
Chameleon: Dual Memory Replay for
Online Continual Learning on Edge Devices

Shivam Aggarwal*, Kuluhan Binici* †, Tulika Mitra*

∗School of Computing, National University of Singapore
†Institute for Infocomm Research, A*STAR, Singapore

{shivam, kuluhan, tulika}@comp.nus.edu.sg

Abstract—Once deployed on edge devices, a deep neural net-
work model should dynamically adapt to newly discovered envi-
ronments and personalize its utility for each user. The system must
be capable of continual learning, i.e., learning new information
from a temporal stream of data in situ without forgetting pre-
viously acquired knowledge. However, the prohibitive intricacies
of such a personalized continual learning framework stand at
odds with limited compute and storage on edge devices. Existing
continual learning methods rely on massive memory storage to
preserve the past data while learning from the incoming data
stream. We propose Chameleon, a hardware-friendly continual
learning framework for user-centric training with dual replay
buffers. The proposed strategy leverages the hierarchical memory
structure available on most edge devices, introducing a short-
term replay store in the on-chip memory and a long-term replay
store in the off-chip memory to acquire new information while
retaining past knowledge. Extensive experiments on two large-
scale continual learning benchmarks demonstrate the efficacy of
our proposed method, achieving better or comparable accuracy
than existing state-of-the-art techniques while reducing the mem-
ory footprint by roughly 16×. Our method achieves up to 7×
speedup and energy efficiency on edge devices such as ZCU102
FPGA, NVIDIA Jetson Nano and Google’s EdgeTPU. Our code
is available at https://github.com/ecolab-nus/Chameleon.

I. INTRODUCTION

Edge devices continuously interact with novel, unpredictable
environments. Real-world applications on edge devices such
as image recognition are driven by high variation, both in
terms of the number of observed instances per object and the
characteristics of these instances. In such circumstances, the
deployed model needs to adapt to new domains (such as under
different lighting, background, and environmental conditions,
also called domain-shift [1]) of already learned objects on the
fly, as illustrated in Figure 1. Therefore, it is imperative to
continuously learn and accustom to the dynamics of the data
distribution on-device and build user-specific models.

Fig. 1. Instances of same object under varying domains in CORe50 [2] dataset.

However, learning from such a time-varying data stream
is a non-trivial task. Conventional machine learning (ML)
algorithms perform well over fixed datasets with iterative
gradient-based methods [3]. Such methods usually loop over

Chameleon with 0.3
MB on-chip memory

On-chip memory
on EdgeTPU

On-chip memory on
embedded FPGA

Fig. 2. Accuracy comparison of different continual learning methods with
varying memory budgets on CORe50-NI [2] scenario. (best viewed in color)

the entire dataset multiple times, assuming the data is static
and available beforehand. These multi-epoch (joint) training
methods incur very high computational and memory costs,
making them unsuitable for edge devices.

For real-time applications, edge devices should ideally learn
from a small number of data instances at a time in a single
pass. The tight memory constraints on most edge devices do
not allow the deployed model to loop over the entire dataset
for multiple epochs like traditional machine learning. Moreover,
the model should acquire knowledge from the incoming data
stream without gradually losing the past information.

Online Continual Learning (CL) (also known as lifelong
learning) [4], [5] studies the problem of learning from an on-
line non-independent and identically distributed (non-iid) data
stream while dealing with the issue of catastrophic forgetting
(CF) [6], i.e., forgetting old information in the presence of more
recent information. Replay-based CL methods [7] are the most
popular and effective at mitigating CF. They store a subset of
incoming data samples in an external buffer and periodically
train (replay) the network with these previously seen instances.

Figure 2 shows the memory requirements for various meth-
ods incrementally learning images from the CORe50 dataset
[2] for different backgrounds and lighting conditions. As can
be seen, naive single-epoch (finetuning) training becomes im-
practical in practice with ∼15% accuracy. Such a method fails
to adapt to varying domains due to catastrophic forgetting.

On the other hand, memory requirements for replay-based
methods pose an additional burden on already constrained
on-chip storage available on edge devices [8]. For instance,

Google’s EdgeTPU [9] has only 8 MB of on-chip SRAM. The
state-of-the-art replay-based methods such as Experience Re-
play (ER) [10] and Dark Experience Replay (DER) [11] exhibit
dismal accuracy (< 65%) under limited memory budgets. They
perform better with increasing replay buffer sizes, but such
large memory requirements become infeasible on edge devices.

Moreover, the memory footprint of the model parameters
and activations leaves only a fraction of on-device memory
for replay. This, in turn, compels the system to store/retrieve
replay samples from the off-chip DRAM. However, the off-
chip DRAM accesses [12] are extremely power-hungry and
incur huge latency costs. Consequently, methods such as Latent
Replay [13] with slightly better accuracy under limited memory
budgets incurs up to 7x more latency and energy when deployed
on an embedded FPGA accelerator compared to our proposed
method, as discussed in Section IV-C. This naturally drives the
need for an optimal strategy to reduce the DRAM accesses and
effectively manage the replay buffer.

In this work, we propose Chameleon for low-latency,
energy-efficient continual learning to achieve two major ob-
jectives simultaneously: (i) overcoming the daunting issue of
catastrophic forgetting (ii) within the limited on-chip memory
available on embedded devices. Figure 2 shows the relative
advantage of Chameleon, achieving roughly 79.5% accuracy
with only 0.3 MB of on-chip memory outperforming other
state-of-the-art CL methods on the CORe50 dataset.

We formulate the continual learning problem on edge de-
vices from a user-centric view. Current CL approaches are
incognizant of the actual user preferences on edge devices. A
general machine learning pipeline trains a global model to be
accurate over a diverse range of classes to facilitate a wide
range of users. However, any individual user rarely accesses
all the classes at the same time, as studied by prior works [14].

We first introduce a dual-memory replay mechanism in-
corporating a short-term (ST) and a long-term (LT) buffer.
The novel replay framework allows us to take advantage
of the memory hierarchy on most hardware, comprising a
small on-chip memory with low energy cost and a large off-
chip memory with very high energy cost. To enable user-
aware model personalization, we maintain user-preferred class
instances in the on-chip memory while focusing on a holistic
snapshot of the entire class distribution in the off-chip storage.
Intuitively, to maximize the performance corresponding to user-
preferred classes, samples of user interest should be prioritized
and replayed more frequently. Hence, such instances should be
stored on-chip to be accessed regularly without affecting the
latency and energy cost.

For this purpose, we develop two sampling strategies that
carefully balance the trade-off between the uncertain and rep-
resentative instances from the incoming data stream. For the
short-term store, we introduce a sampling method based on user
affinity and uncertainty to quickly collect the most difficult-to-
learn samples, most of which belong to user-preferred classes.
Finally, for the long-term store, we propose a novel class-
prototype-based sampling scheme leveraging inter-class diver-
sity to retain the most meaningful information.

In summary, the main contributions of the work include:
• We propose Chameleon, a novel, accurate, low-latency,

user-preference aware continual learning approach for
resource-constrained edge devices.

• We propose dual-memory replay mechanism incorporat-
ing on-chip short-term and off-chip long-term buffer to
overcome catastrophic forgetting with limited memory.

• We propose a novel user-aware sampling strategy and
a class-prototype based acquisition scheme to carefully
select the most salient samples from the incoming stream.

• Extensive experiments validate the effectiveness of
Chameleon in terms of both training accuracy and hard-
ware efficiency on the CORe50 and OpenLORIS datasets.

II. RELATED WORK

There are three major continual learning techniques:
regularization techniques such as online Elastic Weight Con-
solidation (EWC++) [15] and Learning Without Forgetting
(LwF) [16] to constrain weight updates, architecture-based
techniques for dynamically growing network space, and replay-
based techniques for storing a representation of previously
learned knowledge with the new data, with a majority of them
restricted to cloud-centred training.

Replay-based (also known as rehearsal) methods offer the
most effective approach for continual learning on edge devices.
Early works such as ER [10] interleave new incoming data with
old, already seen data stored in a buffer to mitigate catastrophic
forgetting during continual learning. Gradient based Sample
Selection (GSS) [17] introduces a gradient direction based
sample selection strategy to optimally select the most relevant
replay instances. Other works such as DER [11] and PRE-
DFKD [18] leverage Knowledge Distillation [19], combining
replay with the distillation loss and achieving superior per-
formance over various other baselines. More recently, Latent
Replay [13] randomly stores feature maps from the middle
(latent) layers of the network in place of raw input images.
This helps them store more samples in the replay buffer within
the same memory budget. However, these works are agnostic of
the underlying memory hierarchy of the device, consuming up
to 50 MB or more of extra memory for replay. As discussed
before, such a large memory requirement cannot be satisfied
with limited on-chip storage on edge devices. To address this
shortcoming, building on top of Latent Replay, we introduce
dual-replay buffers, varying in two ways: capacity and access
frequency. The short-term memory is 10-15 times smaller
than the long-term memory and updated more frequently. We
allow the seamless acquisition of new information by replacing
short-term samples with new ones from the stream at every
iteration. Likewise, as the long-term samples are used to retain
cumulative information of all classes, they are updated less
frequently.

Other recent methods which do not fall under these three
techniques include SLDA [20], an online non-parametric clas-
sifier that can dynamically adapt to varying domain shifts.
However, the pseudo-inverse matrix operation in SLDA incurs
high computational costs, making it unsuitable for edge devices.

III. CHAMELEON FRAMEWORK

A. Problem Formulation

We consider the supervised image classification task with an
online non-i.i.d stream of incoming samples. We define a data
stream of unknown domains D = D1, . . . , Dd over d different
domains. Further,

⋂
Dd = ϕ, i.e., any two input domains Dd−1

and Dd are different. Let hψ : X → Y be the deep neural
network (DNN) model with parameters ψ. At each time step t,
the network hψ receives a mini-batch of samples Bt ∈ (Xt, Yt),
where Xt, Yt is the input-label pair of the incoming instance.
Formally, at any given time stamp tc, the goal is to correctly
classify all the previously encountered samples in addition to
the instances belonging to the current mini-batch, Btc with loss
function ℓ:

min
ψ

tc∑
t=1

E(Xt,Yt)∼Dt
[ℓ(hψ(Xt;ψ, Yt)] (1)

A naive machine learning algorithm would not be able to
remember previously learned information without any access to
old data, resulting in catastrophic forgetting. For this purpose,
we adopt a replay-based strategy to maintain previously seen
samples in a buffer to rehearse them with the incoming data
stream. Therefore, given the data stream D, the goal of our
continual learning framework is to maintain two replay buffers
Ms (on-chip) and Ml (off-chip) such that we can maximise
the accuracy corresponding to classes of interest within the
memory and compute capability of the device.

B. Method Overview

As shown in Figure 3, the method consists of a DNN coupled
with two-stage storage: (Ms, Ml) mimicking the on-chip/off-
chip memory subsystem on the underlying hardware. The DNN
model can be defined as g(f(·)) consisting of two nested
functions: f(·) is fixed and extracts higher-dimensional feature
representations (latent activations) of the inputs while g(·)
undergoes model training and maps latent activations to their
categorical classes. The two functions are parameterized by:
θ and ϕ, respectively. Our training algorithm performs only
single step forward and backward update for each data sample
keeping in mind the resource-constrained environment.

Time

Feature
extraction

Latent
Activation

Forward Pass/Data Flow

Gradient/Backward Pass

 (Short-Term Store)
Output Layer

Class 1

Class 2

Class 3

class

Fr
eq

.

Update Running
Statistics

Data
Stream

f𝝷

 1

Long-Term Memory
Update & Retrieval

(Section III.D)

gϕ

(X
t
,Y

t
)

Z
t

M
s

 (Long-Term Store)
Ml

Short-Term Memory
Update & Retrieval

(Section III.C)

Weight
Update

Output

Target

Cross-entropy loss

Memory Update
 2

 3

 5

 4

Fig. 3. Schematic illustration of the proposed Chameleon framework for
continual model personalization

As illustrated in Figure 3 and algorithm 1, given an incoming
batch of data Bt = (Xt, Yt), where time step t tends to
T , our framework processes samples in a five-step process.

The first step consist of user-preference estimation 1 . We
estimate user preferences on-device by tracking the frequency
of samples nc (Line 3) corresponding to each class. Specifically,
we identify the most frequently occurring k classes as user-
preferred classes. Since our learning scenario is agnostic of
the total number of samples to be seen across the stream,
the tracking mechanism re-calibrates the top k (= 5) classes
of interest captured in a predefined learning window. The re-
calibration process ensures that the tracking mechanism can
dynamically adapt to the changing user inclinations. The second
step (Line 4) extracts the intermediate feature map for the
incoming batch of data 2 .

In the next step, we train the network parameters gϕ with
the complete short-term memoryMs for each new data sample
3 . Furthermore, we periodically select a subset of elements

(Line 5-6) from the long-term store Ml and train the network
with the selected data instances. Concurrently, we update the
short-term memory (Line 10-12) using our proposed user-aware
uncertainty-guided sampling method in the following step 4 .
In the last and final step, we leverage latent feature maps stored
in the short-term store to update long-term memory (Line 14-
17) based on our class-prototype-based sampling scheme 5 .
We explain our memory update and retrieval strategies in more
detail next.

Algorithm 1 Chameleon: Online Training Algorithm

Input: Data Stream {Dt}Tt=1, neural network parameters fθ,
gϕ, learning rate η, short-term memory Ms, long-term
memory Ml, long-term memory access rate h

1: for t← 1 to T do
2: for batch Bt = (Xt, Yt) do
3: update running stats nc for each class c
4: Zt = fθ(Xt) ▷ feature extraction
5: sample m̂l from Ml every h cycles
6: Ẑt ← Zt ∪Ms ∪ m̂l

7: ϕ ← ϕ − η∇gϕ(Ẑt) ▷ weight update
8: randomly sample ms from Ms

9: select an element bt from Bt with Eq. 4
10: Ms ← replace(ms, bt) in Ms

11: end for
12: select mc

s from Ms with Eq. 6 every h cycles
13: randomly sample mc

l from Ml

14: Ml ← replace(mc
l ,m

c
s) in Ml

15: end for

C. Short-Term Memory Update & Retrieval

The objective of the short-term memory is to mitigate
catastrophic forgetting and build personalized models. For this
purpose, we leverage two major characteristics of the incoming
samples: user affinity and uncertainty as illustrated in Figure 4.
First, if the samples belong to different classes in the incoming
batch, then instances belonging to the user-preferred classes
will be given a priority. Secondly, if all or most samples belong
to the same set of classes, the ones that are either more difficult
to predict or newly discovered by the model will have a higher
chance of getting stored in the short-term memory.

Class 1

Class 2

Class 3

Class
Fr

eq
.

Class of
User-Interest

Frequency-based
sampling (Eq. 2)

Logit-distance based
sampling (Eq. 3)

Pseudo-decision
boundary

Point with the
least value of

logit score

Incoming batch of samples

Fig. 4. Overview of user-aware uncertainty sampling

1) Condition 1: In particular, for user-centric sampling, we
employ an allocation factor ∆k based on the running statistics
of the data instances as:

∆k =
nk

ρ

(nk + nN−k)ρ
(2)

where N is the total number of encountered classes, k refers to
the total number of classes of interest, ρ is a hyper-parameter
controlling the allocation factor and nk is the average running
frequency of classes of user-interest estimated during learning
window l.

This criteria ∆ upscales the ratio of the average number
of samples belonging to preferred classes w.r.t total class
instances. For ρ = 0, all classes are equally favorable, and
for ρ = 1, classes are assigned in proportion to their running
frequencies. In our experiments, ρ is chosen between 0 and 1
such that the data acquisition favors the classes of user-interest
and suppresses the interference caused by non-preferred class
instances. We update the value of the allocation factor after
each learning window (∼1500 images).

2) Condition 2: As we are learning in a streaming fashion,
not all samples would equally affect the model performance.
If some samples are more challenging to learn or previously
unseen by the model, it is essential to store and rehearse the
network with such instances to improve the overall robustness.
Generally, samples that are closer to the decision-boundary
fall under this purview. However, directly computing decision
boundaries for each sample is intractable and computationally
expensive. Instead, we leverage logit-values, i.e., the final
output response of the model as a measure of their pseudo-
distance from the decision boundary. To meet this objective,
we assign a score Ui for each element xi in the incoming
mini-batch Bt:

Ui =

N∑
c=1

|o(xi)cyc| (3)

where o(xi) refers to the network logit scores for each
element xi, y refers to the one-hot encoded output of the label
yi and N refers to the total number of classes. A low logit score
Ui indicates that the network is uncertain about these samples
and hence must be replayed again. In other words, samples
with high U−1

i value should be retained.
We define a discrete non-uniform probability distribution to

jointly select an element from the incoming mini-batch Bt
based on the above two conditions and randomly replace it
with a sample currently stored in the short-term store, where

pi ∝ α ·
∆i∑

yi∈k∆k +
∑
yi∈N−k(1−∆k)

+ β · U−1
i (4)

The weighted combination of ∆k and U−1
i (via hyperparam-

eters α and β) helps us cater to instances belonging to user-
interest more effectively and handle their relative complexities
in terms of model uncertainty.

D. Long-Term Memory Update & Retrieval

The goal of the long-term memory is to promote prolonged
and effective retention and improve overall model generaliz-
ability. To maintain a well-rounded representation of the past
and present incoming samples, preserving diverse and repre-
sentative samples from the stream is vital. For this purpose,
we introduce a class-balanced sampling technique storing an
equal number of samples for each class in the long-term store.
Inspired by [21], we propose to select contrastive samples based
on their distance from the class prototypes in the latent space
representation. We first define class prototypes for each class:

Pc =
1

Lc

Lc∑
l=1

Zl (5)

where Zl corresponds to the latent activation maps corre-
sponding to class c currently stored in the long-term memory
and Lc is the total number of such class instances in the long-
term memory. Here, the class prototypes roughly approximate
the center of mass in the latent space.

We hypothesize that if any two samples belong to the same
class (similarity) and their model predictions vary drastically
(diversity), then such samples should be more informative about
their respective class distribution in the latent space. To select
such samples, we formulate a computationally inexpensive
measure using Kullback-Leibler divergence (KL-divergence)
criteria to approximate the distance between a datapoint be-
longing to that class and the respective class prototype.

For each sample stj belonging to class c already stored in
the short-term store, we calculate:

Sj = tanh(KL(p(y|stj) ∥ p(y|Pc))) (6)

where p(y|stj)) refers to the softmax probabilities for each
element stj and p(y|Pc)) indicates the softmax probabilities
for class-prototypes Pc. A high Sj score indicates that the data
point disagrees in softmax probabilities against other points of
the same class already present in the long-term store. Thus, we
greedily select the sample with the maximum value of Sj score
and randomly replace it with other samples of the same class
already present in the long-term memory.

IV. EVALUATION

A. Experimental Methodology

Datasets. To evaluate our experiments in online contin-
ual streaming learning setup, we rely on two robotics-based
large-scale CL benchmarks: CORe50 [2] and OpenLORIS-
Object [22] datasets. The CORe50 dataset comprises 164,866
temporally-correlated video frames and a total of 50 classes,
collected under 11 different domains, where each domain is
characterized by distinct backgrounds and lighting, as shown
in Figure 1. The OpenLORIS-Object dataset is based on a
sequence of 12 different domains such as illumination, clutter,
and occlusion. Each domain consists of ∼14k training samples

and ∼2k test images of the same 69 classes. We evaluate the
two datasets in the Domain Incremental Learning (Domain-IL)
setting, where the task is to identify objects under different
domains from the training set incrementally.

Base Models & Hyperparameters. Considering the limited
computational resources available on the device, we pick a
hardware-friendly CNN, MobileNetV1 [23], pre-trained on the
ImageNet dataset for all our experiments. We use a small
batch size of 10, and a learning rate of 0.001 with the SGD
optimizer [3]. Each sample passes through the model only once.
We update short-term memory for every incoming batch while
long-term memory for every ten batches to maintain the on-
chip/off-chip memory access trade-off. The framework sweeps
through the complete short-term memory for each new sample
while following an iterative mini-batch concatenation scheme
for the long-term store. We experiment with the last few layers
as the latent layer to keep the training overhead minimal. Based
on the overall model accuracy, we choose layer 21 (out of 27
layers) of the MobileNetV1 as the latent layer.

Metrics. Following [11], we report final model accuracy,
Accall averaged over all classes at the end of model training
over all domains. Accall helps us quantify the generalizability
of the model. Additionally, we quantify the memory overhead
for each continual learning method. For the same number
of replay samples, different methods correspond to different
memory overhead. Further, we report latency and energy con-
sumption on various edge devices to validate the efficacy of
these methods on resource-constrained devices.

Baselines. For lower-bound on the average model accuracy,
we finetune the training part of the network with a single
epoch over the entire dataset without any replay buffer. For
upper-bound on the average model accuracy, the model is
jointly trained in a traditional machine learning paradigm
for 4 epochs. We compare Chameleon against several state-
of-the-art CL methods. We include two regularization-based
methods: EWC++ [15] and LwF [16]. We also compare our
method against SLDA [20], and adapt it for our object-level
classification task. Finally, we compare our method against
four single replay buffer based methods: GSS [17], ER [10],
DER [11], and Latent Replay [13] with varying replay buffer
sizes: 100, 200, 500, and 1500 samples to evaluate the memory-
efficiency and scalability of different methods. For our method,
we keep the size of short-term memory (Ms) constant at 10
samples while varying the size of long-term memory (Ml).

B. Accuracy versus Memory Trade-off

Table I compares Chameleon with state-of-the-art CL meth-
ods across varying replay buffer sizes averaged across ten runs.
Chameleon achieves the best accuracy on both OpenLORIS
and CORe50 datasets (closer to the upper bound) with only
0.3 MB of on-chip memory, demonstrating the effectiveness
of our memory update and retrieval strategies. Specifically, the
short-term store dynamically switches between different classes
of interest after each learning window. At the same time, the
long-term store maintains the most salient class instances from
previous domains uniformly, ensuring better results over other
baseline methods. With the increasing size of the long-term

TABLE I
COMPARISON OF CHAMELEON AND OTHER BASELINES ON THE

OPENLORIS AND CORE50 DATASET. WE REPORT THE MEAN AND
STANDARD DEVIATION ACROSS TEN RUNS.

Method Replay
Buffer Size

(# of Samples)

Memory
Overhead

(MB)

OpenLORIS

Accall(%)

CORe50

Accall(%)

JOINT − − 97.14± 0.24 81.48± 0.86
Finetuning 65.97± 10.18 16.86± 1.61
EWC++ [15]

−
13.0 61.89± 4.27 23.22± 2.19

LWF [16] 12.5 72.57± 1.21 27.91± 3.67
SLDA [20] 1.2 90.17± 0.44 77.20± 0.23

GSS [17]
100 48.8 91.20± 0.32 43.51± 3.85
200 53.6 92.00± 1.04 47.47± 1.42
500 68.0 91.99± 0.63 48.57± 1.96

1500 204.0 95.50± 0.38 53.19± 3.45

ER [10]
100 4.8 90.45± 0.58 32.61± 2.25
200 9.6 90.68± 0.84 36.07± 4.15
500 24.0 93.72± 0.19 62.31± 2.12

1500 72.0 95.50± 0.38 63.33± 2.20

DER [11]
100 4.9 90.33± 0.35 58.72± 2.64
200 9.8 92.12± 0.31 62.15± 2.34
500 24.5 94.37± 0.41 67.35± 3.14

1500 73.5 95.50± 0.38 68.73± 0.53

Latent Replay [13]
100 3.2 90.57± 0.46 71.89± 1.23
200 6.4 92.32± 0.19 72.87± 0.14
500 16.0 94.89± 0.54 75.43± 0.56

1500 48.0 95.50± 0.38 79.07± 0.16

Chameleon (ours)
(Ms = Short-term memory
Ml = Long-term memory)

Ms=10, Ml=100 Ms=0.3, Ml=3.2 96.10± 0.12 79.48± 0.99
Ms=10, Ml=200 Ms=0.3, Ml=6.4 96.43± 0.47 79.56± 0.17
Ms=10, Ml=500 Ms=0.3, Ml=16 96.70± 0.62 79.86± 0.31
Ms=10, Ml=1500 Ms=0.3, Ml=48.0 97.10± 0.24 79.92± 0.12

TABLE II
PERFORMANCE COMPARISON OF CHAMELEON ON EDGE DEVICES.

Method Memory
Overhead (MB)

Accall
(%)

Jetson Nano ZC102 FPGA EdgeTPU

Latency
(ms)

Energy
(J)

Latency
(ms)

Energy
(J)

Latency
(ms)

Latent Replay 48.0 79.07± 0.16 115 1.14 2788 8.62 -
SLDA 1.2 77.20± 0.23 69 0.68 - - 554
Chameleon Ms=0.3, Ml=3.2 79.48± 0.99 33 0.31 413 1.22 47

store, we observe marginal improvement in the model accuracy
since the performance is already at par with the upper bound
even at small buffer size.

Overall, all methods perform better on the OpenLORIS
dataset than the CORe50 dataset, primarily due to more
training samples and smoother transitions between consecutive
domains in the OpenLORIS dataset. On both datasets, the
dismal accuracy of EWC++ and LwF is primarily attributed to
gradient explosion on previous domains, leading to catastrophic
forgetting. Interestingly, SLDA achieves comparable average
model accuracy with limited memory utilization.

For replay-based methods, GSS seems less effective due to
the sub-optimal selection strategy on previous domains, despite
having a much larger memory footprint. GSS stores gradient
direction vectors for each element in the buffer, resulting in up
to 10x more memory overhead for the same number of replay
samples. Methods like ER and DER fail to perform under tight
memory constraints (≤ 200 replay samples), as also shown in
Figure 1. Both methods store original input images and output
responses for each element in the buffer, incurring huge space
overhead. In comparison, both Latent Replay and Chameleon
store only intermediate activations in the replay buffer, leading
to substantial memory savings. However, Chameleon demon-
strates a much better trade-off, outperforming Latent Replay by
up to ∼7-8% in accuracy, especially across smaller memory
budgets. Note that Chameleon also has significantly lower
processing latency and energy needs in comparison to both
Latent Replay and SLDA, as we see in Section IV-C, showing
a clear advantage for online, on-device continual learning.

C. Latency and Energy on Edge devices

As Latent Replay and SLDA are the closest to Chameleon in
terms of accuracy, we further investigate these three methods
for latency and energy on edge devices.

Jetson Nano GPU Results. Table II shows latency and
energy per image for Chameleon, SLDA, and Latent Replay.
We observe up to 2.1× and 3.5× speedup for Chameleon
compared to SLDA and Latent Replay, respectively. Similar to
Chameleon, SLDA also processes the input in a single pass;
however, it still incurs huge latency and energy costs as it
requires a pseudo-matrix inverse operation for each image.
Note that while we could not take advantage of the on-chip L2
Cache on the GPU, our proposed framework still outperforms
the other two baselines, establishing the effectiveness of our
sample selection strategies.

EdgeTPU Results. We evaluate Chameleon and SLDA
on custom TPU-like edge accelerator. We utilize uSystolic-
Sim [24], a cycle-accurate simulator to deploy our proposed
algorithm with (64,64) PE array, 8 MB of on-chip memory, and
400 MHz clock frequency. We leverage Block Floating Point
(BFP) datatype to compute the forward and backward pass.
SLDA requires a matrix pseudo-inverse operation for updating
the covariance matrix in the final output computation. As shown
in Table II, our method achieves roughly 11.7× speedup over
SLDA in terms of latency per input image. This is due to
O(N3) complexity of the matrix inverse operation.

FPGA Results. We implement a CNN training accelerator
from scratch using Xilinx Vitis software on the Zynq Ultra-
Scale+ MPSoC ZCU102 evaluation kit. The exported RTL is
synthesized and implemented using Vivado 2021.2 and reaches
150 MHz clock frequency. Additionally, 16-bit floating-point
numbers are used for the accelerator to estimate the compute
and communication cost of continual learning correctly. Table
III shows FPGA resource usage of Chameleon. As SLDA
requires complex processing, it is challenging to implement on
FPGA. Therefore, we implement only Chameleon and Latent
Replay on FPGA to comprehensively analyze the relative
advantage of our hierarchical replay buffers in comparison to
Latent Replay with a single replay buffer.

TABLE III
RESOURCE UTILIZATION FOR CHAMELEON

DSP BRAM LUTs
Available 2520 656 233707
Utilized 1164 632 169428
Percentage (%) 46.19 96.34 72.50

Table II shows roughly 6.75× latency and 7× energy effi-
ciency of Chameleon against Latent Replay when trained with a
batch size of one and ten replay elements per incoming input.
Latent Replay maintains a unified replay buffer too large to
be stored in the on-chip memory. In contrast, we effectively
leverage on-chip memory due to our proposed hierarchical
buffer and sampling policies, leading to superior performance.
The cost of compute and data movement for weights remains
the same for both methods. However, Latent Replay spends
44% of overall latency in data movement of latent activations
(load and store ten latent activations for each new sample) from
the off-chip buffer. Hence, we achieve significant improvement
in latency and energy due to the smaller on-chip memory
footprint and reduced off-chip memory accesses.

V. CONCLUSION

We propose Chameleon, a resource-efficient personalized
continual learning framework. Chameleon maintains decoupled
replay buffers - short-term and long-term stores complementary
to the on-chip and off-chip memory interface. The framework
introduces two novel sampling strategies taking into account
user preferences and uncertainty-diversity-induced measures to
rehearse previously seen samples from memory at different
rates. Our evaluations show Chameleon accomplishes over
7 − 8% better accuracy with 16× less memory, 6.75× less
latency, and 7× less energy compared to the state-of-the-art
methods.

VI. ACKNOWLEDGMENT

This work is partially supported by the National Research
Foundation, Singapore under its Competitive Research Pro-
gramme Award NRF-CRP23-2019-0003 and Singapore Min-
istry of Education Academic Research Fund T1 251RES1905.
We thank Dhananjaya Wijerathne (NUS) and Zhaoying Li
(NUS) for their valuable comments.

REFERENCES

[1] H. Shimodaira, “Improving predictive inference under covariate shift by
weighting the log-likelihood function,” J. Stat. Plan. Inference, 2000.

[2] V. Lomonaco et al., “Core50: a new dataset and benchmark for continuous
object recognition,” in CoRL, 2017.

[3] S. Ruder, “An overview of gradient descent optimization algorithms,”
arXiv, 2016.

[4] Z. Mai et al., “Online continual learning in image classification: An
empirical survey,” Neurocomputing, 2022.

[5] G. I. Parisi et al., “Continual lifelong learning with neural networks: A
review,” Neural Networks, 2019.

[6] I. J. Goodfellow et al., “An empirical investigation of catastrophic
forgeting in gradient based neural networks,” in ICLR, 2014.

[7] T. L. Hayes et al., “Replay in Deep Learning: Current Approaches and
Missing Biological Elements,” Neural Computation, 2021.

[8] Y. Zhang et al., “Power-performance characterization of tinyml systems,”
in ICCD, 2022.

[9] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor
processing unit,” in ISCA, 2017.

[10] A. Chaudhry et al., “Continual learning with tiny episodic memories,”
ArXiv, 2019.

[11] P. Buzzega et al., “Dark experience for general continual learning: a
strong, simple baseline,” in NeurIPS, 2020.

[12] M. Horowitz, “Energy table for 45nm process,” in Stanford VLSI wiki.
[13] L. Pellegrini et al., “Latent replay for real-time continual learning,” in

IROS, 2020.
[14] T. Shibuya et al., “Captor: A class adaptive filter pruning framework for

convolutional neural networks in mobile applications,” ASP-DAC, 2019.
[15] A. Chaudhry et al., “Riemannian walk for incremental learning: Under-

standing forgetting and intransigence,” Lect. Notes Comput. Sci., 2018.
[16] Z. Li et al., “Learning without forgetting,” IEEE TPAMI, 2018.
[17] R. Aljundi et al., “Gradient based sample selection for online continual

learning,” in NeurIPS, 2019.
[18] K. Binici et al., “Robust and resource-efficient data-free knowledge

distillation by generative pseudo replay,” AAAI, 2022.
[19] G. Hinton et al., “Distilling the knowledge in a neural network,” 2015.
[20] T. L. Hayes et al., “Lifelong machine learning with deep streaming linear

discriminant analysis,” CVPRW, 2020.
[21] K. Margatina et al., “Active learning by acquiring contrastive examples,”

in EMNLP, 2021.
[22] Q. She et al., “OpenLORIS-Object: A robotic vision dataset and bench-

mark for lifelong deep learning,” in ICRA, 2020.
[23] A. G. Howard et al., “Mobilenets: Efficient convolutional neural networks

for mobile vision applications,” ArXiv, 2017.
[24] D. Wu et al., “uSystolic: Byte-Crawling Unary Systolic Array,” in HPCA,

2022.

