T8
V0,V8

T6
V0,V6

T3
V0,V3

T4
V0,V4

T10
V0,V10

T2
V0,V2

T1
V0,V1

T16
V0,V16

T15
V0,V15

T5
V0,V5

T11
V0,V11

T9
V0,V9

T12
V0,V12

T13
V0,V13

T14
V0,V14

Time = 79,065 cycles

Time = 43,066 cycles (1.84x speedup)

V0 DMA Out

V0 DMA In

Ph
as

e
P 0

Ph
as

e
P 1

Ph
as

e
P 0

Ph
as

e
P 1

0 20 40 60 80

T0

T2

T4

T6

T8

T10

T12

T14

T16

Execution Time (X1000 cycles)

Th
re

ad
 In

de
x

V0 DMA Out

Fig. 2: A motivational example that emphasizes the value of unified thread- and data-mapping for multi-phase multi-threaded
applications on SPM many-cores.

ables to/from main memory when switching phases. State-of-
the-art data-mapping framework [10] for SPM many-cores can
only operate with single-phase multi-threaded applications.
Applying this framework in isolation on each phase results
in significantly lower performance. In this work, we are the
first to present a framework that performs thread- and data-
mapping for multi-phase multi-threaded applications on SPM
many-cores.

Our Novel Contributions. Based on the above discussion,
the following are our novel contributions.
• We are the first to present a framework called UniSPM

that performs unified thread- and data-mapping for multi-
phase multi-threaded applications on SPM many-cores.

• We show UniSPM provides 1.36x higher performance
on average over the state-of-the-art [10] when managing
multi-phase multi-threaded many-core applications.

A. Motivational Example

Figure 2 gives an example that emphasizes the importance
of unified thread- and data-mapping for multi-threaded multi-
phase applications on SPM many-cores. This example uses
a 4x4 SPM many-core as hardware with Cores C0,0 to C3,3

and a multi-threaded multi-phase application A. Figure 1 and
Table I gives the system schematics and specifications for the
many-core. Figure 2 (a) provides the details of A.
A is a two-phase application with seventeen threads in total.

Phase P0 contains only one thread T0. Phase P1 contains
sixteen threads T1 to T16. We assume threads with zero
compute for this example. A has seventeen variables in total
from V0 to V16. Thread T0 produces the variable V0. Thread T1

to T16 read variable V0 two thousand times each. Additionally,

thread Tx accesses Read-Write variable Vx and V(x+1)%16 four
thousand times each, ∀x ∈ {1, 2, . . . , 16}.

Data-mapping framework SNAP [10] requires a manu-
ally generated thread-mapping for each phase as an input
to operate. We provide it with a greedy thread mapping,
wherein T0 (from Phase P0) maps to core C0,0, and thread
Tx (from Phase P1) maps to Core Cb(x−1)/4c,(x−1)%4, ∀x ∈
{1, 2, . . . , 16}. Figure 2(b) shows the corresponding data-
mapping performed by SNAP [10] for application A. SNAP
performs iterative greedy variable allocation to SPMs, wherein
the variable having the highest access density (#accesses/size)
in the bottleneck thread is allocated to SPM near to the thread.
It decides upon the SPM for allocation based on NoC-latency,
NoC-contention, DMA, on-chip copy cost, and variable type.
It also performs replication of Read-Only variables to improve
performance. A takes 79,065 cycles for execution with SNAP.

We can reduce our mapping problem to the Uncapacitated
Facility Location Problem (UFLP), which is well-known to be
an NP-Hard optimization problem [12]. Therefore, obtaining
the optimal task- and data-mapping is computationally expen-
sive. Still, we can obtain the optimal mapping using Integer
Linear Programming (ILP) within a reasonable time for our
example, given its small design space. We do not show the
ILP formulation in this work for brevity. Note that the ILP
is not scalable and thereby cannot be used to obtain optimal
solutions for real-world applications.

Figure 2(c) shows the optimal unified thread- and data-
mapping obtained using an ILP solver. A takes 43,066 cycles
for execution with mapping shown in Figure 2(c) with 1.84x
speedup in comparison to the mapping in Figure 2(b). Re-

duction in variable access latency is responsible for this
performance improvement. For example, Figure 2(b) maps
the variable V5 in SPM of core C1,1 and threads T4, T5

(that access variable V5) in core C0,3 and C1,0, respectively.
Therefore, latency for threads T4 and T5 to access variable
V5 is ten and four cycles, respectively. However, Figure 2(c)
maps the threads T4 and T5 to adjacent cores C2,1 and
C1,1 respectively, due to their common access of variable V5

allocated in SPM of Core C1,1. Therefore, access latency for
variable V5 in Figure 2(c) for threads T4 and T5 is four and
one cycle, respectively. A similar access latency decrease for
other variables partially explains the performance gain.

Further benefits come from reducing DMA I/O by con-
sidering all phases of an application together. Threads from
both phases of application A access variable V0. Figures 2(b)
optimizes mapping for each phase in isolation. Therefore, it
ends up writing variable V0 to the main memory at the end
of Phase P0 and then naively bring in a new copy of V0

using DMA. We can reduce this DMA overhead by leaving
variable V0 on-chip at the end of Phase P0 for use in Phase P1.
However, both approaches do incur overheads for creating on-
chip copies of variable V0 as the variable access type changes
from non-replicable to replicable between phases.

II. RELATED WORK

Several works propose frameworks for efficiently managing
program code- and data-mapping for software-controlled SPM
in single-cores [13]–[16]. These works target optimal place-
ment using exponential-time algorithms such as 0-1 ILP, graph
coloring, etc. However, they are not very scalable and fail to
produce results in a reasonable amount of time for SPM many-
cores. Recently, authors of [17] propose a genetic algorithm for
data-mapping that minimizes DMA overhead for multi-phase
single-threaded applications on a single-core.

Authors of [18], [19] propose frameworks for managing
SPMs in bus-based multi-cores. Since the SPMs are connected
using a bus, these frameworks assume the worst-case latency
for accessing any remote SPM. Therefore, these frameworks
are oblivious to non-uniform access latency of data sharing in
NoC-based SPM many-cores. Authors of [20]–[22] propose
frameworks for managing IBM Cell micro-architecture based
many-cores that also use SPMs. However, all SPMs in IBM
Cell have per-core private address space, and the hardware
itself does not allow any remote SPM access. Therefore, these
mechanisms cannot operate on SPM many-cores with shared
address space that we explore in this work.

Authors of [10] propose a data-mapping framework for
multi-threaded applications on a NoC-based SPM many-core.
This framework, however, requires an apriori manual thread-
mapping to initiate data-mapping. It is also limited to only
single-phase applications. To the best of our knowledge, ours is
the first work that proposes a unified thread- and data-mapping
framework for multi-phase multi-threaded applications on a
NoC-based SPM many-core.

III. PROBLEM FORMULATION

System Model: Let C denote the set of cores (tiles) in the
SPM many-core indexed using i. Ci also represents the local
SPM of core Ci with capacity |Ci|. Let M denote the off-
chip DRAM with a capacity large enough to hold all the data.
SPM many-core needs to execute a multi-phase multi-threaded
application A with P program phases indexed using j.

Thread Model: Every thread within a phase synchronizes
on a barrier before proceeding to the next phase. Let T denote
the set of application threads across all phases indexed using
k. Let θ(Pj)→ T ′, T ′ ⊆ T denote the set of threads executed
in phase Pj . We create dummy buffer threads in a phase if the
number of threads in the phase is less than the cores. These
buffer threads act as a proxy for storage in SPMs.

Variable Model: Let V denote the set of all variables
indexed using l. Let |Vl| denote the size of variable Vl. Let
ψ(Vl, Pj) → {True, False} represent a boolean function
that returns true or false when variable Vl in phase Pj
is replicable (Read-only) or non-replicable variable (Read-
Write or Write-only), respectively. Let α(Tk, Pj) → V ′ and
β(Tk, Pj)→ V ′ denote the set of shared and private variables
accessed by thread Tk in phase Pj . Let ζ(Vl, Tk) denote the
number to times thread Tk accesses variable Vl.

Mapping Model: Let λ(Tk, Pj)→ Ci denote the mapping
of thread Tk to core Ci in phase Pj . Let γ(Tk, Pj) → V ′

denote the set of variables allocated to the core λ(Tk, Pj)
executing Tk in phase Pj . Let γ(M,Pj) → V ′ denote the
set of variables allocated to the main memory in phase Pj .

Access Model: Let δ(Vl, Tk, Pj) denote the total cycles
spent by thread Tk across all accesses of variable Vl from
the closest memory allocation in phase Pj . δ(Vl, Tk, Pj) is
inclusive of DMA latency for bringing/writing data between
off-chip/on-chip, broadcast latency incurred for creating mul-
tiple on-chip copies in case of Read-only replicable variables,
and NoC latency inclusive of contention delay. Table I states
the latency of accessing on-chip SPMs and DMA IO we obtain
using micro-benchmarking. We use memory profiling to obtain
the number of times thread Tk access variable Vl in phase Pj .

Execution Model: Let Ecomp(Tk, Pj) and Emem(Tk, Pj)
represent the computation time and memory access time of
thread Tk in phase Pj , respectively.

Emem(Tk, Pj) =
∑

∀Vl∈α(Tk,Pj)∪β(Tk,Pj)

δ(Vl, Tk, Pj) (1)

Let E(Tk, Pj) represent the execution time of thread Tk
in phase Pj . E(Tk, Pj) is the sum of Ecomp(Tk, Pj) and
Emem(Tk, Pj).

E(Tk, Pj) = Ecomp(Tk, Pj) + Emem(Tk, Pj) (2)

Let E(Pj) represent the execution time of phase Pj . Since
all threads in a phase synchronize on a barrier, execution time
of the bottleneck thread determines E(Pj).

E(Pj) = max
∀Tk∈θ(Pj)

E(Tk, Pj) (3)

Let E represent the execution time of application A. E is
the sum of the execution time of all phases.

E =
∑

∀Pj∈P

E(Pj) (4)

Computation time Ecomp(Tk, Pj) is fixed and independent
of mapping. Memory access time Emem(Tk, Pj) is dependent
upon both thread- and data-mapping. Therefore, we focus on
minimizing memory access time by optimizing the mapping.

Constraints: SPM many-core enforces three constraints on
the thread- and data-mapping. (1) Capacity Constraint: Size
of the total variables allocated to an SPM should be less than
than the size of SPM.(∑

∀Vl∈γ(Tk,Pj)

|Vl|
)
≤ |λ(Tk, Pj)| (5)

(2) Uniqueness Constraint: There is no coherence in SPM
many-cores. Therefore, a non-replicable variable in a phase
must exist in only one place in memory during the phase.

Vl ∈
((

∩∀Tk∈θ(Pj)
γ(Tk, Pj)

)
∩ γ(M,Pj)

)
⇐⇒ ψ(Vl, Pj) = True

(6)

(3) One-Thread-Per-Core Constraint: There is a one-to-one
mapping between threads and cores within a phase. Every
thread active in a phase must be assigned a core.

∀Tk,Tk′∈θ(Pj) λ(Tk, Pj) 6= λ(Tk′ , Pj) 6= ∅ (7)

Objective: The objective is to minimize application execu-
tion time E by determining the output of thread- and data-
mapping function λ and γ, respectively. Mapping functions
must respect the constraints given in Equations 5, 6, and 7.

IV. PROPOSED UNISPM FRAMEWORK

We propose a logarithmically recursive framework called
UniSPM to heuristically solve the NP-hard unified thread- and
data-mapping problem for multi-threaded multi-phase applica-
tions on SPM many-cores. Algorithm 1 gives the pseudo-code
for the algorithm we use in UniSPM. The goal of UniSPM is
to minimize the flow of on-chip data as well as off-chip data.
Since the cost of memory I/O is significantly more than remote
SPM I/O (Table I), UniSPM prioritizes the sequestration of
off-chip data flow over on-chip data flow.

Equation 7 dictates that UniSPM must allocate a core to
every thread in a phase. UniSPM determines the core wherein
a thread is mapped to in a phase at the end of recursion only.
In intermediate recursions, UniSPM virtually assigns sets of
variables to set of threads without actually specifying which
thread in the set of threads will finally hold the variable in the
end. Let γ̄(T ′, Pj)→ V ′ represent a set of variables V ′ ⊆ V
UniSPM hypothetically assigns to a set of threads T ′ ⊆ T in
phase Pj . Note, γ(Tk, Pj) that defines real variable assignment
to a thread stands in orthogonally to γ̄(T ′, Pj) . The size of
variables assigned to a set of threads in a phase (both in reality
and hypothetically) can act as a good proxy to determine the
remaining capacity of the SPMs of the set of cores where
UniSPM eventually maps the threads. Let φ(T ′, Pj) represent

Algorithm 1 Algorithm in UniSPM
1: function INITIATEMAP(C, T, V)
2: ∀Pj∈P ∀Tk∈θ(Pj) γ(Tk, Pj) = γ(Tk, Pj) ∪ β(Tk, Pj)

3: ∀Pj∈P ∀Tk∈θ(Pj) γ̄(Tk, Pj) = ∅
4: ∀Pj∈PRECURSIV EMAP (C, θ(Pj), V, Pj)
5: return γ(Tk, Pj), λ(Tk, Pj)
6: end function
7: function RECURSIVEMAP(C,T ,V ,Pj)
8: if |C| = 1 then
9: λ(Tk ∈ T, Pj) = Ci ∈ C

10: FIT (γ(Tk, Pj), γ̄(Tk, Pj)) . Hypothetic to Real Assignment
11: return . Break Recursion
12: end if
13: BIFURCATE (C)→ {CL, CR} . Equal Rectangular or Square Division
14: BIFURCATE (T)→ {TL, TR} . Using K-Mean Clustering Variation
15: V = ↓ ∪∀Tk∈T α(Tk, Pj) . Decreasing Access Density Sort
16: for Vl ∈ V do
17: if ζ(Vl, TL) ≥ ζ(Vl, TR) & φ(TL, Pj) ≥ |Vl| & Vl 6∈ γ̄(TL, Pj) then
18: γ̄(TL, Pj) = γ̄(TL, Pj) ∪ Vl
19: else if φ(TR, Pj) ≥ |Vl| & Vl 6∈ γ̄(TR, Pj) then
20: γ̄(TR, Pj) = γ̄(TR, Pj) ∪ Vl
21: end if
22: end for
23: Synchronize ∀Pj∈P . Wait for Allocation for All Phases Before Replication
24: REPLICATION (TL, TR) → {TL, TR}
25: RECURSIVEMAP (CL,TL,V ,Pj)
26: RECURSIVEMAP (CR,TR,V ,Pj)
27: end function

the free space remaining with a set of threads T ′ ⊆ T in phase
Pj for new variable assignment.

UniSPM performs the following procedure for all phases
in parallel in Algorithm 1. It begins by first assigning (in
real) thread’s private variables in its local SPM (Line 2).
UniSPM then bifurcates the cores (Line 13) to be allocated
in a phase into two equal rectangular sets of cores. It also
divides the threads (Line 14) to be allocated in that phase into
two equal sets of threads using same-size k-means clustering.
A thread clustering sub-routine places the thread onto a
multi-dimensional space. Sub-routine assigns one dimension
in the multi-dimensional space to each unique shared variable
accessed by the threads in the phase. Sub-routine assigns
vector coordinates to each thread in the phase based on its
access density for shared variables. The use of access density
normalizes the distance in different dimensions. Distance in
the space is then used to bifurcate threads in a phase into
two equal-size sets of threads. In the end, UniSPM has two
sets of threads for each phase. Algorithm 1 does not show the
pseudo-code for clustering for brevity.

UniSPM then sorts the shared variables based on access
density and then assesses them for on-chip allocation in
descending order (Line 15). It then assigns shared variables to
on-chip SPMs by assigning them to either of the two sets of
threads depending upon which cluster makes more aggregate
accesses (Lines 16-22). A set of threads must have enough
space to accommodate the variable in its remaining free space.
The variable must also be unique to the set. If one set of
threads gets full, UniSPM assigns the shared variable to the
other set of threads. If a variable is too big to fit in either of the
clusters, then UniSPM skips it. UniSPM considers all shared
variables for on-chip allocation as long as they can fit in the
remaining space. UniSPM then does one-to-one association of
two sets of threads to two sets of cores for each phase using
two distinct recursive calls (Lines 25 and 26).

Once UniSPM finishes the above variable allocation for all
sets of threads in all phases (Line 23), it attempts to further
bring down the memory access time with the help of inter-
and intra-phase replication using any remaining free space in
either set of the threads (Line 24). The goal of the inter-phase
replication is to avoid DMA to main memory by retaining a
variable from an earlier phase on-chip in intermediate phases
if a later phase uses it. The location of this inter-phase variable
is inconsequential, but all the intermediate phases must retain
it on-chip to successfully avoid the DMA call. UniSPM creates
a list of all variables, which are brought into on-chip memory
using DMA more than once. It then sorts them according to
their DMA cost (#DMACalls). It then assigns the variable to
one set of threads from each phase in all the intermediate
phases, where it is missing, such that at least one DMA I/O is
avoided. It assigns the variable to the set of threads with most
remaining space if the assignment is possible on either set of
threads. The variable is not replicated at all if there is not
enough space in any of the intermediate phases. Intra-phase
replication only happens if there is still space remaining after
inter-phase replication on either set of threads. The goal of
intra-phase replication is to minimize the remote SPM access
latency by on-chip replication of replicable shared variables.
UniSPM only considers the variables it did not previously
assign to a set of threads for replication in the set of threads.
It then starts assigning variables to the sets of threads in
descending order of aggregate accesses if there is enough
free space available in them. Algorithm 1 does not show the
pseudo-code of replication for brevity.

UniSPM recursively bifurcates set of cores and threads
logarithmically, and continue to perform one-to-one associ-
ations between them. The last recursion provides us with
the final thread- and data-mapping for each core in each
phase (Lines 8-11). It may happen that due to imperfect bin-
packing with discrete-size variables and SPMs, UniSPM may
have to thrash some hypothetically assigned variables during
the final real data-mapping on to the core (Line 10). In such
a case, UniSPM thrashes inter-phase replicated variables first,
followed by intra-phase replicated variables (across all inter-
mediate phases simultaneously), and then the shared variables.
Within the variables of the same type, UniSPM thrashes them
in increasing access density order.

Computational Complexity: UniSPM recursively searches
O(|C|) nodes, where |C| is the number of cores in the many-
core. UniSPM explores all P phases in parallel (Line 4) in
each search adding in a factor of O(|P |) to the complexity,
where |P | is the number of phases. |V | and |T | denotes
the number of variables and threads, respectively. UniSPM
performs K-means clustering (Line 14) and access density
sort (Line 15) in each search with complexity O(|V ||T | +
|T | ln |T |) and O(|V | ln |V |), respectively. All the other oper-
ations that UniSPM performs serially in the search have lower
complexity than K-means clustering and access density sort.
Therefore, the worst-case computation complexity of UniSPM
is O(|P ||V |(|V ||T |+ |T | ln |T |+ |V | ln |V |)).

TABLE I: System specifications for Parallella embedded
development platform with Epiphany SPM many-core.

Cores 2 ARMv7 host cores
16 Epiphany in-order (dual-issue) cores, 600 MHz

SPM Unified I & D, 32 KB, 4 banks, 1-cycle access latency
Network 2D Mesh, 1.5 cycle per hop latency, XY routing
Memory 1 GB, 500-cycle access latency
DMA data
transfer rate

on-chip: write 1236.81 MB/s, read 392 MB/s
off-chip: write 234.35 MB/s, read 87.71 MB/s

TABLE II: Problems solving time with different benchmarks.

#Ph. #Thd. #Var. Data Size
(in KB)

Solving
Time (in sec.)

PHY 4 44 134 599 0.29
ImageProc 3 48 70 66 0.21

Gesture 4 24 41 120 0.27

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

MICF COMBW ACI DD Overall

Sp
e

e
d

u
p

Phase name

(a) PHY

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

AESD 2DCONV AESE Overall

Sp
e

e
d

u
p

Phase name

(b) ImageProc

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

FFT Filter IFFT Classify Overall

Sp
e

e
d

u
p

Phase name

(c) Gesture

Fig. 3: Speedup attained with UniSPM against SNAP for
different benchmarks and their individual phases.

V. EXPERIMENTAL EVALUATION

Setup: Table I summarizes the specification of the Epiphany
platform with an SPM many-core. Epiphany contains a unified
SPM for both instructions and data. We utilize 16 KB for
instructions and stack variables. We allocate the remaining
16 KB to data variables. Epiphany lacks compiler and library

support for multi-phase many-core applications for direct
execution. Therefore, we use a memory simulator based on
Epiphany platform to evaluate the different frameworks.

Baseline: We compare UniSPM proposed in this work with
SNAP [10]. SNAP iteratively tries to reduce the execution
time of the critical thread by allocating the variable with
the highest access density to a closer location, such that
application execution time does not increase. SNAP creates
multiple copies if the reduction in execution time is more than
the overhead incurred in making an additional on-chip copy.
Since SNAP relies on manual task mapping, we utilize a greedy
task mapping for our evaluation. Additionally, it writes/reads
data between off-chip and on-chip after/before every phase.
In UniSPM, we propose a unified task- and data-mapping that
considers both inter- and intra-phase data sharing.

Benchmarks: We use three multi-threaded multi-phase ap-
plications – PHY [23], ImageProc [24], and Gesture [25] as
benchmarks. PHY is a Long Term Evolution (LTE) baseband
processing application containing four phases – MICF, ACI,
COMBW, and DD. ImageProc is an Image Processing Internet
of Things (IoT) application consisting of three phases –
AESD, 2DCONV, and AESE. Gesture is a Human-Computer
Interface (HCI) application consisting of four phases – FFT,
Windowing, IFFT, and Classification. We utilize worst-case
memory profiling and static analysis (to find the variable
access type) as input to obtain the task- and data-mapping
using UniSPM. Therefore, the performance may vary with the
size of the input, but the functionality is never wrong.

Performance: Figure 3 shows the speedup (reduction in
memory access time) for different benchmarks (and their
phases) with UniSPM against SNAP. As seen in this figure,
UniSPM results in 1.36x, 1.29x, and 1.44x speedup concerning
SNAP for PHY, ImageProc, and Gesture, respectively, and an
overall average of 1.36x. Note that in COMBW phase of PHY,
UniSPM thrashes variables to off-chip due to imperfect bin-
packing. However, UniSPM still improves the overall time as
other phases dominate the time.

Scalability: UniSPM uses a polynomial-time algorithm to
perform mapping and thereby scales well with an increase in
the number of phases, threads, and variables. Table II gives the
problem-solving time for different benchmarks with UniSPM.
UniSPM, on average, takes only 0.26 seconds to map.

VI. CONCLUSION

In this work, we proposed the first-ever framework (called
UniSPM) to perform unified thread- and data-mapping for
multi-threaded multi-phase applications executing on SPM
many-cores. UniSPM uses a low-overhead recursive algorithm
to solve the mapping problem. Empirical evaluations reveal
1.36x performance improvement compared to the state-of-the-
art mechanism for multi-threaded multi-phase applications.

VII. ACKNOWLEDGMENT

This work was supported by the National Research Founda-
tion, Prime Minister’s Office, Singapore under its Industry-IHL
Partnership Grant NRF2015-IIP003.

REFERENCES

[1] J. Teich et al., “Invasive Computing: An Overview,” Multiprocessor
System-on-Chip, 2011.

[2] S. Wasly et al., “A Dynamic Scratchpad Memory Unit for Predictable
Real-Time Embedded Systems,” in Euromicro Conference on Real-Time
System (ECRTS), 2013.

[3] M. Rapp et al., “Prediction-Based Task Migration on S-NUCA Many-
Cores,” in Design, Automation & Test in Europe Conference & Exhibi-
tion (DATE), 2019.

[4] D. Gangadharan et al., “Application-Driven Reconfiguration of Shared
Resources for Timing Predictability of MPSoC Platforms,” in Asilomar
Conference on Signals, Systems and Computers (ACSCC), 2014.

[5] A. Molnos et al., “A Composable, Energy-Managed, Real-Time MPSOC
Platform,” in Optimization of Electrical and Electronic Equipment (OP-
TIM), 2010.

[6] A. Olofsson, “Epiphany-V: A 1024 Processor 64-bit Risc System-on-
Chip,” arXiv preprint arXiv:1610.01832, 2016.

[7] B. D. de Dinechin, “Kalray MPPA®: Massively Parallel Processor
Array: Revisiting DSP Acceleration with the Kalray MPPA Manycore
Processor,” in Hot Chips Symposium (HCS), 2015.

[8] V. Venkataramani et al., “SPECTRUM: A Software Defined Predictable
Many-Core Architecture for LTE Baseband Processing,” Languages
Compilers, Tools and Theory of Embedded Systems (LCTES), 2019.

[9] S. M. PD et al., “A Scalable Network-on-chip Microprocessor with 2.5
D Integrated Memory and Accelerator,” Transactions on Circuits and
Systems I: Regular Papers (TCAS I), 2017.

[10] V. Venkataramani et al., “Scratchpad-Memory Management for Multi-
Threaded Applications on Many-Core Architectures,” Transactions on
Embedded Computing Systems (TECS), 2019.

[11] M. Xu et al., “Holistic Resource Allocation for Multicore Real-Time
Systems,” in Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2019.

[12] K. Jakob et al., “The Simple Plant Location Problem: Survey and
Synthesis,” European Journal of Operational Research (EJOR), 1983.

[13] N. Nguyen et al., “Memory Allocation for Embedded Systems with a
Compile-Time-Unknown Scratch-Pad Size,” Transactions on Embedded
Computing Systems (TECS), 2009.

[14] S. Udayakumaran et al., “Dynamic Allocation for Scratch-pad Memory
Using Compile-time Decisions,” Transactions on Embedded Computing
Systems (TECS), 2006.

[15] A. Dominguez et al., “Heap Data Allocation to Scratch-pad Memory in
Embedded Systems,” Journal of Embedded Computing., 2005.

[16] F. Angiolini et al., “A Post-Compiler Approach to Scratchpad Mapping
of Code,” in Compilers, Architecture, and Synthesis for Embedded
Systems (CASES), 2004.

[17] M. R. Soliman et al., “WCET-Driven Dynamic Data Scratchpad Man-
agement With Compiler-Directed Prefetching,” in Euromicro Conference
on Real-Time Systems (ECRTS), 2017.

[18] M. Verma et al., “Scratchpad Sharing Strategies for Multiprocess Em-
bedded Systems: A First Approach,” in Embedded Systems for Real-Time
Multimedia (ESTImedia), 2005.

[19] V. Suhendra et al., “Integrated Scratchpad Memory Optimization and
Task Scheduling for MPSoC Architectures,” in Compilers, Architecture,
and Synthesis for Embedded Systems (CASES), 2006.

[20] J. Lu et al., “SSDM: Smart Stack Data Management for Software Man-
aged Multicores (SMMs),” in Design Automation Conference (DAC),
2013.

[21] J. Lu et al., “Efficient Code Assignment Techniques for Local Memory
on Software Managed Multicores,” Transactions on Embedded Comput-
ing Systems (TECS), 2015.

[22] K. Bai et al., “Automatic and Efficient Heap Data Management for
Limited Local Memory Multicore Architectures,” in Design, Automation
& Test in Europe Conference & Exhibition (DATE), 2013.

[23] M. Sjalander et al., “An lte uplink receiver phy benchmark and subframe-
based power management,” in Proceedings of the IEEE International
Symposium on Performance Analysis of Systems & Software (ISPASS),
2012.

[24] C. Tan et al., “Locus: Low-power customizable many-core architecture
for wearables,” in IEEE International Conference on Compilers, Archi-
tecture and Synthesis for Embedded Systems (CASES), 2016.

[25] C. Tan et al., “Stitch: Fusible heterogeneous accelerators enmeshed
with many-core architecture for wearables,” in ACM/IEEE 45th Annual
International Symposium on Computer Architecture (ISCA), 2018.

