
GraphWave: A Highly-Parallel Compute-at-Memory

Graph Processing Accelerator

Jinho Lee∗, Burin Amornpaisannon∗, Tulika Mitra, Trevor E. Carlson

National University of Singapore

Abstract—The fast, efficient processing of graphs is needed
to quickly analyze and understand connected data, from large
social network graphs, to edge devices performing timely, local
data analytics. But, as graph data tends to exhibit poor locality,
designing both high-performance and efficient graph accelerators
have been difficult to realize.

In this work, GraphWave, we take a different approach com-
pared to previous research and focus on maximizing accelerator
parallelism with a compute-at-memory approach, where each
vertex is paired with a dedicated functional unit. We also demon-
strate that this work can improve performance and efficiency by
optimizing the accelerator’s interconnect with multi-level multi-
casting to minimize congestion. Taken together, this work achieves,
to the best of our knowledge, a state-of-the-art efficiency of up
to 63.94 GTEPS/W with a throughput of 97.80 GTEPS (billion
traversed edges per second).

I. INTRODUCTION

Graph processing is an extremely important technique that

is used by many different algorithms to analyze relational

data [1], [2]. While the most recognizable techniques have been

demonstrated in large datacenter workloads, such as in social-

media companies [3], graph data processing is also becoming

an important emerging workload for high-performance edge

systems [4], [5], [6]. But, understanding and processing graph

data in a timely and energy-efficient way is extremely difficult

with traditional processor designs because the latency needed

to access graph data can be extremely high due to the poor

locality characteristics of graph data [7].

To address the need for higher graph processing performance,

a variety of solutions have been proposed. A number of

approaches explore streaming data from DRAM or other single-

memory-sources, such as modern High-Bandwidth Memory

(HBM) technologies. These systems [8], [9] pair processor or

accelerator designs through a relatively high-bandwidth channel

to a very large capacity memory subsystem. Despite the high-

bandwidth, the overall parallelism and ability to access many

sparse elements in parallel are still limited.

HMC or Hybrid Memory Cube-based solutions [10], [11],

[12] were introduced as a way to address these concerns by

increasing the effective parallelism to a slice of memory (called

a vault), each paired with a memory controller and a specialized

hardware accelerator. This allows for an increase in parallelism

with the number of vaults in the system. Nevertheless, with

millions of edges per vault, the overall parallelism of these

accelerators is still limited.

Instead, in this work, we maximize the parallelism of graph

processing by storing the graph data for each vertex or node

∗
The authors contributed equally to this work.

together with its own processing element and edge storage

data. In this vertex-centric approach, we look to maximize

the potential parallelism of the system, where in the best

case, each vertex could be processing data in parallel with all

others. By increasing the parallelism to the extreme, we aim to

demonstrate how this system can overcome the bandwidth and

parallelism limits of previous designs.

When exploring the limits of the parallelism of graph pro-

cessing, we see that the limiting bottleneck of the system now

becomes the graph data itself, and how it is mapped to the

accelerator. In fact, there are three key challenges that occur

when optimizing graph processing: (a) workload imbalance,

which often occurs in real-world graphs that exhibit power-

law properties [13], e.g., a few vertices have a very high degree

while most of other vertices have a low degree; (b) data locality,

which tends to be poor for graphs; and (c) communication costs

which need to be handled appropriately to minimize latency and

overhead. Only after addressing each of these challenges, can

we maximize efficiency and throughput.

To address these challenges, we propose a (1) highly-

parallel per-vertex processing accelerator: GraphWave,

which co-locates a functional unit with the data for each

vertex. This enables a level of parallelism that has not been

seen in prior works. In addition, to address the workload

imbalance and communication concerns, we propose an (2)

efficient multi-level data multi-casting technique to minimize

network overhead and network congestion. To the best of our

knowledge, this work presents one of the highest levels of

efficiency, achieving up to 63.94 Giga-Traversed Edges Per

Second per Watt (GTEPS/W) with a throughput of 97.80

GTEPS.

In the rest of this paper, we present our parallel, multicast-

enabled accelerator in detail. In Section II, we introduce the

background of this work and in Section III, we present our

graph processing approach. We present the experimental setup

for this work in Section IV, and evaluate the results in Sec-

tion V. In Section VI, related works are presented, and we

conclude with Section VII.

II. BACKGROUND

The vertex-centric processing approach is an established

graph processing abstraction that is suitable for distributed,

parallel graph analysis [14]. Each vertex collects incoming mes-

sages, updates its value, and propagates the updated value to its

neighbors. Algorithm 1 shows the vertex-centric graph process-

ing abstraction. In the outer loop, here called a superstep, all

the vertices propagate their values to their neighboring vertices,

Algorithm 1 Vertex-centric graph processing

Input: directed graph G = (V,E)
1: activeV ertices← V
2: superstep← 0
3: while activeV ertices do ⊲ One superstep
4: for all v ∈ V do ⊲ In parallel
5: v.new val = rcvMsgs(v) ⊲ Reduce
6: sendMsgs(v.dsts, v.val) ⊲ Propagate

7: end for
8: for all v ∈ V do ⊲ In parallel
9: v.val = v.new val ⊲ Apply

10: end for
11: superstep← superstep+ 1

12: end

and collect messages from others. Each vertex first receives the

messages from its inbound neighbors and Reduces the messages

to update its own value (line 5). Meanwhile, it Propagates

messages to its outbound neighbors (line 6). After finishing

sending and collecting the messages, the vertices update their

values with the new value generated in this superstep (line 9).

Then, the next superstep can begin (line 11). In this approach,

all the vertices can Reduce and Propagate messages in parallel

(line 4-6), which makes this algorithm suitable for processing

graphs in a distributed manner [14].

Lumsdaine et. al [7] present and analyze the challenges in

parallel graph processing. In this work, we have chosen to

address the most common and relevant challenges observed in

the vertex-centric approach, with a description of each of those

main challenges below.

1) Workload imbalance: The vertices are processed in par-

allel (line 4-6 and 8-9 in Algorithm 1). However, we can

only move on to the next superstep after all the vertices

finish propagating and receiving messages, and updating

their values (line 11). In this case, existence of high fan-

out or high fan-in vertices can result in a longer time to

proceed to the next superstep.

2) Data locality: If the data propagation is done using

a shared memory (line 6), each vertex has to iterate

through its neighbors’ pointers (v.dsts) to send its value

(v.val). If the memory addresses of the neighbors are

not sequential, this can cause frequent random memory

accesses, which leads to the problem described below.

3) Communication cost: The frequent random memory ac-

cesses due to the poor data locality can cause cache

misses and off-chip accesses that lead to long latency

and poor energy efficiency.

III. GRAPHWAVE METHODOLOGY

In this section, we present the GraphWave methodology, a

combination of a novel highly-parallel microarchitecture and

software techniques that, when combined, exposes parallelism

at the per-vertex level. The GraphWave accelerator supports

efficient message propagation where a vertex sends a single

packet and it is multi-casted to all its destinations no mat-

ter how many neighbors it has. In this way, it tackles the

workload imbalance issue. The packet routing path is statically

determined and stored in distributed routing tables that can

ALU Output

Reg

Outbound

Reg

Control Unit

Accumulator

VPU

Reduce Module Apply Module

(a) A Vertex Processing Unit (VPU) hardware represents a vertex
in a graph. It reduces received messages and applies changes when
all messages are collected. The outbound and output registers together
are used to transfer data to other components outside the VPU.

R
o

u
te

r
In

te
rf

ac
e

R
o

u
te

r
In

te
rf

ac
e

Inter

Table

To-PE

Address

Generator

To-NoC

Address

Generator

…

VPU 0

VPU 1

VPU 2

VPU 255

VPU 3

VPU 254

…

Unicast

Bit-Masking

Table

From

NoC

To

NoC

Intra-PE Datapath

Inter-PE Datapath

(b) A Processing Element (PE) consists of 256 VPUs and tables to
store routing information. In the bit-masking table, each entry has 256
masking bits to specify the destination ports. inter table contains the
routing information to support inter-PE communication. The PEs are
connected using a Network on Chip (NoC).

Fig. 1: GraphWave Microarchitecture. A VPU reduces re-

ceived messages and directly applies the update within it. A

message can be multi-casted to multiple VPUs in a PE. The PEs

are interconnected through NoC and all vertices communicate

with each other in parallel.

be easily accessed via local memories. Due to the fast, local

access of these tables, communication cost is significantly

reduced enabling GraphWave to attain both high performance

and energy efficiency.

A. GraphWave Microarchitecture

Vertex Processing Unit: Reduce and Update. A Vertex

Processing Unit (VPU) is a dedicated hardware component for

processing requests destined for a single vertex. It contains a

Reduce module that processes received messages and reduces

the results immediately, and an Apply module that updates its

state when the Reduce stage is completed. The Apply module

also propagates its data outside of the VPU.

The design of the VPU is shown in Figure 1a. The Reduce

module consists of an ALU and accumulator register. When

a message is received, the ALU calculates a new value based

on the selected graph algorithm and the value of the accumu-

lator, and then updates the accumulator. The Apply module is

comprised of an output register that only updates its value with

the output from the accumulator at the end of the Reduce step.

While the Reduce module receives messages, the output register

in the Apply module and outbound register propagate its data

to outbound destinations through on-chip connections. In this

design, the communication overhead between phases is reduced

as the previous accumulated value remains at the ALU, and

its vertex state can be updated using the accumulator directly

connected to it.

Processing Element: Simultaneous message propagation.

The Processing Element (PE) is designed to support message

passing between VPUs in a massively parallel and energy

efficient way. The design, shown in Figure 1b, consists of two

datapaths that handle intra-PE and inter-PE message passing,

respectively. The PEs are interconnected via a NoC. A message

coming from the NoC goes to either one of the paths depending

on whether the message is required to be sent to other VPUs

in other PEs. Note that this methodology is independent from

the selection of the NoC architecture.

The intra-PE datapath consists of 256 VPUs, a unicast unit,

and a bit-masking table. It handles messages that are sent to

the VPUs in the PE1. The bit-masking table, used to handle

a message with multiple destinations, contains masking bits

of destination VPUs to receive the message. When a message

has the destination address at the mth entry of the bit-masking

table, it retrieves the entry containing 256 masking bits. Then,

the message is delivered to the VPUs where the masking bits

are high by connecting each VPU’s write enable signal to its

associated masking bit. Thus, with this technique, a single

message can be propagated up to 256 vertices inside this

PE without random memory accesses. When a message has

only one destination, the unicast unit directly sends it to the

particular destination VPU. Also, the VPUs generate messages

that connect to the inter-PE datapath, intra-PE datapath or NoC

depending on the type of the messages.

The inter-PE datapath handles input and output messages

through the NoC. A message that arrives at this datapath

contains an entry number to access the inter table which

contains its neighbors’ destinations. The output of this table is

used to generate new addresses from two address generators.

The to-PE address generator is responsible for generating an

address and forwarding this message with the address to the

intra-PE datapath to update the VPUs. At the same time, the to-

NoC address generator generates new addresses for the message

to be sent to other PEs.

As mentioned earlier, our goal is to address the main

graph processing challenges presented in Section II. First,

(1) workload imbalance issues are mitigated by moving the

message propagation workloads from the vertices to the intra-

PE and inter-PE datapaths. In this way, regardless of the

number of outbound edges, a VPU sends only one message

and it is multi-casted to its neighbors in parallel. Next, (2) the

frequent irregular memory accesses typically seen during graph

processing are minimized by storing data where it is easily

accessible by compute units (compute-at-memory). Finally, (3)

communication latency is significantly reduced through the use

of our parallel multicasting methodology.

B. Inter-PE message propagation and congestion avoidance

To utilize the hardware design efficiently, our software

mapper pre-determines all the routing paths and generates the

1For graph algorithms requiring weight values, a weight table can be added
between the bit-masking table and the array of VPUs.

PE

PE

1

6

5

PE

4

3

2

(a) When the multi-casting is ap-
plied to minimize the hop count
following the arrows, it that can
cause traffic congestion at PE 3
as it is at the center of the NoC.

PE

PE

1

6

5

PE

4

3

2

(b) To mitigate the congestion is-
sue, the messages are propagated
following the alternative route in-
stead by having the packets arrive
at the center last.

Fig. 2: Inter-PE multicasting techniques.

mapping and routing tables based on an input graph. In this

subsection, we explain how our mapper alleviates the network

congestion to achieve high throughput and efficiency.

Inter-PE multicasting. When numerous PEs send packets si-

multaneously, this can potentially flood the NoC and adversely

affect accelerator throughput. In addition, when many packets

are required to be sent to the NoC, the PEs can suffer from

a contention at the output ports. To overcome these issues, an

inter-PE multi-casting technique is proposed.

When a vertex has destinations to multiple PEs, a message

is sent through the inter-PE datapath. The inter-PE datapath

then sends packets with the message only to the physically

neighboring next-hop PEs. At that point, the PEs that receive

the packets relay them to their neighbors. This is repeated

until all destination PEs receive the original message. To find

the multi-casting path of the packet, the packet arrival order

between the destination PEs is determined first. The PEs are

sorted based on the hop distance from the source PE. Then,

from the furthest PE, we recursively find a relay PE and store

the routing information in the inter-PE datapath of the relay PE.

For example, in Figure 2a, a source vertex is at PE 1 and its

destinations are in PE 1-6. The PEs are sorted in the order of 6,

5, ..., 1. Then, PE 6 picks PE 5 as the relay PE, PE 5 picks PE

3, and so on. When the source vertex propagates a message, it

is propagated following the arrows based on the routing tables.

The messages start propagation from PE 1. When it reaches

PE 2, the message is propagated to internal destination vertices

and a packet is sent to the next destination, PE 3. These steps

are repeated until all the destination PEs receive the message.

The relay PE selection is done to minimize the travel distance

of packets. However, the router in the center of the NoC (PE

3 in the example) can suffer from heavy multi-casting traffic.

It can also cause output port contention of the center PEs. To

alleviate this network and output port contention at the center

region, we propose a load balancing technique.

Congestion avoidance in Inter-PE multicasting. The PEs

in the center area tend to receive and send more packets as

they are the bridge between the PEs on the periphery when

the relay PE selection method only considers minimizing the

packets’ travel distance. These PEs can be a bottleneck that

reduces the overall throughput by making the supersteps longer.

To alleviate this traffic congestion issue, the mapper can help

to plan alternate routes for a subset of the packets.

We solve this issue by changing the packet arrival order

TABLE I: Input graph dataset details. Davg is the average

vertex degree, or the number of outbound edges.

|V | |E| Davg domain

gnutella05 (GT) [16] 9k 31k 3.4 web

wiki-vote (WV) [16] 7k 103k 14.7 web

grid-yeast (GY) [17] 6k 314k 52.3 biology

spam-detection (SD) [17] 9k 506k 56.2 web

reality (RE) [17] 7k 9,429k 1,344.4 social

among the destination PEs. To choose alternative routes, the

destination PEs are sorted depending on travel distance +
#of relay packets instead of considering the travel distance

alone. In our example (Figure 2), if PEs 3 and 4 are handling

many relay messages, based on the new metric, the PEs can

be sorted in the order of [3, 4, 6, 5, 2, 1]. Then, from PE

3, the destination PEs recursively look for the best relay PE

to minimize the new metric and the packets are multicasted

following the arrows in Figure 2b.

In-flight reduce operation. When many VPUs in a single

PE send messages to a potentially high fan-in VPU at a

remote PE, we can reduce the number of NoC messages by

first reducing the data inside the local PE. We take advantage

of local, unmapped VPUs to collect and distribute outgoing

results. After merging the messages, the VPU generates a

single, final message and transfers it to the target PE. By

distributing the message reduction closer to the source vertices,

this technique helps to reduce the amount of messages in the

NoC, mitigating network congestion and port contention of the

PEs, especially at high fan-in nodes2

IV. EXPERIMENTAL SETUP

GraphWave is implemented in SystemVerilog, uses the

OpenSMART NoC [18] implemented in Bluespec, and is

synthesized using Synopsys Design Compiler version 2019.03

targeting a commercial 22 nm technology node with 6×7 pro-

cessing elements at 200 MHz to support all the input graphs.

The bit-masking table, inter table, and the address tables inside

the to-PE address generator and to-NoC address generator are

implemented using single-port ultra-low-power SRAMs. We

use Synopsys VCS-MX 2015.09 for gate-level simulation, and

Synopsys PrimePower 2019.03 for power evaluation. We apply

power gating to disable unused PEs and VPUs when running

graphs that are smaller than the maximum capacity. Note that

the rest of the routers remain enabled to facilitate data transfer

between PEs. Evaluations are conducted after the data has been

loaded into the accelerator.

Input graphs & target algorithms. We use realistic graphs

from different domains with different edge counts to demon-

strate their impact on throughput and efficiency (See Table I).

The number of vertices supported is limited by the hardware

configuration, or 10,752 (256 VPUs in each of the 6× 7 PEs).

Extensions to this work could include stream graph processing.

We implement the VPUs to support the commonly used graph

processing algorithms listed in Table II. Each VPU is equipped

with functional units to support all of the selected algorithms.

2Previous work [15] has proposed in-flight reduction for server workloads.

TABLE II: Target algorithms: Page Rank (PR), Breadth First

Search (BFS), and Connected Components (CC).

Reduce Apply

PR[19] v.acc = v.acc+m.val v.val =
(α+(1−α)·v.acc)

v.degree

BFS v.acc = Min(v.acc,m.val) v.val = v.acc

CC v.acc = Min(v.acc,m.val) v.val = Min(v.acc, v.val)

TABLE III: Throughput and power efficiency of GraphWave.

This work tends to show higher performance and efficiency

for the graphs with larger average degree. All unused PEs and

VPUs in each graph are power gated for efficiency.

Input graph Edges/cycle GTEPS GTEPS/W

GT 13.17 2.63 1.36
WV 32.47 6.49 4.02
GY 33.97 6.79 4.99
SD 58.14 11.63 5.67
RE 488.99 97.80 63.94

V. EVALUATION

Performance and power efficiency. Table III shows the av-

erage number of edges per cycle, throughput, and efficiency for

GraphWave, which has an area of 91.88 mm2. It achieves 489

edges per cycle for the reality (RE) graph, which we configured

to use a subset of the accelerator, 30 PEs with 7,057 VPUs. This

configuration performs at 97.80 GTEPS with a power efficiency

of 63.94 GTEPS/W. The average throughput achieved for each

input graph dataset with their standard deviation is shown in

Figure 3a. The performance of the accelerator depends on the

size of an input graph. Bigger graphs tend to show higher

throughput as they have more edges to be traversed. In our

methodology, the messages are propagated in parallel, so that

the higher output edge degree can directly translate to higher

performance. This is different when compared to traditional

approaches in which a graph with a higher degree (e.g., RE in

Table. I) can exacerbate workload imbalance, data locality, and

communication overhead, reducing overall performance.

Figure 3b shows the maximum and average number of edges

computed over time on the reality (RE) graph in 100 cycle

windows. GraphWave attains a peak performance of 1,802

edges/cycle with an average performance of 489 edges/cycle.

Intra-PE multi-casting provides 36 times higher throughput

than unicast solutions, and the version without both intra-PE

and inter-PE has 39 times lower throughput than the version

that utilizes both. Intra-PE multi-casting and inter-PE multi-

casting using our mapping algorithm enables the accelerator

to achieve high performance throughout the run. Note that, at

the second half of the run, the throughput goes down as some

PEs finish collecting and emitting messages before others. This

is due to the synchronous nature of the vertex-centric graph

processing algorithm shown in Algorithm 1, that requires all

PEs to complete before moving to the next superstep.

Number of packets vs. number of edges. We introduce

inter-PE multicasting in order to achieve higher throughput

by reducing the congestion on the NoC. Figure 4 shows the

number of messages (number of edges) and the generated

packets that are delivered between PEs. It shows how well

GT WV GY SD RE0

100

200

300

400

500

600

700

800

Ed
ge
s/
cy
cle

(a) The number of edges per cy-
cle achieved for each input graph
dataset. The error bars show the
standard deviation of the runs.
The reality (RE) graph shows the
highest throughput compared to
other graphs.

0 5000 10000 15000 20000
Cycles

0

250

500

750

1000

1250

1500

1750

Ed
ge

s

489

1802

(b) Throughput over time in a sin-
gle superstep on the reality (RE)
graph. The red and black lines
represent the maximum and av-
erage values over time. The blue
and green horizontal lines repre-
sent the maximum and average
values of the superstep.

Fig. 3: Traversed edges per cycle.

9000
9100
9200
9300
9400
9500
9600

Packets

Edges

GT WV GY SD RE

Input graphs

0
100
200
300
400
500
600

T
h
o
u
sa

n
d
s

Fig. 4: Number of edges vs. number of packets, in thousands.

GraphWave scales with the number of edges. Specifically, in the

reality graph (RE), to send 9.4M messages, GraphWave sends

only around 200k packets, eliminating 97.87% of messages

from being transmitted on the NoC.

Power breakdown. Table IV illustrates the power break-

down of all the components in GraphWave based on the reality

(RE) graph. The accelerator consumes approximately 1.54 W

when 30 PEs and 7,057 VPUs are enabled. The unused PE and

VPUs are power gated to save power. The majority of the power

is consumed by the VPUs which represents 68.96 % of the total;

one-fifth of the power is taken by the SRAMs. The lowest and

highest power consumption are at 1.36 W and 2.05 W from the

grid-yeast and spam-detection graphs, respectively.

TABLE IV: GraphWave component power breakdown based

on the reality (RE) graph.

Power(mW)
Static Dynamic Total

Control Logic - 0.16 24.74 24.90 (1.62 %)
FIFO 5×30 0.12 42.86 42.98 (2.80 %)
Network - 0.21 120.86 121.07 (7.88 %)
SRAM Table 4×30 0.21 287.72 287.93 (18.74 %)
VPU 7057 20.71 1,039.09 1,059.80 (68.96 %)

Total - 21.41 1,515.27 1,536.68

TABLE V: Storage required for the input graphs. Internal

multi-casting, external multi-casting and total sizes are listed in

KB. The storage saving shows the percentage savings between

original and compressed size.

Graph Internal Multi. External Multi. Total Savings (%)

GT 146.34 187.11 333.45 1.23 %
WV 498.31 255.40 753.71 31.45 %
GY 1,521.56 687.04 2,208.60 23.84 %
SD 2,559.59 1,165.71 3,725.30 30.19 %
RE 5,402.21 1,576.91 6,979.13 83.93 %

TABLE VI: Scalability with large degree synthetic graphs.

|V | |E| Davg GTEPS # packets Storage savings

4k 0.04M 10 1.74 27,957 -25.69 %
4k 0.40M 100 8.33 59,548 37.95 %
4k 4.00M 1,000 83.80 60,000 93.80 %
4k 8.00M 2,000 166.61 60,000 96.82 %
4k 16.00M 3,999 337.01 60,000 98.41 %

Storage usage. In GraphWave, the routing information is

stored in the distributed routing tables. The proposed data

representation not only enables efficient message multicasting,

but it also saves storage by compressing the routing information

into masking bits. Table V shows the data compression rate

compared to the original graph size. The graphs with a high

number of edges gain more from this technique. For the reality

graph (RE) that has the largest number of edges, the technique

can compress the information to only one-fifth of the original

size. This high compression rate can be beneficial in larger scale

graphs. Specifically, when an input graph has more vertices

than the existing VPUs, we might have to stream the graph

information in and out dynamically. In that case, the graph

information streaming can be the bottleneck. By compressing

the graph information, we can shorten the streaming time.

Scalability with respect to the degree. In Table VI, the

scalability test results are shown on synthetic graphs generated

using SNAP [20]. As the average degree grows, the number

of packets becomes stable. In the worst case, in which each

vertex has to propagate its message to all existing PEs, the

maximum number of packets is limited by number of V PUs×

number of PEs, which is significantly smaller than the num-

ber of edges in large graphs. Furthermore, the storage taken

for the routing tables is limited for the same reason. Thus, the

compression rate goes up as the graph has more edges. It shows

that the proposed methodology is suitable for processing high

degree graphs efficiently.

VI. RELATED WORK

Due to the increasing importance and interest in graph

processing, various types of graph accelerators are presented

below. Table VII shows the summary of state-of-the-art graph

accelerators along with their performance and power efficiency.

ASIC based approaches. Graphicionado [4] adds an

eDRAM scratchpad which stores the randomly accessed data

to avoid long latency access to the main memory and save the

limited bandwidth. GraphPulse [5] introduces parallel dataflow-

style graph processing. When an update occurs, events are

generated and sent to destination vertices. To alleviate the

communication cost, the events that are heading to the same

destination are coalesced in-flight. The event coalescing is

done using an event queue that is searched and updated for

every new event, which takes most of the power in this

design. PolyGraph [6] points out the importance of flexibility in

graph processing and introduces their microarchitecture to offer

the flexibility in graph processing. While they achieve high

performance, their results fall below GraphWave because our

work supports both reductions and a higher level of parallelism.

PIM based vertex-centric approaches. The works [12],

[11], [10] utilize the Hybrid Memory Cube (HMC), which

TABLE VII: State of the art graph accelerators.

Throughput Power Efficiency Tech Arch.
(GTEPS) (W) (GTEPS/W) (nm)

GraphWave (this work) 97.8 1.5(1) 63.94 22 ASIC

PolyGraph [6] 60.0 2.3(2) 26.1 28 ASIC

GraphH [12] 350 29.1(3) 12.03(3) - HMC(7)

GraphPulse [5] 27.9(4) 8.9 3.13(4) 28 ASIC
HitGraph [21] 4.9 7.5 1.09 20 FPGA

Graphicionado [4] 4.5 7 (5) 0.64 <28 ASIC
ThunderGP [22] 6.5 43 0.15 16 FPGA

Tesseract [10] - 21.2 - - HMC(6)

GraphQ [11] - - - - HMC(7)

(1) A power range from 1.36 to 2.05 W is due to active PEs in use. Maximum efficiency
for RE input. (2) Excludes main memory energy. (3) Approximated power with density
(128.7 mW/mm2) times area of [10]. (4) Approximated, work [5] reports 6.2× speedup
from previous work [4]. (5) Excludes DRAM controller power. (6) HMC 1.0. (7) HMC 2.1.

provide high bandwidth and density for graph processing. By

equipping small processors inside the HMC, they can access

and update graph data more quickly in the memory compared

to other approaches using off-chip memories. In Tesseract [10],

a vertex-centric approach, the vertices send messages to each

other and update their values inside the HMC. In the HMC

vaults, an in-order core handles the computations for the nodes

and updates their values without reaching the processor out

of the HMC, reducing the distance between the data and the

computation components. GraphQ [11] shows higher through-

put by batching the inter-cube data transfers for more efficient

communication between cubes. GraphH [12] adds buffers in

HMC vaults to reduce random memory accesses and intro-

duces a load balancing algorithm. In GraphWave, the proposed

methodology makes the distance between computation and

storage components even closer by storing the vertices’ status

in the vertex processing units.

FPGA based edge-centric approaches. These techniques

utilize flexible hardware and its large memory bandwidth

to achieve high throughput. HitGraph [21] utilizes abundant

controllable on-chip memory and dense programmable logic

elements. It focuses on reducing global memory accesses by

buffering vertex information and combining updates in PEs be-

fore sending the updates to the global memory. ThunderGP [22]

pipelines the data propagation stage and the reduce stage so

that they can mitigate the communication overheads between

the stages. The updates are directly gathered in on-chip storage

and updated to the global memory in batches. In our pro-

posal, instead of increasing the memory bandwidth utilization,

GraphWave completely removes global memory accesses and

maximizes parallelism using efficient data propagation.

Software based vertex-processing. Pregel [14] is a fully

software-based approach with an API. The users can input

the graph and the behavior of each vertex for processing.

A SW-HW co-design BDFS-HATS [8] introduces BDFS that

determines the graph traversal order to improve the temporal

locality and a prefetcher called HATS to bring the data earlier

utilizing the temporal locality.

VII. CONCLUSION

In this paper, we propose GraphWave, a hardware/software

codesigned graph accelerator. We enable high performance

and efficiency through (1) a novel highly-parallel compute-

at-memory microarchitecture, (2) an on-chip, multi-level data

multicasting technique and (3) a network congestion avoidance

method to avoid NoC hotspots. This work scales with the

number of edges in the graph, which can be different from

traditional approaches where a large number of edges lead to

large communication overheads. GraphWave achieves one of

the highest levels of efficiency, achieving up to 63.94 GTEPS/W

with a throughput of 97.8 GTEPS.

ACKNOWLEDGEMENTS

This research is supported by the Singapore National Re-

search Foundation Award NRF2018NCR-NCR002 and Com-

petitive Research Programme Award NRF CRP23-2019-0003.

REFERENCES

[1] K. J. Burch, “Chapter 8 - chemical applications of graph theory,” in
Mathematical Physics in Theoretical Chemistry, 2019, pp. 261–294.

[2] G. George and S. M. Thampi, “A graph-based security framework for
securing industrial iot networks from vulnerability exploitations,” IEEE

Access, vol. 6, pp. 43 586–43 601, 2018.
[3] A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, and S. Muthukrishnan,

“One trillion edges: Graph processing at Facebook-scale,” VLDB, vol. 8,
no. 12, p. 1804–1815, Aug. 2015.

[4] T. J. Ham, L. Wu, N. Sundaram, N. Satish, and M. Martonosi, “Graphi-
cionado: A high-performance and energy-efficient accelerator for graph
analytics,” in MICRO, 2016.

[5] S. Rahman, N. Abu-Ghazaleh, and R. Gupta, “GraphPulse: An event-
driven hardware accelerator for asynchronous graph processing,” in
MICRO, 2020.

[6] V. Dadu, S. Liu, and T. Nowatzki, “PolyGraph: Exposing the value of
flexibility for graph processing accelerators,” in ISCA, 2021.

[7] A. Lumsdaine, D. Gregor, B. Hendrickson, and J. Berry, “Challenges in
parallel graph processing.” Parallel Processing Letters, vol. 17, pp. 5–20,
Mar. 2007.

[8] A. Mukkara, N. Beckmann, M. Abeydeera, X. Ma, and D. Sanchez,
“Exploiting locality in graph analytics through hardware-accelerated
traversal scheduling,” in MICRO, 2018.

[9] G. M. Slota and S. Rajamanickam, “Experimental design of work
chunking for graph algorithms on high bandwidth memory architectures,”
in IPDPS, 2018.

[10] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A scalable processing-
in-memory accelerator for parallel graph processing,” in ISCA, 2015.

[11] Y. Zhuo, C. Wang, M. Zhang, R. Wang, D. Niu, Y. Wang, and X. Qian,
“GraphQ: Scalable PIM-based graph processing,” in MICRO, 2019.

[12] G. Dai, T. Huang, Y. Chi, J. Zhao, G. Sun, Y. Liu, Y. Wang, Y. Xie, and
H. Yang, “GraphH: A processing-in-memory architecture for large-scale
graph processing,” TCAD, vol. 38, no. 4, pp. 640–653, 2019.

[13] M. Newman, “Power laws, pareto distributions and zipf’s law,” Contem-

porary Physics, vol. 46, no. 5, p. 323–351, 2005.
[14] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,

and G. Czajkowski, “Pregel: A system for large-scale graph processing,”
in SIGMOD, 2010.

[15] R. L. Graham, D. Bureddy, P. Lui, H. Rosenstock, G. Shainer, G. Bloch,
D. Goldenerg, M. Dubman, S. Kotchubievsky, V. Koushnir, L. Levi,
A. Margolin, T. Ronen, A. Shpiner, O. Wertheim, and E. Zahavi, “Scal-
able hierarchical aggregation protocol (SHArP): A hardware architecture
for efficient data reduction,” in COMHPC, 2016.

[16] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

[17] R. A. Rossi and N. K. Ahmed, “The network data repository with
interactive graph analytics and visualization,” in AAAI, 2015.

[18] H. Kwon and T. Krishna, “OpenSMART: Single-cycle multi-hop noc
generator in bsv and chisel,” in ISPASS, 2017.

[19] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web
search engine,” in WWW, 1998.

[20] J. Leskovec and R. Sosič, “SNAP: A general-purpose network analysis
and graph-mining library,” TIST, vol. 8, no. 1, p. 1, 2016.

[21] S. Zhou, R. Kannan, V. K. Prasanna, G. Seetharaman, and Q. Wu,
“HitGraph: High-throughput graph processing framework on FPGA,”
TPDS, vol. 30, no. 10, pp. 2249–2264, 2019.

[22] X. Chen, H. Tan, Y. Chen, B. He, W.-F. Wong, and D. Chen, “ThunderGP:
HLS-based graph processing framework on FPGAs,” in FPGA, 2021.

