
A Novel Online Hardware Task Scheduling and
Placement Algorithm for 3D Partially

Reconfigurable FPGAs
Thomas Marconi, Tulika Mitra

School of Computing
National University of Singapore
{marconi,tulika}@comp.nus.edu.sg

Abstract—The recent emergence of 3D partially reconfigurable
FPGAs implies that we need efficient online hardware task
scheduling and placement algorithms for such architectures.
However, the algorithms available in the literature for 3D FPGAs
create a “blocking-effect”. That is, these algorithms tend to
make a wrong decision in finding a location of each arriving
hardware task during runtime scheduling and placement on 3D
partially reconfigurable FPGAs. This leads to currently scheduled
tasks blocking future hardware tasks from being scheduled and
satisfying their deadlines. We need to solve this problem to
maximize the performance of partially reconfigurable runtime
systems implemented using 3D chip technology. We propose a
novel placement and scheduling algorithm with a blocking-aware
heuristic to make better decisions at runtime. Based on evaluation
using both synthetic and real workloads, our algorithm reduces
deadline miss rate by 61% with 15% longer runtime overhead
compared to state-of-the-art algorithms.

I. INTRODUCTION AND RELATED WORK

Recently we are witnessing the emergence of 3D FPGAs.
Some of benefits of exploring 3D FPGAs compared to 2D
FPGAs are reductions in wire-length[1], delay[1][2][3], chan-
nel width[2], power dissipation[2][3], energy consumption[1],
and an increase in logic density[3]. However, online task
scheduling and placement algorithms for 3D FPGAs have not
been well explored in literature. The only algorithm we are
aware of targeting 3D FPGAs is presented in [4]; whereas
other existing work only target 2D FPGAs (e.g. [5], [6], [7]).

The algorithms presented in [4] perform compaction in
spatial and temporal domain. However, these algorithms do not
have so called blocking awareness. That is, these algorithms
schedule and place hardware tasks in a way that the currently
placed tasks may block future tasks to be scheduled. As a
result, many tasks miss their deadlines. We call this issue as
“blocking-effect”. To solve this issue, we propose an efficient
algorithm with an awareness to avoid this effect.

The main contributions of this paper are:
• The first efficient blocking-aware online hardware task

scheduling and placement algorithm targeting 3D par-
tially reconfigurable FPGAs;

• An extensive evaluation using both synthetic and real
hardware tasks implemented on 3D FPGA.

The rest of the paper is organized as follows. In Section
II, we introduce the problem of online task scheduling and
placement targeting 3D partially reconfigurable FPGAs. Our
proposed algorithm is presented in Section III. The algorithm
is evaluated in Section IV. Finally, we conclude in Section V.

II. PROBLEM DEFINITION

A 3D FPGA, denoted by FPGA (W,H, TH) contains
W ×H×TH reconfigurable hardware units arranged in a 3D
array, where each element of the array can be connected with
other element(s) using the FPGA interconnection network. The
reconfigurable unit located in ith position in the first coordi-
nate (x), jth position in the second coordinate (y) and kth

position in the third coordinate (z) is identified by coordinate
(i, j, k), counted from the lower-leftmost coordinate (1,1,1),
where 1 ≤ i ≤ W , 1 ≤ j ≤ H , and 1 ≤ k ≤ TH .

A hardware task is denoted by T (a,w, h, th, lt, d). The task
arrives to the system at time a and requires a region of size
w×h× th in the 3D FPGA (W,H, TH) during its lifetime lt.
We define lt = rt+et where rt is the reconfiguration time and
et is the execution time of the task. w, h, and th are the task
width, height, and thickness respectively where 1 ≤ w ≤ W ,
1 ≤ h ≤ H , 1 ≤ th ≤ TH . d is the deadline of the task.

Online task scheduling and placement algorithms targeting
3D FPGAs have to find a region of hardware resources inside
the FPGA for running each arriving task. When there are
no available resources for allocating the hardware task at its
arrival time a, the algorithm has to schedule the task for future
execution. In this case, the algorithm needs to find the starting
time ts and the free region (with lower-leftmost and upper-
rightmost corners (x1, y1, z1) and (x2, y2, z2), respectively)
for executing the task in the future. The running or sched-
uled task is denoted as T (x1, y1, z1, x2, y2, z2, ts, tf) where
tf = ts + lt is the finishing time of the task. The hardware
task meets its deadline if tf ≤ d. We call the lower-leftmost
corner of a task as the origin of that task.

The goals of any scheduling and placement algorithm are
to minimize the total number of hardware tasks that miss their
deadlines and to keep the runtime overhead low by minimizing
algorithm execution time. We define the deadline miss ratio

978-1-4577-1740-6/11/$26.00 c⃝ 2011 IEEE

as the ratio between the total number of hardware tasks that
miss their deadlines and the total number of hardware tasks
arriving to the system. The algorithm execution time is the
time needed to schedule and place the arriving task.

III. PROPOSED ALGORITHM

A. Motivational Example

We first present a simple example to explain the idea behind
our proposed blocking-aware algorithm. Let us assume that we
have a task set as shown in Table I. Blocking-unaware algo-
rithms do not have the ability to avoid choosing placements
for current arriving tasks that will become obstacles for future
arriving tasks to be scheduled earlier. As a result, the future
arriving tasks will miss their deadlines. In this simple example,
task T3 prevents task T4 to be scheduled earlier. The penalty
for this wrong placement decision of T3 is that the task T4

misses its deadline as shown in Figure 1(a).
To solve this problem, we introduce an algorithm that has

awareness to avoid placements that will be obstacles for future
tasks. This can be done for this example by placing task T3 to
a different location as shown in Figure 1(b). Because of this
better decision, the blocking-aware algorithm can avoid task
T3 from being an encumbrance for task T4 to be started earlier.
By scheduling T4 earlier, task T4 now can finish execution
earlier to satisfy its deadline constraint.

To equip the algorithm with the necessary knowledge to
avoid the “blocking-effect”, the algorithm places an arriving
task at a location that hides it inside the previously scheduled
tasks as much as possible. To discuss this idea more concretely,
let us introduce some definitions here. A task Ti is called a
previous scheduled task PST (next scheduled task NST) of
task Tj if task Tj (Ti) starts execution right after task Ti

(Tj) finishes. In this example, task T2 is a previous scheduled
task of task T3. The idea behind our proposed algorithm is to
choose a position for an arriving task that overlaps as much as
possible with its PSTs and NSTs. We quantify this overlap as
hiding value later in our discussion. In this example, we can
see that the placement for task T3 in Figure 1(b) has a higher
hiding value than its placement in Figure 1(a).

TABLE I
AN EXAMPLE OF TASK SET

Ti ai wi hi thi lti di
T1 1 6 10 10 10 12
T2 1 4 10 10 20 24
T3 2 8 10 10 10 32
T4 3 2 10 10 25 40

B. Acceptable Region inside FPGA

To equip our algorithm with an ability to avoid placing
tasks outside the FPGA, we give it an awareness of acceptable
region. The acceptable region inside FPGA (W,H, TH) with
respect to an arriving hardware task AT (a,w, h, th, lt, d) is
a region where the algorithm can place the origin of the
arriving task AT without exceeding the FPGA boundary. The
acceptable region has the lower-leftmost and upper-rightmost

T1(1,1,1,6,10,10,1,11)->meet deadline

T2(7,1,1,10,10,10,1,21)->meet deadline

T3(3,1,1,10,10,10,21,31)->meet deadline

T4(1,1,1,2,10,10,11,36)->meet deadline

T1(1,1,1,6,10,10,1,11)->meet deadline

T2(7,1,1,10,10,10,1,21)->meet deadline

T3(1,1,1,8,10,10,21,31)->meet deadline

T4(9,1,1,10,10,10,21,46)->miss deadline

(a) Blocking-unaware algorithms (b) Blocking-aware algorithms

(1,1,1)

(10,10,10)(6,10,10)

(7,1,1)

(8,10,10)

(9,1,1) (1,1,1)

(10,10,10)(6,10,10)

(7,1,1)

(2,10,10)

(3,1,1)

Fig. 1. Scheduling and placement of task set in Table I by blocking-unaware
algorithm versus blocking-aware algorithm.

corners of (1, 1, 1) and (W −w+1,H−h+1, TH− th+1),
respectively. This information is also needed by the algorithm
to limit its search region in finding the best position for each
arriving task so as to lower the runtime overhead.

C. Conflicting Region with Scheduled Tasks

To avoid our algorithm placing tasks that can conflict
with other tasks, we give it an awareness of conflict-
ing region. The conflicting region of an arriving hardware
task AT (a,w, h, th, lt, d) with respect to a scheduled task
ST (x1, y1, z1, x2, y2, z2, ts, tf) is the region where the algo-
rithm cannot place the origin of the arriving task AT without
conflicting with the corresponding scheduled task ST . The
conflicting region is defined as the region with its lower-
leftmost and upper-rightmost corners at (max(1, x1 − w +
1),max(1, y1−h+1),max(1, z1−th+1)) and (min(x2,W−
w+ 1),min(y2,H − h+ 1),min(z2, TH − th+ 1)), respec-
tively. The algorithm exploits this information to lower the
runtime overhead further.

D. Compaction Value

We attempt to reserve as much free region as possible in
the middle of the FPGA to better accommodate future tasks.
Hence the algorithm spreads hardware tasks close to the FPGA
boundary. To quantize this choice, we introduce compaction
value with FPGA boundary (CVFPGA) as illustrated in Figure
2. In this simple example, the arriving task AT at position
(1,1,1) has three common surfaces with FPGA boundary, i.e.,
left, bottom, and front surfaces. Therefore, the compaction
value with FPGA boundary is the sum of these common
surfaces which can be formulated as CVFPGA = (w × h +
w × th + h × th) × lt. As there are a lot of positions where
the arriving task AT can be placed in the FPGA, we need to
provide a general formula as formulated in Table II.

To place each arriving task close to other scheduled tasks
both in three-dimensional coordinates (compaction in 3D

TABLE II
COMPUTATIONS OF COMPACTION VALUE WITH FPGA BOUNDARY (CVFPGA)

Conditions CVFPGA

x = 1, y = 1, z = 1 (w ∗ h + w ∗ th + h ∗ th) ∗ lt
x = 1, y + h − 1 = H, z = 1 (w ∗ h + w ∗ th + h ∗ th) ∗ lt

x + w − 1 = W, y + h − 1 = H, z = 1 (w ∗ h + w ∗ th + h ∗ th) ∗ lt
x + w − 1 = W, y = 1, z = 1 (w ∗ h + w ∗ th + h ∗ th) ∗ lt

x = 1, y > 1, y + h − 1 < H, z = 1 (w ∗ h + h ∗ th) ∗ lt
x > 1, x + w − 1 < W, y + h − 1 = H, z = 1 (w ∗ h + w ∗ th) ∗ lt
x + w − 1 = W, y > 1, y + h − 1 < H, z = 1 (w ∗ h + h ∗ th) ∗ lt

x > 1, x + w − 1 < W, y = 1, z = 1 (w ∗ h + w ∗ th) ∗ lt
x > 1, x + w − 1 < W, y > 1, y + h − 1 < H, z = 1 (w ∗ h) ∗ lt

x = 1, y = 1, z + th − 1 = TH (w ∗ h + w ∗ th + h ∗ th) ∗ lt
x = 1, y + h − 1 = H, z + th − 1 = TH (w ∗ h + w ∗ th + h ∗ th) ∗ lt

x + w − 1 = W, y + h − 1 = H, z + th − 1 = TH (w ∗ h + w ∗ th + h ∗ th) ∗ lt
x + w − 1 = W, y = 1, z + th − 1 = TH (w ∗ h + w ∗ th + h ∗ th) ∗ lt

x = 1, y > 1, y + h − 1 < H, z + th − 1 = TH (w ∗ h + h ∗ th) ∗ lt
x > 1, x + w − 1 < W, y + h − 1 = H, z + th − 1 = TH (w ∗ h + w ∗ th) ∗ lt
x + w − 1 = W, y > 1, y + h − 1 < H, z + th − 1 = TH (w ∗ h + h ∗ th) ∗ lt

x > 1, x + w − 1 < W, y = 1, z + th − 1 = TH (w ∗ h + w ∗ th) ∗ lt
x > 1, x + w − 1 < W, y > 1, y + h − 1 < H, z + th − 1 = TH (w ∗ h) ∗ lt

x = 1, y = 1, z > 1, z + th − 1 < TH (w ∗ th + h ∗ th) ∗ lt
x = 1, y > 1, y + h − 1 < H, z > 1, z + th − 1 < TH (h ∗ th) ∗ lt

x = 1, y + h − 1 = H, z > 1, z + th − 1 < TH (w ∗ th + h ∗ th) ∗ lt
x + w − 1 = W, y = 1, z > 1, z + th − 1 < TH (w ∗ th + h ∗ th) ∗ lt

x + w − 1 = W, y > 1, y + h − 1 < H, z > 1, z + th − 1 < TH (h ∗ th) ∗ lt
x + w − 1 = W, y + h − 1) = H, z > 1, z + th − 1 < TH (w ∗ th + h ∗ th) ∗ lt
x > 1, x + w − 1 < W, y = 1, z > 1, z + th − 1 < TH (w ∗ th) ∗ lt

x > 1, x + w − 1 < W, y + h − 1 = H, z > 1, z + th − 1 < TH (w ∗ th) ∗ lt

(1,1,1)

AT(a,w,h,th,lt,d)

FPGA(W,H,TH)

w

h

th

W
H

TH
CVFPGA=(w*h+w*th+h*th)*lt

Fig. 2. An example of compaction value with FPGA(W, H, TH) boundary
for an arriving task AT (a,w, h, th, lt, d) at position (1,1,1)

space) and in time coordinate (compaction in time), in addition
to the compaction value with FPGA boundary, the proposed
algorithm also computes a quantity called compaction value
with scheduled tasks (CVST). A simple example of how to
compute this value is shown in Figure 3. In this example,
the overlapped area between the bottom side of the arriving
task AT and the top side of the scheduled task ST is the
compaction value with respect to that scheduled task. As
a result, CVST can be computed in this case as CVST =
(x + w − x1) × (y + h − y1) × min(lt, ((tf − ts)). As
our algorithm needs to compact tasks not only in the three-
dimensional domain but also in the time domain, the term
min(lt, ((tf−ts)) is added in this computation. The placement
position of AT can be in any free region of FPGA. So there
are a number of ways in which AT can overlap with ST
and we need a general formula to compute those values as
presented in Table III. The sum of the compaction value with
FPGA boundary and the compaction value with scheduled

tasks is called as total compaction value and is formulated as
CV = CVFPGA+CVST (1). This value guides our algorithm
to place tasks as compactly as possible in four dimensions (x,
y, z, and time coordinates).

(x,y,z)

(x1,y1,z2)

(x1,y1,z1)

(x2,y2,z2)

(x+w-1,y+h-1,z)

AT(a,w,h,th,lt,d)

ST(x1,y1,z1,x2,y2,z2,ts,tf)

CVST=(x+w-x1)(y+h-y1)*Min(lt,(tf-ts))

Fig. 3. An example of compaction value for an arriving task
AT (a,w, h, th, lt, d) at position z = z2 + 1 with respect to scheduled task
ST (x1, y1, z1, x2, y2, z2, ts, tf)

E. Hiding Value

In addition to the above compaction, the proposed algorithm
is also instrumented with an ability to maximize the hiding
value as mentioned previously. The simple example of how
to compute the hiding value is illustrated in Figure 4. In this
figure, the volume of the region with the upper-leftmost corner
(x1, y1, z2) and the lower-rightmost corner (x+w−1, y+h−
1, z) is the hiding value that we are looking for. Therefore,
the HV for this position can be formulated as HV = (x +
w − x1) × (y + h − y1) × (z2 − z + 1). We introduce the
general formula for computing HV for any possible condition
as HV = max(min(x + w − 1, x2) −max(x, x1) + 1, 0) ×

TABLE III
COMPUTATIONS OF COMPACTION VALUE WITH SCHEDULED TASK(CVST)

Conditions CVST

z = z2 + 1 Max(Min(x + w − 1, x2) − Max(x, x1) + 1, 0) ∗ Max(Min(y + h − 1, y2) − Max(y, y1) + 1, 0) ∗ Min(lt, (tf − ts))
z1 = z + th Max(Min(x + w − 1, x2) − Max(x, x1) + 1, 0) ∗ Max(Min(y + h − 1, y2) − Max(y, y1) + 1, 0) ∗ Min(lt, (tf − ts))
y = y2 + 1 Max(Min(x + w − 1, x2) − Max(x, x1) + 1, 0) ∗ Max(Min(z + th − 1, z2) − Max(z, z1) + 1, 0) ∗ Min(lt, (tf − ts))
y1 = y + h Max(Min(x + w − 1, x2) − Max(x, x1) + 1, 0) ∗ Max(Min(z + th − 1, z2) − Max(z, z1) + 1, 0) ∗ Min(lt, (tf − ts))
x = x2 + 1 Max(Min(y + h − 1, y2) − Max(y, y1) + 1, 0) ∗ Max(Min(z + th − 1, z2) − Max(z, z1) + 1, 0) ∗ Min(lt, (tf − ts))
x1 = x + w Max(Min(y + h − 1, y2) − Max(y, y1) + 1, 0) ∗ Max(Min(z + th − 1, z2) − Max(z, z1) + 1, 0) ∗ Min(lt, (tf − ts))

max(min(y+h−1, y2)−max(y, y1)+1, 0)×max(min(z+
th− 1, z2)−max(z, z1) + 1, 0) (2).

(x,y,z)

(x1,y1,z2)

(x1,y1,z1)

(x2,y2,z2)

(x+w-1,y+h-1,z)

AT(a,w,h,th,lt,d)

PST/NST(x1,y1,z1,x2,y2,z2,ts,tf)

HV=(x+w-x1)(y+h-y1)(z2-z+1)

Fig. 4. An example of hiding value with previous or next sched-
uled task PST/NST (x1, y1, z1, x2, y2, z2, ts, tf) for an arriving task
AT (a,w, h, th, lt, d)

F. Pseudocode and Analysis

The pseudocode of our blocking-aware algorithm, called
4D Compaction (4DC), is shown in Algorithm 1. Two linked
lists (the execution list (EL) and the reservation list (RL)) are
maintained. The EL records the information of all currently
running hardware tasks sorted in order of increasing finish
times; whereas the RL contains the information of all sched-
uled tasks sorted in order of increasing starting times. The
information stored in the lists are the lower-leftmost corner
coordinate (x1, y1, z1), the upper-rightmost corner coordinate
(x2, y2, z2), the starting time ts, the finishing time tf , the task
name, the next pointer, and the previous pointer.

In lines 1-29, the algorithm computes the 3D starting time
matrix STM(x, y, z) for the arriving task volume w×h× th
inside the FPGA volume W ×H × TH . This matrix records
the earliest starting time for each potential position of the
corresponding arriving task. The algorithm collects all possible
positions that have enough space for the arriving task by
scanning the EL and RL. The algorithm fills each element of
the STM with the arrival time of incoming task a (lines 1-7).
As shown, the algorithm only needs to create the STM matrix
for acceptable region as presented previously to minimize
runtime overhead. The algorithm updates groups of elements
that are affected by all executing tasks in the EL (lines 8-18)
and by all scheduled tasks in RL (lines 19-29). The algorithm
only needs to update the affected elements limited by the
conflicting region as defined before to reduce runtime overhead
further.

In line 30, the algorithm collects all best positions (candi-
dates) that have the earliest starting time (best starting time
positions: best positions in terms of starting time) from the
STM. Since the algorithm is not only designed to choose the
best position for each arriving task in terms of starting time
(time domain) but also the best position in terms of space
(space domain), it needs to pack tasks compactly further. The
algorithm computes the compact value CV (line 32) using
formulas in Table II, Table III, and equation (1) and the
algorithm chooses the best position from all the best starting
time positions. For reducing runtime overhead further, the
algorithm does not need to compute the compaction value for
all positions, it only computes the compaction value for the
best positions (candidates) (line 31). Intuitively, the highest
compaction value gives the best position in terms of packing
tasks in four dimensions as shown previously.

Besides the compaction value, the algorithm also uses
the sum of finish time difference (SFTD) heuristic for all
scheduled tasks that contacted in three-dimensional space with
the arriving task (referred as VC set). The algorithm computes
current SFTD (c SFTD =

∑
∀tasks∈V C

|ts + lt − tf |) in line

33. The SFTD heuristic gives our algorithm an ability to
group tasks with similar finish times to get large free volume
during de-allocations. Moreover, to avoid “blocking-effect”, it
computes the hiding value in line 34 using equation (2).

The algorithm chooses the position with the highest com-
paction value, the lowest SFTD value, and the highest hiding
value for allocating the arriving task (lines 35-57). Allocating
the arriving tasks at the highest compaction value compacts
the tasks both in time and space; while grouping tasks with
similar finish times creates more possibilities to produce larger
free space during de-allocations. On top of that, the highest
hiding value guides our algorithm to avoid “blocking-effect”.

The algorithm allocates the arriving task when space is
available for the task; otherwise, the algorithm needs to
schedule the task for future execution. If the arriving task can
be allocated at its arrival time (line 59), it will be executed
immediately and added in the EL (line 60); otherwise, it is
inserted in the RL (line 62).

When the tasks in the RL are executed, they are removed
from the RL and added in the EL. The finished tasks in the
EL are deleted after execution. These updating processes are
executed when the lists are not empty (lines 64-69).

The time complexity analysis of our proposed algorithm
is presented in Table IV where W , H , TH , NET , NRT are
the FPGA width, the FPGA height, the FPGA thickness, the

Algorithm 1 4D Compaction Algorithm
1: for (x=1;x≤W-w+1;x++) do
2: for (y=1;x≤H-h+1;y++) do
3: for (z=1;x≤TH-th+1;z++) do
4: STM(x,y,z)=a
5: end for
6: end for
7: end for
8: for all tasks in the EL do
9: for (x=max(1,x1-w+1);x≤min(x2,W-w+1);x++) do

10: for (y=max(1,y1-h+1);y≤min(y2,H-h+1);y++) do
11: for (z=max(1,z1-th+1);z≤min(z2,TH-th+1);z++) do
12: if STM(x,y,z)<tf then
13: STM(x,y,z)=tf
14: end if
15: end for
16: end for
17: end for
18: end for
19: for all tasks in the RL do
20: for (x=max(1,x1-w+1);x≤min(x2,W-w+1);x++) do
21: for (y=max(1,y1-h+1);y≤min(y2,H-h+1);y++) do
22: for (z=max(1,z1-th+1);z≤min(z2,TH-th+1);z++) do
23: if (STM(x,y,z)<tf and STM(x,y,z)+lt>ts) then
24: STM(x,y,z)=tf
25: end if
26: end for
27: end for
28: end for
29: end for
30: collect all positions from STM that have the earliest starting time
31: for all above positions do
32: c CV=compute compact value
33: s SFTD=compute sum of finishing time difference
34: s HV=compute hiding value
35: if (c CV>CV max and c SFTD<SFTD min and c HV>HV max) then
36: best position=current position
37: CV max=c CV
38: SFTD min=c SFTD
39: HV max=c HV
40: else if (c CV>CV max and c HV>HV max) then
41: best position=current position
42: CV max=c CV
43: HV max=c HV
44: else if (c CV>CV max) then
45: best position=current position
46: CV max=c CV
47: else if (c CV=CV max and c HV>HV max) then
48: best position=current position
49: HV max=c HV
50: else if (c CV>CV max and c SFTD<SFTD min) then
51: best position=current position
52: CV max=c CV
53: SFTD min=c SFTD
54: else if (c CV=CV max and c SFTD<SFTD min) then
55: best position=current position
56: SFTD min=c SFTD
57: end if
58: end for
59: if best starting time=arrival time then
60: add the arriving task to the EL
61: else
62: add the arriving task to the RL
63: end if
64: if RL ̸=∅ then
65: update RL
66: end if
67: if EL ̸=∅ then
68: update EL
69: end if

number of executing tasks in the EL, the number of reserved
tasks in the RL, respectively.

IV. EVALUATION

A. Evaluation with synthetic hardware tasks

We have built a discrete-time simulation framework in C to
evaluate our algorithm. The framework was compiled and run

TABLE IV
TIME COMPLEXITY ANALYSIS OF 4D COMPACTION ALGORITHM

Line(s) Time Complexity
1-7 O (W ∗ H ∗ TH)
8-18 O (W ∗ H ∗ TH ∗ NET)
19-29 O (W ∗ H ∗ TH ∗ NRT)

30 O (W ∗ H ∗ TH)
31-58 O (W ∗ H ∗ TH ∗ max (NET , NRT))
59-63 O (max (NET , NRT))
64-66 O (NRT)
67-69 O (NET)
Total O (W ∗ H ∗ TH ∗ max (NET , NRT))

under Windows XP operating system on Intel(R) Core(TM)2
Quad CPU Q9550 at 2.83 GHz PC with 3GB of RAM.

We generated 500 random tasks for each task set. Every
hardware task has its arriving time, size (width, height, thick-
ness), life-time and deadline. The task widths, heights and
thicknesses are randomly generated in the range [5..30] re-
configurable units. The life-times are also randomly generated
in [5..100] time units, while the inter-task arrival periods are
randomly chosen between one time unit and 50 time units.
Total tasks per arrival are randomly generated between [1..5].
Since the algorithms are online, the information about arriving
tasks are unknown until their arrival times. The algorithm is
not allowed to access this information at compile time. We
model a 3D FPGA with 50x50x50 reconfigurable units.

Our algorithm is designed for 3D FPGA. For fair compari-
son, we only compare our algorithm with existing algorithms
that target 3D FPGAs. Based on our literature survey, there
are two heuristics used in [4] that focus on 3D FPGAs. These
heuristics are called 3D adjacency and 4D adjacency.

To evaluate the proposed algorithm, we have implemented
three different algorithm:

• 3D adjacency heuristic (3D Adj) algorithm [4];
• 4D adjacency heuristic (4D Adj) algorithm [4];
• our algorithm using blocking-awareness heuristic, called

4D Compaction (4DC) algorithm.
The evaluation is based on two performance parameters

defined in Section II: the deadline miss ratio and the algorithm
execution time. The experimental results with synthetic hard-
ware tasks are presented in Figure 5. All results are presented
as an average value from 10 runs of experiments for each task
set. The relative deadline of a hardware task in this figure is
defined as rd = d− lt− a. It is also randomly generated with
the first number and the second number shown in the figure as
the minimum and maximum values, respectively. The shorter
relative deadline makes it more difficult for scheduling and
placement algorithm to meet task deadlines. As a result, the
deadline miss ratio increases as the relative deadline decreases.

The 3D Adj has the highest deadline miss ratio due to
its spatial-only compaction. Since the 4D Adj performs ad-
ditional compaction in time domain on top of its 3D spatial
domain, it has better scheduling and placement quality com-
pared to the algorithm using 3D adjacency heuristic, i.e, it has
up to 21% lower deadline miss ratio than the 3D Adj. This
figure also shows that our algorithm using blocking-awareness
heuristic has the lowest deadline miss ratio, i.e, up to 26% and

11% lower deadline miss ratio compared to the 3D Adj and
4D Adj heuristics, respectively. This is due to the fact that our
proposed algorithm is not only doing four-dimensional packing
of hardware tasks, but it also has an ability to avoid “blocking-
effect” as presented previously. By avoiding this effect, tasks
can be scheduled earlier to meet their deadlines.

As the 3D Adj does not need to care about compaction in
time domain, it has the lowest runtime overhead. 4D Adj is
aware of time domain and it has 14% higher runtime overhead
to choose the best position for each arriving task. Based on the
fact that the algorithm using blocking-aware heuristic needs to
avoid “blocking-effect”, it requires 12% longer time to choose
the best solution for arriving tasks compared to 4D Adj.

0

2000

4000

6000

8000

10000

12000

[10,20] [20,30] [30,40] [40,50] [50,60] [60,70] [70,80] [80,90] [90,100]

A
lg

o
ri

th
m

 e
xe

cu
ti

o
n

 t
im

e
(µ

s)

Relative deadline

0

5

10

15

20

25

[10,20] [20,30] [30,40] [40,50] [50,60] [60,70] [70,80] [80,90] [90,100]

D
e

a
d

li
n

e
 m

is
s

ra
ti

o
(%

)

Relative deadline

3D_Adj

4D_Adj

4DC

Fig. 5. Evaluation with synthetic hardware tasks

B. Evaluation with real hardware tasks

To complete the evaluation, the algorithm is also evaluated
using real 3D hardware tasks. The 3D FPGA implementation
of MCNC [8] benchmark circuits obtained from [9] are used
for this purpose. The results of the experiments are shown in
Figure 6. The figure shows that the superiority of our algorithm
is not only applicable for synthetic tasks but also for real
tasks. Evaluation with real tasks shows that our algorithm
has 61% and 23% lower deadline miss ratio on an average
compared to the algorithms using 3D and 4D adjacency
heuristics, respectively. The proposed algorithm needs 15%
longer runtime overhead to incorporate blocking awareness.

V. CONCLUSION

In this paper, we have introduced “blocking-effect” in
online scheduling and placement of tasks on 3D partially
reconfigurable FPGAs. To solve this issue, we propose a
blocking-aware heuristic. The proposed heuristic is used to
build a novel placement and scheduling algorithm supporting
blocking-awareness, named as 4D Compaction. Because of its
4D compaction capability, the proposed algorithm places or
schedules the arriving tasks more compactly on a 3D partially

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

[1,2] [1,3] [1,4] [1,5]

D
e

a
d

li
n

e
 m

is
s

ra
ti

o
(%

)

Relative deadline

3D_Adj

4D_Adj

4DC

0

10000

20000

30000

40000

50000

60000

[1,2] [1,3] [1,4] [1,5]

A
lg

o
ri

th
m

 e
xe

cu
ti

o
n

 t
im

e
(µ

s)

Relative deadline

Fig. 6. Evaluation with real hardware tasks

reconfigurable FPGA by doing four-dimensional compaction,
i.e, both in 3D spatial coordinates and time coordinate. More-
over, the algorithm is equipped with an ability to group tasks
with similar finish times to form larger free volume for better
allocation of future tasks. Finally, the algorithm is armed
with an ability to avoid “blocking-effect”. The algorithm is
evaluated using both synthetic and real workloads. Based on
this evaluation, the proposed algorithm produces up to 61%
better solutions with 15% longer runtime overhead compared
to the state-of-the-art schemes.

ACKNOWLEDGMENT

This work has been supported by MOE Singapore research
grant MOE2009-T2-1-033.

REFERENCES

[1] K. Siozios, K. Sotiriadis, V. F. Pavlidis, and D. Soudris, “Exploring
alternative 3d fpga architectures: Design methodology and cad tool
support.” in FPL’07, 2007, pp. 652–655.

[2] A. Rahman, S. Das, A. P. Chandrakasan, and R. Reif, “Wiring requirement
and three-dimensional integration technology for field programmable gate
arrays,” IEEE Trans. VLSI Syst., vol. 11, no. 1, pp. 44–54, 2003.

[3] M. Lin, A. E. Gamal, Y.-C. Lu, and S. Wong, “Performance benefits
of monolithically stacked 3-d fpga,” IEEE Trans. on CAD of Integrated
Circuits and Systems, vol. 26, no. 2, pp. 216–229, 2007.

[4] J. A. Valero, J. Septién, D. Mozos, and H. Mecha, “3d fpga resource
management and fragmentation metric for hardware multitasking,” in
IPDPS, 2009, pp. 1–7.

[5] T. Marconi, Y. Lu, K. Bertels, and G. Gaydadjiev, “Online hardware task
scheduling and placement algorithm on partially reconfigurable devices,”
in ARC, 2008, pp. 302–307.

[6] Y. Lu, T. Marconi, K. Bertels, and G. Gaydadjiev, “Online task scheduling
for the fpga-based partially reconfigurable systems,” in ARC, 2009, pp.
216–230.

[7] T. Marconi, Y. Lu, K. Bertels, and G. Gaydadjiev, “3d compaction: A
novel blocking-aware algorithm for online hardware task scheduling and
placement on 2d partially reconfigurable devices,” in ARC, 2010, pp.
194–206.

[8] S. Yang, “Logic synthesis and optimization benchmarks user guide
version 3.0,” in International Workshop on Logic and Synthesis, 1991.

[9] K. Siozios and D. Soudris, “A power-aware placement and routing
algorithm targeting 3d fpgas,” J. Low Power Electronics, vol. 4, no. 3,
pp. 275–289, 2008.

