
LISA: Graph Neural Network based Portable Mapping on Spatial Accelerators

Zhaoying Li, Dan Wu, Dhananjaya Wijerathne, Tulika Mitra

School of Computing, National University of Singapore
{zhaoying, danwu20, dmd, tulika}@comp.nus.edu.sg

Abstract—Spatial accelerators, such as Coarse-Grained Re-
configurable Arrays (CGRA), provide a promising pathway
to scale the performance and power efficiency of computing
systems. These accelerators depend on effective compilers to
take advantage of the parallelism offered by the underlying
architecture. Currently, the compilers are handcrafted for
spatial accelerators, which is challenging from time to mar-
ket perspective, especially with the rapid increase of diverse
accelerators. In this paper, we present a portable compilation
framework, called LISA, that can be tuned automatically to
generate quality mapping for varied spatial accelerators. Our
key contribution is to automatically identify the impact of the
dataflow graph (DFG) structure characteristics (representing
an application) on the mapping for a new accelerator. Towards
this end, we abstract the DFG structure in graph attributes, use
Graph Neural Network (GNN) to analyze the graph attributes,
and identify the mapping impact for an accelerator architecture
with an all-encompassing global view. Finally, we augment
a simulated annealing-based mapping approach to take into
account the impact of DFG structure in guiding the placement
of the dataflow graph nodes and the routing of the dependencies
on the accelerator. Our experimental evaluation concretely
demonstrates the substantial benefit of our approach compared
to the state-of-the-art solutions.
Keywords-Spatial Accelerators; CGRA; Compiler

I. INTRODUCTION

The spatial accelerators provide a promising way to con-

tinue scaling the performance and efficiency of computing

hardware [1]–[3]. Recently, we have witnessed a rapid

increase of spatial accelerators, such as domain-specific

deep learning accelerators [4]–[7] and domain-agnostic

CGRAs (Coarse-Grained Reconfigurable Array) [8]–[19].

Meanwhile, several accelerator generation frameworks [20]–

[24] have been proposed to automatically generate spatial

accelerators for a specific set of applications. But we need

effective compiler support to fully realize the potential of

the emerging diverse spatial accelerators.
The spatial accelerators are programmable, consisting of

Processing Elements (PE) such as ALU and MAC, on-chip

memory, and network-on-chip. Fig. 1 shows a 4×4 CGRA, a
representative example of the spatial accelerator. The com-

piler first generates a Dataflow Graph (DFG) representing

the application program and then maps the DFG on the

spatial accelerator by respecting the data dependencies. The

details of the architecture are exposed to the compiler for

generating configurations for the programmable units. These

details create an enormous search space for the compiler to

place the operations onto the PEs and route the data from

PE

D
A

TA

M
EM

O
R

Y

SWITCH

ALU RF

Co
nf

ig
M

em

OUTPUT

PEPEPE

PEPEPEPE

PEPEPEPE

PEPEPEPE

Figure 1: Spatial accelerator example: 4×4 CGRA
the producer PE to the consumer PEs. This compilation

process is often referred to as mapping. Routing is the most
time-consuming step in the mapping, and the placement of

the operations on the PEs informs the routing decisions.

Placement and routing are thus interrelated, affecting the

compiler efficiency to find the quality mapping.

We classify the compilers for spatial accelerators into

three categories: meta-heuristic approaches [25] [26] [22]

such as simulated annealing, mathematical optimization

(Polyhedral model [27], Integer Linear Programming

(ILP) [28]) to solve a mathematical formulation of the

mapping problem, and hybrid heuristic [29]–[34] that com-

bines several scheduling methods and optimizes mapping

by leveraging the architectural characteristics. Due to the

accelerator architecture diversity and the large search spaces,

the different classes of compilers trade off mapping qual-

ity, compilation time, scalability, and generality. Hybrid

heuristics usually provide quality mapping for some specific

architectures as they make full use of target architecture

characteristics, while meta-heuristic methods work for di-

verse accelerators but cannot guarantee mapping quality.

Mathematical optimization-based approaches can generate

optimal solutions but usually need a long compilation time

for a large search space and are hence not scalable. In

summary, none of the compilation approaches can satisfy

all the desired criteria of quality mapping, scalability, and

easy adaptability to diverse accelerators.

With the rapid increase of varied accelerators, handcraft-

ing quality compiler for each accelerator is challenging

from a time-to-market perspective. Hence we need portable

compilers to generate quality mapping for different acceler-

ator and application combinations without manual effort. In

other words, for a new accelerator architecture, the portable

compiler should be able to automatically tune its parameters

and the mapping decisions to generate superior quality

mapping within reasonable compilation time.

Attributes
G

enerator

Train Set

Attributes
G

enerator

Raw DFG

Label-aware
Simulated
Annealing2

DFG attributes

GNN
Model

GNN
Model

Generate training data

GNN-based label aware mappingBuild GNN model

Input DFG

i

Label-aware
Simulated
Annealing1

guide mapping

update labels

initial label
generation

architecture
description

architecture
description

DFG attributes
Labels

Train Set

Filter

labels

DFG + Label

iterative label generation

Train
attributes generation attributes generation

Figure 2: Overview of GNN-based portable mapping framework - LISA

While handcrafted compilers strive to optimize mapping

by leveraging specific accelerator characteristics, portable

compilers need to provide a unified way to generate quality

mapping for varied accelerators. Towards this end, portable

compilers need to understand the characteristics of the

accelerator and how the DFG structure affects mapping

on that accelerator. For example, an accelerator with suffi-

cient routing resources can handle the dense communication

among the DFG nodes. In contrast, an accelerator with

fewer routing resources often needs more effort to map the

dense parts of the DFG. Meanwhile, as the mapping of an

operation influences the mapping of some other operations,

the portable compiler needs to identify the strength of the

association among the operations. Therefore, the compiler

needs an all-encompassing global view of the DFG struc-

ture and the accelerator resources even when making local

placement/routing decisions.

To map a DFG onto the spatial accelerator, our goal is

to identify the impact of the DFG structure on mapping for

a particular spatial accelerator and apply that knowledge to

guide the mapping decisions. For example, as some DFG

nodes that have complex dependencies with the predecessor

and successor nodes are more difficult to route, we can set

higher scheduling priority for these nodes. If we identify the

impact of the DFG structure, we can avoid getting stuck in

the local minima in our quest to find the quality mapping. In

addition, different accelerators can have different mapping

characteristics for the same DFG. For example, a small

accelerator has a limited number of PEs and needs to map

the DFG nodes along the temporal dimension in addition to

the spatial dimension. In contrast, a big accelerator should

take advantage of the spatial dimension as much as possible

for parallelism. Therefore, we propose to derive the DFG

mapping aspects considering both the DFG structure and

the accelerator characteristic. Such aspects describe the

predicted mapping information of DFG nodes and edges,

e.g., the estimated routing resources required by DFG edges

and the predicted mapping distance between DFG nodes.

We name such special aspects labels and labels are used

to inform compilers about placement, routing decisions that

lead to quality mapping.

Automatic generation of labels is the key to tuning the

portable compiler for different accelerators. We employ

the Graph Neural Network (GNN) [35] to learn how to

derive the labels. A GNN can aggregate the graph attributes,

propagate information to neighboring nodes, and predict the

desired aspects. In our case, the desired aspects are the

labels, and input graph attributes of the GNN model are

the inherent properties of the DFG. Moreover, the GNN is

retrained to learn how to generate the labels for a specific

accelerator. For a new accelerator, we generate a set of

synthetic DFGs and use an iterative method to generate the

labels to create a training dataset. It is worth noting that the

iterative mapping method to generate the labels for training

is extremely time-consuming and can only be used as a one-

off technique. In comparison, once the GNN model has been

re-trained for a new accelerator, it can generate the labels

for a new DFG very fast.

We propose a framework LISA, Learning Induced map-

ping for Spatial Accelerators, to provide a portable compiler

for different accelerator and application combinations. The

main insight is that the GNN cannot directly generate the

mapping for a given DFG but the labels can bridge the gap

between the GNN and the mapping. The GNN aggregates

the DFG attributes to derive the labels; the labels inform

the compiler about proper placement and routing decisions

that lead to quality mapping. For a new accelerator, the

portable compiler re-trains the GNN model to adapt the

labels according to the accelerator characteristics.
Fig. 2 provides an overview of the LISA framework,

which consists of three parts: training data generation for

the GNN model, building the GNN model, and GNN-based

label-aware mapping. For each accelerator, we generate a

set of unlabelled DFGs and propose an iterative mapping

method to assign labels for the nodes of these DFGs. We

design a metric to filter the labels from the iterative mapping

method to generate the training set for the GNN model. Then

we design an Attributes Generator, which uses traditional

graph algorithms, to collect the DFG structure information

to generate the DFG attributes. The GNN then can process

these attributes to derive the labels. We design a network for

each label and train these networks on the dataset. Once a

GNN has been trained for a specific accelerator, given a new

DFG corresponding to a real application program, the trained

GNN model can automatically derive the labels. Finally, we

design a label-aware simulated annealing approach to map

any new DFG on the accelerator with an all-encompassing

global view.
Our concrete contributions are as follows:

• We propose a portable compilation framework LISA

that works across different spatial accelerators. The

framework is open-source and available from

https://github.com/ecolab-nus/lisa

• We quantify the impact of the DFG structure towards

mapping on a specific accelerator and provide a global

view in the mapping process. This contrasts with

existing works that only focus on the local view in

the placement and routing process to select hardware

resources.

• To the best of our knowledge, this is the first work

that uses GNN for mapping on spatial accelerators. The

GNN provides a flexible mechanism to automatically

collect holistic graph attributes corresponding to the

DFG. However, the original DFG has only a few at-

tributes such as operation type and data dependency. To

bridge this gap, we generate richer attributes represent-

ing the DFG structure information and train the GNN

to derive the labels from these attributes effectively.

• We demonstrate that LISA can achieve substantial

improvement in mapping quality and compilation time

compared to Integer Linear Programming (ILP) and

vanilla simulated annealing approach on multiple di-

verse spatial accelerators and applications.

Paper Organization: In Section II, we introduce the back-
ground of spatial accelerators mapping, the impact of DFG

structure on mapping, and a primer on GNN. Then we

introduce the design of labels and label-aware mapping

in Section III. Section IV describes the use of GNN to

automatically derive the labels from DFG, and Section V

explains the generation of training data for the GNN model.

We evaluate LISA in Section VI and discuss related work

in Section VII.

II. BACKGROUND AND MOTIVATION

We first introduce the background on spatial accelerators.

Then we show the impact of the DFG structure on mapping

that motivates this work. Next, we present the background

on GNN and discuss the use of GNN in DFG analysis.

Lastly, we discuss the challenges of creating GNN models

that can automatically mine information from a DFG and

create appropriate labels corresponding to an accelerator.

A. Spatial Accelerators
There exist many spatial accelerators for different pur-

poses [4]–[17]. They generally provide configurability for

the PE or the network-on-chip. Overall, the spatial ac-

celerators differ in the network-on-chip, PE functions, PE

heterogeneity among others.
One representative example of spatial accelerators is

Coarse-Grained Reconfigurable Architecture (CGRA) [8]–

[17]. CGRA allows configuration of the network and PE

functionality on a per-cycle basis. Fig. 1 shows a 4×4 CGRA
in a 2D mesh architecture where each PE can communicate

with the neighboring PEs. Each PE contains a Register File

(RF), ALU, network switch, and configuration memory. The

configuration memory contains the instructions for the ALU

and the configuration bits for the network switch and ports.

+ × × ×

× + + +

× + + +

× + + ×

× + + +

×

+

+

+

+
input output

Figure 3: Spatial accelerator example: Systolic Array

The systolic array is another representative spatial ac-

celerator architecture [36]–[40]. Fig. 3 shows a systolic

array where the left-most PEs load the input data and the

right-most PEs store the output. The configuration of the

computing unit is similar to the basic unit of Revel [40]. The

PEs can execute either multiply or add operations. Each PE

in the systolic array executes a fixed operation throughout

the execution process.

B. Mapping and DFG Structure Characteristic
The compilers for spatial accelerators accept as input

compute-intensive loop kernels from the application. The

compiler then generates the dataflow graph (DFG) corre-

sponding to the loop kernel. Fig. 4 shows a DFG example

×

×

+

+
+

×

×

×
×

A

B

C
E

D

F

G

H

IJ

×

Complex part of DFG
1

1
2

2

2

2

3 3

3

4
Figure 4: An example dataflow graph (DFG)

corresponding to the loop body of a kernel. A DFG node

corresponds to an operation, and an edge corresponds to

a data dependency between the operations. The DFG nodes

within the dotted area have more complex data dependencies

than the other nodes. We use As Soon As Possible (ASAP)

value as the scheduling order. The numbers to the right of

the nodes represent the scheduling order. The smaller the

number, the earlier the node is scheduled (i.e., placed on

a PE). If two nodes have the same ASAP value, we first

schedule the node on the left side of Fig. 4 (we can get such

order using topological order or graph drawing algorithm).

PE1 PE2 PE3 PE4

cycle1

cycle2

cycle3

A B

C

G

D E F

H I

failed routing

cycle4 J

(a)

PE1 PE2 PE3 PE4

cycle1

cycle2

cycle3

cycle4

A B

C

G

D E

FH I

J

(b)

Figure 5: Mapping examples for a time-extended 2x2 CGRA. (a)
A failed mapping without any DFG structure knowledge. (b) A
successful mapping with DFG structure knowledge.

Fig. 5 provides two mapping examples of the DFG on

a 2×2 CGRA. For our illustrative example, let us assume
that any DFG node can be mapped to any PE of the

CGRAs. Both examples use spatio-temporal mapping and

are presented in the form of a time-extended CGRA where

the CGRA resources have been replicated along the time

dimension. Each PE can do either compute or routing per

cycle. In Fig. 5a, we schedule the nodes A and B first. As

there is no dependence constraint yet, we can place A and B
in any PE in cycle 1. C is placed on PE1 in cycle 2 because

of the minimum (zero) routing cost from A. Similarly, D and

E are placed on PE2 and PE3 in cycle 2. After placing D and

E, however, we cannot place node F as we cannot route data

from B to F. If F is placed on PE4 in cycle 2 by ignoring

this routing failure, we will continue by placing G and H

on PE1 and PE2 in cycle 3. Then I cannot be placed as

we cannot route data from B to I. In this mapping example,
the compiler does not have a global view of the complex

data dependencies and cannot create a valid mapping. Any

algorithm without the whole DFG structure knowledge will

end up generating such mappings.
In contrast, Fig. 5b shows a successful mapping that

understands the DFG structure and places the nodes with a

global view. After placing A, we know B is the parent of four
nodes and has far more connections than the other nodes.

Hence we should place B in a PE that has sufficient routing

resources, e.g., PE3. We also know D and E are children

of B and should map them onto PEs without blocking all

the routing options from B. In this way, we get a successful
mapping with the knowledge of the whole DFG structure.
This motivating example demonstrates the need for a

global perspective during mapping. Indeed the impact of the

DFG structure on mapping extends far beyond this simple

example. If there is an edge from A to J in the DFG of Fig. 4,

this edge is more difficult to route than the other edges as it

needs a temporal connection with a length equal to the length

of A → C → G → J. We need to prioritize such edges in
routing. Therefore, we need an all-encompassing view to

analyze the impact of DFG structure on an accelerator.
Graph Neural Network [35], a neural network on graphs,

has become popular in recent years. A GNN can aggregate

information from far-flung nodes and edges, and generate

collective information for nodes and edges. A graph is

represented as G = (V,E), where V and E represent node

and edge set, respectively. We have n×n adjacency matrix,
which represents the edge information for a graph with n
nodes. Let Xv ∈ Rn×d be the node attribute matrix whose

i-th row represents the attribute information of the i-th node
in a d-dimension vector. Meanwhile, let Xe represent edge

attributes, where Xe ∈ Rm×c is an edge attributes matrix

whose j-th row represents the attribute information of the

j-th edge in a c-dimension vector.
GNN provides flexible ways to traverse a graph and

propagate information. GNN has three main analytical tasks:

node-level, edge-level, and graph-level. We introduce the

first two tasks here. Node-level analysis aggregates attribute

from the neighboring nodes and generates new attributes on

the nodes. Then it can aggregate new attributes from the

neighbors and process them again in an iterative fashion.

The edge-level GNN model processes information from

connected vertices to predict edge information, using similar

operations as the node-level model. A GNN model is defined

by the attributes and process functions. The final graph

information are the labels for nodes and edges.

C. Graph Neural Network (GNN)
Fig. 6 shows an example of a node-level GNN. The

matrix below the DFG is the node attributes matrix. This

GNN contains two Graph Convolution layers and two ReLU

layers. It is worth noting that graph convolution is different

Graph (DFG)
×
×

+

+
+×

×

×
×

×

Graph Neural Network
GConv

ReLu

GConv

ReLu

Node Feature

......

Figure 6: Node-level GNN example

from the traditional convolution operations in Convolutional

Neural Network (CNN) [41]. The GNN uses weights (usu-

ally in vector and matrix) to directly multiply the graph

attributes. The GNN uses pooling functions such as min

and max to aggregate neighboring node attributes, and then

uses convolutions to process the aggregated information,

and updates the attributes with ReLu. Edge-level GNN also

performs similar operations on the edge attributes. Hence,

GNN has the potential to analyze dataflow graphs and

generate labels on DFG nodes and edges.

D. Challenges in using GNN for DFG analysis

So far, we have discussed the impact of the DFG structure

on mapping and the potential of using GNN to analyze DFG

and generate labels. However, it is challenging to realize

this potential. First, we need to design proper labels to

reflect the DFG structure and accelerator characteristics, and

need to use these labels to guide the placement and routing

choices. Meanwhile, we need to ensure that the GNN and the

mapping process are consistent, i.e., the GNN can generate

the labels, and the labels can be used for mapping.
Another challenge is that current GNN models cannot

be used directly to derive the labels for the DFG. One

reason is that the existing GNN models usually rely on

sufficient number of graph attributes to generate the desired

information, such as (age, gender, location, etc.) in a social

network graph, while our DFG only has a few straightfor-

ward attributes such as operation type and data dependency.

Another reason is that the impact of the DFG structure on

mapping is not straightforward; the placement and routing

of one node is interlinked with the placement and routing of

other nodes, including nodes without direct dependency. We

need to design effective GNN models to find the connection

between DFG structure characteristics and mapping impact.

The following sections elaborate on how we overcome these

challenges.

III. DFG LABEL DESIGN AND MAPPING

We now introduce the label types and how the labels

are used in the mapping. Labels describe how nodes and

edges should be mapped onto the accelerator. We design a

label-aware compiler to decide placement and routing and

generate quality mapping on spatial accelerators.

Table I: Types and purposes of labels

label id label name placement routing

1 schedule order � �

2 same-level nodes association � �

3 spatial mapping distance � �

4 temporal mapping distance � �

A. Label

Table I summarizes the four labels guiding the compiler

to make proper placement and routing decisions.

• Schedule order represents the execution order of the

DFG nodes. It captures more information than topolog-

ical or similar orders. For example, a node with more

children should be scheduled earlier to route to multiple

destinations, while topological order is decided by node

dependency only. Our schedule order captures the holistic

DFG structure information and enables such nodes to be

scheduled earlier.

dummy edge for
same-level nodesv

×

+

+
+

×

×

×
×

A

B

C
E

D

F

G

H

IJ

×

1

1
2

2

2

2

3 3

3

4
Figure 7: Example of same-level nodes association

• Same-level nodes association defines the spatial distance
between the same level nodes that do not have data

dependency. If DFG nodes with the same ASAP value

have the same ancestor or descendant node, they are

defined as same-level nodes. As these nodes are typically

scheduled closer in time, this label represents how far

away the same-level nodes can be placed. Fig. 7 provides

an example for the DFG in Fig. 4. We show the association

for the same-level nodes C, E, and F with dummy edges.

Note that there is no dummy edge between C and F as

they do not have any common ancestor or descendant.

• Spatial mapping distance indicates the spatial distance
of a DFG edge in a mapping. We cannot always place

two dependent nodes closely, as other children of the

parent and other parents of the child also influence the

placement choice. We need a label to describe the spatial

mapping distance of a DFG edge to figure out how

the DFG structure characteristics affect the placement of

parent and child nodes. Moreover, both the same-level

node association and spatial mapping distance describe the

spatial distance between two nodes; the former between

non-dependent nodes, while the latter between dependent

nodes.

Algorithm 1: Label-aware Simulated Annealing
Input: DFG, labels of DFG, spatial accelerator;
Output: Mapping

1 while not find a valid mapping or not exceed time limitation do
2 unmap one or more DFG nodes;
3 sort unmapped DFG node by schedule order (label 1);
4 foreach unmapped DFG node do
5 foreach PE candidate do
6 calculate placement cost according to label 2, 3, 4;
7 calculate deviation σ = max{1, α× T −Acc};
8 use normal distribution to decide the cost to select PE;
9 sort unrouted data by routing priority using label 4;
10 foreach unrouted data do
11 Route using Dijkstra’s algorithm ;

• Temporal mapping distance indicates the temporal dis-
tance of a DFG edge in a mapping. Child node cannot

always be executed immediately after one parent node as

this child may have other parents. We estimate the routing

resources required by the edge using temporal distance.

The last three labels describe the spatial and temporal

distance between nodes. The way to calculate the spatial

distance depends on the accelerator. For the 2D mesh

accelerators in Fig. 1, we can use Manhattan distance. The

temporal distance is calculated by the distance along the

temporal dimension (number of cycles) in the mapping.
Let us use two examples to demonstrate how to use

labels to guide placement and routing. Each placement or

routing implies the use of resources. Obviously, mapping

the first few nodes is always easier than mapping the last

few nodes, as the latter has fewer resources. We can use

temporal mapping distance to find the edges that have long

temporal distances and need more routing resources. We

then route these “long” edges first to avoid routing them

with insufficient resources.
Another example is to use same-level nodes association

to guide placement. Though such nodes do not have any

direct dependency, they have connections due to the same

ancestor or descendant. If they have the same child, they

should be placed closer to ensure the data can be routed

easily. If there are many nodes between the same-level nodes

and their common descendant/ancestor, then the same-level

nodes can be placed in two distant PEs.

B. Label-aware Mapping

Compilers can use combinations of labels to decide

placement and routing. Note that the compiler can perform

placement and routing in parallel or place the DFG nodes

first and then route the data. Both types of compilers can use

the labels. The compilers have the flexibility to customize

the label combinations to decide placement and routing. The

labels also have the generality for accelerator mapping as

all the spatial accelerator mapping can use the information

(albeit different values for different accelerators). As these

labels are associated with the nodes and the edges, we can

employ GNN to derive the labels.

A variety of mapping methods can use these labels. We

demonstrate the power of the labels in simulated annealing

(SA), a popular method for spatial accelerator mapping [42]

[43] [26] [22]. SA-based approaches usually create an initial

random mapping that may oversubscribe the resources. SA

movement uses a cost function to estimate the quality of

the current mapping. It then attempts to remove some nodes

from the current placement and remove related routing. This

process is referred to as unmap. Simulated annealing places
these unmapped nodes and routes them again. The unmap

and remap processes are called movements in SA. If the

movement creates a better mapping, it is accepted. Even if

the new mapping after movement is worse quality according

to the cost function, SA can still accept it with a small

probability to overcome the local minima.
Algorithm 1 presents our proposed label-aware simulated

annealing (SA) approach. We place the unmapped nodes

first and then route data. This algorithm generates the initial

mapping in the first iteration as all the nodes are unmapped

at first. If all the nodes are mapped, the algorithm randomly

selects some nodes to unmap (Line 2). The schedule order

label decides the placement order (Line 3-4). The other three

labels decide routing priority and placement choice. When

selecting the PE candidate to place a node, we use a cost

model that combines three labels (Line 6). The cost for

each PE candidate is the sum of the differences between

the actual mapping distance and the labels’ expected dis-

tance. As a minor difference in placement can lead to a

completely different mapping, the PE candidate with the

minimal cost might not be the best one. Hence we use a

normal distribution to select the candidates based on costs

(Line 7-8), ensuring the candidate with lower cost has higher

chance of getting selected. The deviation parameter σ of

normal distribution decides the variance of the distribution.

We use the function σ = max{1, α × T − Acc} to decide
the deviation parameter, where T represents the number

of attempted movements, Acc represents the number of

accepted movements, and α is the customized factor. When

the accept rate Acc is low, this function will have a bigger
deviation parameter σ, randomly selecting PE candidates to

eliminate the current invalid mapping. To decide the routing

order of the node, we use the sum of temporal mapping

distance label, which represents the routing resource that a

DFG node needs (Line 9). Note that the nodes that need

more routing resources are routed first. The label-aware

approach only changes the placement choice and routing

priority compared to the original SA.

IV. GNN MODEL FOR DFG LABEL GENERATION

The key challenges in using GNN to derive the labels are

(a) providing effective graph attributes for the GNN model,

and (b) using these attributes to derive the labels to describe

how DFGs should be mapped. However, the connection

between DFG structure and mapping impact is not easy to

capture; thus, label values are difficult to calculate. Hence

deriving labels using GNN is different from traditional GNN

analysis. We need insights on how the DFG structure impacts

the mapping. We next describe an Attributes Generator

to represent the DFG structure characteristics with graph

attributes, and introduce how we use GNN models to derive

the labels from the attributes.

A. Attributes Generator

To derive the labels from DFG, we first need to provide

the graph attributes to the GNN. Deriving one label requires

multiple attributes. Traditional GNN analyses [44] on graphs

(e.g., social network) usually have natural attributes to

analyze. However, the DFGs do not have such attributes,

as nodes usually only have operation type attribute.
Our approach is to design an Attributes Generator on

DFG to generate the relevant attributes. This Attributes

Generator uses traditional graph algorithms to represent the

DFG structure characteristics in terms of graph attributes.

These graph attributes affect placement and routing deci-

sions. For example, a DFG node with many child nodes

needs enough routing resources. Hence, the node needs a

higher schedule order. Meanwhile, to leave enough space for

routing dependencies to child nodes, the node should not be

placed too close to its parent nodes. We intuitively select

graph attributes which we think can affect placement and

routing decisions. We generate the following node attributes:

(1) ASAP, (2) in-degree, (3) out-degree, (4) the number of

ancestor nodes, (5) the number of descendant nodes, and (6)

operation type. We have the following edge attributes: (1)

ASAP value difference between child and parent node, (2)

the number of nodes between two nodes; a node is between

two nodes if its ASAP value is in between the two nodes’

ASAP values, (3) the number of nodes with the same ASAP

value as the parent or the child, (4) the number of ancestors

of the parent node, and (5) the number of descendants of

the child node.
Same-level nodes forms the dummy edges in the DFG.

Thus, we also need to provide attributes for these dummy

edges so that the edge-level GNN model can predict same-

level nodes association labels. We generate the following

dummy edge attributes: (1) the distance from same-level

nodes to the closest common ancestor node and (2) the

distance to the closet common descendant node, (3) the

number of nodes whose ASAP value is bigger than the

ancestor node and smaller than the same-level nodes, (4)

the number of nodes whose ASAP value is smaller than

the descendant node and bigger than the same-level nodes,

(5) the number of nodes whose ASAP value equals the

ASAP value of ancestor node, descendant node, or same-

level nodes, (6) the number of nodes on the path from the

same-level nodes to the ancestor node, and (7) the number

of nodes on the path from the same-level nodes to the

descendant node.

BE

D

F

H

J

I

aggregator1
aggregator2A

C
nx
x
x
...
1
0

G

nx
x
x
...
1
0

nx
x
x
...
1
0

nx
x
x
...
1
0

nx
x
x
...
1
0

nx
x
x
...
1
0

nx
x
x
...
1
0

nx
x
x
...
1
0

nx
x
x
...
1
0

nx
x
x
...
1
0

Figure 8: GNN label derivation example.

B. GNN Model
We design a GNN for each label. The GNN model pa-

rameters can be inferred from the equations in each network.

Deriving one label does not need all the attributes, and we

intuitively select the relevant attributes for each GNN.

Schedule order: This label is relevant to the complexity

of data dependency and the scheduling order of neighbors

(parents and children). For example, a node with many

children needs to be scheduled earlier to route multiple

dependencies. Subsequently, the node’s parent(s) should also

be scheduled earlier. Hence, after processing the attributes

of the current node, we need to propagate the changes to its

neighbors. We design a network consisting of four layers,

and all the layers use the following two equations:

m(t+1)
v =W1

[
mean(m(t)

u),max(m
(t)
u),min(m

(t)
u)

]
(1)

h(t+1)
v =W2

(
W3h

(t)
v +m(t+1)

v

)
(2)

In each layer, the network aggregates the changes of the

neighbors and updates the scheduling order. Let us use N (v)
to represent the neighbors of a node v, t to represent the layer
index, m to represent the schedule order changes of a node,

and h to represent the node attributes including the input

attributes and schedule order label. Equation 1 aggregates

the change of neighbors ∀u ∈ N (v) through a combination
of three pooling functions: min, max, and mean. Then the

aggregated changes are processed by a weight matrix. Next,

Equation 2 updates the scheduling order of each node by

combining neighbors changes. In the first layer, the schedule

order h
(t)
v is the ASAP value and m

(t+1)
v is calculated

by W1 × Attributes(v), where Attributes(v) is all the
attributes of node v generated by the Attributes Generator.
Fig. 8 illustrates how the information is propagated

from node H and I to B. First, H and I update their

attributes through a graph convolution on their attributes

W1 × Attributes(v), where attributes are represented by

a vector. The attributes describe the degree of a node, the

number of ancestor and descendant nodes, and the operation

type etc. Through these attributes, we know the communica-

tion density of the node and thus if it needs a higher schedule

priority. Then D and E aggregate (min,max,mean) neigh-
bors schedule order changes from H and I, and update their
schedule orders (D also aggregates the change of its neighbor

B, but we do not show this for the sake of convenience).

Through aggregation, D and E know whether children nodes

need a higher schedule priority or not. Finally, B aggregates

schedule order changes from D, E, I, and F, and update its
own schedule order.

Same-level nodes association: This label describes the

spatial distance between two same-level nodes. Same-level

nodes do not have any direct dependency but have a common

ancestor/descendant node. The spatial mapping distance

between two same-level nodes is affected by their shortest

distance to their common ancestor/descendant. Meanwhile,

the number of nodes between them and the common ances-

tor/descendant also affects the distance, as more intermediate

nodes need more PEs to schedule. The Attributes Generator

traverses the graph to collect these information as edge

attributes. We predict the feature of dummy edges between

same-level nodes through the following network:

he =MLP (edge attributes(e)) (3)

We use multilayer perceptron (MLP), consisting of two

convolution layers and one activation layer, to process the

edge attributes. The MLP . Hidden channels represent the

output channels of the first layer and the input channels of

the second layer. We set the number of hidden channels

equal to the number of edge attributes. We use ReLu as the

activation layer.

Spatial mapping distance: This label describes the spatial
mapping distance of an edge. The distance can be affected by

other dependent nodes. For example, if the source node of an

edge has many neighbors, it needs more routing resources

because the neighbors need to placed on “distant” PEs to

leave enough space for routing.

h1
e =W1 (edge attributes(e)) (4)

ν =

[
1

mean(e(v))
,

1

sum(e(v))

1

max(e(v))
,

1

min(e(v))

]

(5)

h2
e =W2h

1
e + ν ·W3h

1
e (6)

First, as shown in Equation 4, we use a convolution layer to

process the edge attributes from the Attributes Generator.

Similar to same-level nodes association, these attributes

reflect the DFG structure complexity around parent and

child nodes. We get an initial spatial distance for each edge

through the convolution layer on these attributes. We use

e(v) to represent the attributes of connected edges of parent
and child nodes. Next Equation 5 uses four aggregators

to generate a normalization vector ν. If the value of a

denominator is zero, the corresponding normalization factor

is set to one. As mentioned earlier, the sibling nodes of

parent and child nodes can also affect the distance. Hence

we use a combination of multiple normalization factors to

aggregate, which collects comprehensive information from

neighboring nodes. Finally, we generate the label value with

Equation 6, the sum of weighted and normalized features.

Temporal mapping distance: This label is relevant to the
DFG structure complexity around the edge. For example, for

the temporal distance of edge (B, I) in Fig. 8, E is the child

of B and parent of I; thus E makes the temporal distance

longer. We use all the edge attributes from the Attributes

Generator and use MLP to process these edge attributes as

shown in Equation 7.

he =MLP (edge attributes(e)) (7)

The number of hidden channels is equal to the number of

edge attributes. We use ReLu as the activation layer.

V. GNN TRAINING DATA GENERATION

This section describes the generation of training data for

GNN models. First, we generate a random set of DFGs and

initialize their labels. Then we use an iterative label-aware

simulated annealing approach to update the labels. Finally,

we use a metric to evaluate and filter these labels.

A. Raw DFG Generation
We need sufficient number of DFGs to generate a training

data set. However, current publicly available benchmarks are

not enough for training. Hence we generate a set of random

DFGs with wide spectrum of structures. We first generate

random directed and weakly connected graphs. The number

of DFG nodes are set from n to m, which is based on the
real applications. The number of connected edges for each

node is also set to a range. This ensures that we generate

diverse DFGs and a robust training set. Then according to

the supported operations, we randomly assign operations to

guarantee the validity of the DFGs.

B. Label Generation
Label quality in the training dataset is vital to build an

effective GNN model. To generate labels for training, we

first initialize labels for the raw DFGs. Then we use these

labels in a label-aware simulated annealing (SA) approach.

After getting the mapping, we extract the labels from the

mapping result and update the DFG labels. We use updated

labels to map again and repeat this process. We do not update

the labels if the labels either do not generate a mapping or

do not lead to better mapping. In this case, we use previous

labels to map again. As SA makes random choices, the

mapping result is different for each run and can improve

via remapping.
To initialize the labels, we assign a scheduling order with

the ASAP value. For same-level nodes association, we use

the average value of the shortest distances between nodes

and common ancestor/descendant. We initialize the spatial

mapping distance as zero and temporal mapping distance as

one.

The label-aware SA in training data generation is different

from the one in Section III. The latter uses labels to provide

guidance throughout the mapping process. The training only

uses the labels for initial mapping and does not use labels in

the later random mapping movement. Hence, this is a partial

label-aware SA.
We extract label values from the mapping result. The DFG

execution time can be an arbitrary positive number. Hence,

we normalize the execution time to the range from zero to

the length of the longest path to get the schedule order. For

the other three labels, we calculate the distance according

to the mapping distance. As accelerators can have diverse

architectures and layouts, the spatial distance depends on the

accelerator definition. For the 2D mesh accelerators in Fig. 1,

we can use Manhattan distance. The temporal distance is

calculated by the distance along the temporal dimension

(number of cycles) in the mapping.
From an iterative method, we can get multiple labels for

each DFG. We need to evaluate the quality of these labels.

As the labels are extracted from mapping, the mapping

quality reflects the quality of the label. For the mapping

quality, a straightforward metric is the execution time or

Initial Interval (II) for CGRA [9] which is the interval

between successive iterations of a loop kernel. Besides, we

use the routing cost for labels with the same execution time

or II, representing how many routing resources are used in

the mapping.
We have two rounds to select candidate labels from

multiple labels, and we combine the candidate labels to

generate the final one. In the first round, we select the labels

with the lowest execution time or II value. For the second

round, we set the label with the lowest routing cost as the

standard candidate, and select labels whose corresponding

mappings have similar routing costs as other candidates. In

practice, if the routing cost is less than 1.15x of the routing

cost of the standard one, the label is a candidate. Then

we use the average value of candidate labels (including the

standard one) to generate the final label for a DFG.

C. Label Filter
The above iterative method cannot always generate a valid

mapping for a DFG or enough label candidates. We need

to decide which DFG and its corresponding label can be

included in the training set. We use a metric e to filter

these labels: e = O + σ × N , where O represents how

close the execution time of label-corresponding mapping is

to the theoretical minimal execution time, N represents the

number of candidate labels, and σ is a customized factor.

The closer it is to the theoretical performance, the higher

is the O value. There are different ways of calculating

the theoretical performance for different accelerators. For

example, in CGRA, the theoretical lowest execution time is

resource Minimal II, calculated as the number of DFG nodes

divided by the number of PEs. If there are not sufficient

labels for a DFG and O is far from the theoretical optimal

performance of the corresponding DFG, the DFG and the

corresponding label are not included in the training set.

As long as we get the minimum II for a DFG, only one

candidate label is sufficient to be used as training data.

VI. EXPERIMENTAL EVALUATION

We evaluate LISA along multiple dimensions: quality of

mapping, compilation time, portability, and the effectiveness

of different components in our mapper and GNN modeling.
Modelled Spatial Accelerators: As LISA is

a portable compiler framework that works across

a range of spatial accelerators, we evaluate it on

diverse architectures. (1) 4×4 baseline CGRA; (2)

3×3 baseline CGRA; (3) 8×8 baseline CGRA; (4)

4×4 CGRA with less routing resources: Registers

are vital for buffering data during routing especially

when producer and consumer are far apart along

spatial or temporal dimension. The baseline CGRAs

have four registers per PE. For the CGRA with less

routing resources, we set one register per PE; (5)

4×4 CGRA with less memory connectivity: While the

above CGRAs allow all the PEs to access the on-chip

memory, we only allow the left-most PEs to access on-chip

memory in this version; (6) 5×5 systolic accelerator (Fig. 3)
with computing unit similar to Revel basic unit [40].
We implement the CGRA architectures in Verilog HDL

and synthesize on a 22 nm process using Synopsys Design

Compiler to obtain the power consumption. We set the

frequency to 100MHz similar to other low-power spatial

accelerators [45]. For CGRA, the schedule of a loop ker-

nel is repeated after Initiation Interval (II) cycles. The

lower the II, the higher the performance. Each PE has

24 configuration entries in all the architectures except the

systolic array, which means the maximum possible II is

24. CGRA execution cycles are entirely deterministic as

it follows a compiler-generated static schedule and has

software-controller scratchpad memory. Hence, execution

time is calculated by the II value of the mapping and the

clock frequency.
CGRA-ME state-of-the-art compiler: To compare the

mapping quality, compilation time, and portability with

state-of-the-art compilers, we use CGRA-ME [26], a pop-

ular open-source CGRA compilation framework. We select

CGRA-ME because it allows flexible modeling of different

spatial accelerators. LISA is compared with two mapping

approaches from CGRA-ME: Integer Linear Programming

(ILP) and Simulated Annealing (SA). SA is the most popular

algorithm in modern spatial accelerator compilation frame-

works (CGRA-ME [26], DSAGEN [22], AURORA [23]).

As SA makes random choices, the mapping is different for

each run and is not stable. Thus we run SA three times

for each architecture and benchmark combination and use

the median performance. The original routing algorithm in

CGRA-ME cannot always find the shortest path; we modify

ch
ole
sky ata

x
ge
mm

do
itg
en

ge
mv
er mv

t
sym

m
bic
g
syr
k
trm
m

ge
su
mm

v
syr
2k

0

5

10

15

II

ILP SA LISA

(a) 3×3 baseline CGRA

ata
x

ch
ole
sky

do
itg
en bic

g
ge
mm

ge
mv
er

ge
su
mm

v
mv
t
sym

m
syr
k
trm
m
syr
2k

0

2

4

6

II

(b) 4×4 baseline CGRA

ch
ole
sky
ge
mmsym

m
trm
m

do
itg
en bic

g

ge
su
mm

v
syr
2k ata

x
syr
k

ge
mv
er mv

t

0

2

4

6

II

(c) 4×4 CGRA with less routing resource

ata
x

ch
ole
sky

do
itg
en

ge
mm sym

m
syr
k

0

5
II

(d) 4×4 CGRA for unrolled DFG

ch
ole
sky

do
itg
en
ge
mm bic

g
mv
t
sym

m

ge
su
mm

v

ge
mv
er
ata
x
syr
k
trm
m
syr
2k

0

2

4

6

II

(e) 4×4 CGRA with less memory connectivity

ch
ole
sky mv

t
ata
x
sym

m
syr
k

ge
mv
er
ge
mm trm

m

0

5

10

II

(f) 8×8 CGRA for unrolled DFG

benchmark ILP SA LISA

cholesky � � �

mvt � � �

doitgen � � �

atax � � �

gemm � � �

trmm � � �

bicg � � �

gemver � � �

syrk � � �

(g) Systolic Accelerator

Figure 9: Performance comparison of LISA with ILP and SA on multiple CGRAs and one systolic accelerator. For CGRAs, the lower the
II, the better the performance. If II is zero, it implies that the benchmark cannot be mapped by the corresponding method. For the systolic
accelerator, � implies that the corresponding method can map the benchmark and � means the method cannot map the benchmark.

to use Dijkstra’s algorithm to find the shortest path. We

implement the GNN models with PyTorch Geometric [46].
Benchmarks: We use the PolyBench benchmark suite [47]
as well as an unrolled version (unrolling factor is 2) of

kernels. Some of the benchmarks in PolyBench are not

supported by CGRA-ME.

A. Quality of the Mapping
Performance: Fig. 9 shows the quality of the mapping with
II values (lower the II value, the better the performance) for

the different architectures and benchmarks. We use 12 DFGs

supported by CGRA-ME from PolyBench [47], excluding

combinations that cannot be mapped by any method. In total,

Fig. 9 has 71 combinations of benchmarks and accelerators.

LISA can map almost all the combinations except for trmm
on the systolic accelerator. But ILP and SA can only map

23 and 49 combinations out of 71. Hence, LISA can map

48 combinations that ILP cannot map and 21 combinations

that SA cannot map.

LISA can also achieve obvious improvement in II value

over SA for the mapped benchmarks. For 71 accelerator-

application combinations, ILP and SA can generate better

mappings than LISA for only 6 and 3 combinations. As

LISA uses labels to guide mapping, it cannot always find

the optimal mappings. ILP can find optimal solutions for

some combinations but cannot map 48 combinations even

with a generous time limit (two hours for each target II).

The random movements of SA may sometimes find better

solutions (3 out of 71 combinations). The main reasons for

LISA’s success are: 1) LISA maps the DFG with an all-

encompassing global view, which makes it easier to handle

cho
lesk

y atax gem
m
doit

gengem
ver mvt sym

m bicg syrk trmmgesu
mm

v
syr2

k
0

0.5

1

1.5

2

P
o
w
er
E
ffi
ci
en
cy

ILP SA LISA

(a) 3×3 baseline CGRA

cho
lesk

y atax gem
m
doit

gengem
ver mvt sym

m bicg syrk trmmgesu
mm

v
syr2

k
0

0.5

1

1.5

2

P
o
w
er
E
ffi
ci
en
cy

(b) 4×4 baseline CGRA
Figure 10: Power efficiency comparison on 3×3 and 4×4 baseline
CGRAs, where value 0 indicates that the DFG cannot be mapped
by the corresponding method.

complex DFGs without getting stuck in local minima, and

2) LISA uses GNN to generate labels for varied acceler-

ators and is better aware of accelerator characteristics and

resources.
LISA clearly demonstrates the ability to handle complex

DFGs and varied accelerators well. For example, in Fig. 9b

and 9c, SA cannot map two benchmarks (bicg, syr2k) for
4×4 CGRA, and two benchmarks (gesummv, syr2k) for a
CGRA with less routing resources. But LISA can map all

the benchmarks on both architectures. Interestingly, SA can

map bicg on the CGRA with less routing resources but

cannot map on baseline 4×4 CGRA. The former CGRA

has less routing resources and hence a smaller search space,

making it easier for SA to navigate. Fig. 9d shows the II

comparison for unrolled DFGs (unrolling factor 2) on 4×4
CGRA. Unrolling increases the complexity of the DFG.

LISA can achieve superior performance on unrolled DFGs

than ILP and SA. Among the six benchmarks, ILP cannot

map any, SA can only map three, while LISA can map all.

Out of three benchmarks mapped by both LISA and SA,

LISA still outperforms on atax and symm.
LISA is also scalable. In Fig. 9f, for 8×8 CGRA and 8

unrolled DFGs, LISA can map all of them and the perfor-

mance scales compared to 4×4 CGRA, while ILP cannot

map any DFG, and SA maps only one. With more hardware

resources and relatively complex DFGs, ILP requires more

variables, constraints, and cannot scale. SA has difficulty in

finding valid solutions using random movement. Benefiting

from the global view, LISA can construct valid and quality

mappings.
Power Efficiency: Fig. 10 shows the power efficiency com-
parison on 3×3 and 4×4 baseline CGRAs. LISA can map all

the benchmarks for both CGRAs, while ILP and SA cannot

map 14 and 4 combinations, respectively. We normalize

performance per Watt (MOPS/W) values w.r.t. LISA. As

LISA maps most benchmarks with lower II, it can achieve

cho
lesk

y ataxgem
m mvt

doit
gengem

ver sym
m bicg syrk trmmgesu

mm
v
syr2

k

101

103

105
� � � � � �

� �

C
o
m
p
il
at
io
n
T
im
e

(s
ec
)

ILP SA LISA

(a) 3×3 baseline CGRA

atax
cho

lesk
y
doit

gen bicg gem
m
gem

ver
gesu

mm
v mvt sym

m syrk trmm syr2
k

101

103

105
� � � � � � � �

� �

C
o
m
p
il
at
io
n
T
im
e

(s
ec
)

(b) 4×4 baseline CGRA
Figure 11: Compilation time comparison on 3×3 CGRA and 4×4
baseline CGRA. � means the corresponding method cannot map
the benchmark and we use termination time as the compilation
time.

an average of 1.58x and 1.4x power efficiency compared to

SA on 3×3 and 4×4 CGRA with mapped DFGs. Compared

to LISA, ILP achieves better power efficiency for gemm and

mvt on 3×3 CGRA and syrk on 4×4 CGRA. However, ILP
cannot map more than half of the combinations, making it

a unrealistic choice.
Compilation Time: Fig. 11 shows the compilation time for
the three methods on 3×3 and 4×4 baseline CGRA. We

use the termination time as the compilation time for the

benchmarks that ILP and SA cannot map. On 3×3 CGRA,
LISA achieves 594x and 17x compilation time reduction

compared to ILP and SA, respectively. On 4×4 CGRA,

LISA achieves 724x and 12x compilation time reduction

compared to ILP and SA, respectively. This is because

1) The compiler starts with target II equal to MII and

increments by one if it cannot map, until the target II exceeds

the maximum II. LISA achieves feasible mapping at lower II

and thus can complete early, and 2) LISA uses labels to map

with a global view, steering the search in the right direction.
In summary, for almost all application, accelerator combi-

nations, LISA substantially outperforms ILP, SA in mapping

quality (performance, power efficiency) and compilation

time. Benefiting from an all-encompassing global view,

LISA scales with spatial accelerators, complex DFGs and

handles limited routing resources. As the GNN model can

generate adaptive label values for various accelerators via

retraining, LISA generates quality mapping on different

architectures, creating a truly portable compiler framework

for spatial accelerators.

B. GNN Model Accuracy
For each accelerator, we randomly generate 1,000 DFGs

and use the iterative mapping method to generate training

data with labels. As each DFG has tens of nodes and edges,

the training data is sufficient for our GNN models. GNN

Table II: GNN label prediction accuracy.

Spatial accelerator architecture Prediction accuracy

label1 label2 label3 label4

4×4 baseline 0.788 0.856 0.932 0.992

3×3 baseline 0.648 0.939 0.992 0.938

4×4 with less routing resource 0.758 0.885 0.951 0.977

4×4 with less memory connectivity 0.738 0.852 0.941 0.988

8×8 baseline 0.685 0.716 0.914 0.990

systolic accelerator 0.759 0.768 0.907 1.000

model parameters can be directly inferred from the equations

in Section IV-B. We use a learning rate of 0.001, a weight

decay of 0.0005, and train for 500 epochs.

Different from existing node classification GNNs, the

GNN models in LISA aggregate values. The label values are

arbitrary positive numbers and hard to predict. Fortunately,

the labels guide the mapping process, and label-aware SA

can handle some inaccuracy in the label values. The predic-

tion is accurate for same-level nodes association and spatial

mapping distance if the difference between prediction and

ground truth is not more than one. For temporal mapping

distance, the prediction is accurate if the difference is not

more than two, as the temporal mapping distance can be

any positive number. For scheduler order, the prediction is

accurate if prediction and ground truth values are the same.

Table II shows the high GNN model accuracy for different

spatial accelerators and label IDs from Table I, which has

label schedule order, same-level nodes association, spatial

mapping distance, and temporal mapping distance. The

scheduler order (label 1) has relatively low accuracy com-

pared to the other labels because the scheduling order of one

node is affected by other nodes, which is hard to estimate

accurately. Compared to 4×4 CGRA, the GNN model on

3×3 CGRA has higher accuracy for label 2, 3, and lower

accuracy for label 1, 4. As labels 2, 3 describe spatial

distance, a smaller accelerator makes the prediction easier

for the GNN model. A smaller CGRA needs more cycles

(temporal length) to map the same DFG compared to a larger

CGRA with more resources. Also, on a smaller accelerator, a

slight difference in the DFG can cause a completely different

mapping as one node’s placement can be easily affected by

other nodes with limited resources. Hence the labels related

to temporal distance (1, 4) have lower accuracy in smaller

CGRA. 8×8 CGRA has lower accuracy for the first three

labels compared to 4×4 CGRA. For the schedule order label,
we normalize the execution cycle to the length of the longest

path in the DFG to get the scheduling order; the execution

cycles on 8×8 CGRA is much less than 4×4 CGRA. Thus
it is hard to predict schedule order on 8×8 CGRA. As the
other two labels are related to spatial distance, corresponding

GNN models have relatively lower accuracy on 8×8 CGRA.
Nevertheless, these labels are accurate enough to let LISA

atax
cho

lesk
y
doit

gen bicggem
m
gem

ver
gesu

mm
v mvtsym

m syrk trmm syr2
k

0

2

4

6

II

ILP SA SA+routing priority

(a) 4×4 baseline CGRA

cho
lesk

y ataxgem
m mvt bicg syrkgem

ver syr2
k
doit

gensym
m

gesu
mm

v
trmm

0

2

4

6

II

(b) 4×4 CGRA with less routing resource

Figure 12: Effectiveness evaluation for temporal mapping distance
(label 4) on 4×4 CGRA. The routing priority is decided by
temporal mapping distance (label 4).

ata
x

cho
les
ky
doi

tge
n
bic

g
gem

m
gem

ver

ges
um

mv mv
t
sym

m
syr

k
trm

m
syr

2k
ata

x(u
)

cho
les
ky(
u)

doi
tge
n(u

)

gem
m(
u)

sym
m(
u)
syr

k(u
)

0

5II
SA SA-M LISA

Figure 13: Performance evaluation on 4×4 CGRA for DFGs and
unrolled versions, where (u) represents unrolled DFGs. SA-M has
10× random movements at each temperature compared to SA.

achieve relatively lower II on with 8×8 CGRA and make it

scalable.

C. Effectiveness of Label-aware Mapping
LISA uses multiple labels for mapping and temporal

mapping distance (label 4) to decide routing priority (Al-

gorithm 1). To confirm the power of individual labels in

assisting the mapping process, we add routing priority to the

original SA in Fig. 12. SA with routing priority can map four

benchmark, accelerator combinations where the original SA

failed: bicg, syr2k for baseline CGRA, and gesummv, syr2k
for CGRA with less routing resources. Besides, SA with

routing priority achieves better II than the original SA on

seven combinations. Still, SA with routing priority cannot

match the performance of LISA, which uses multiple labels

with a global perspective.
To further evaluate LISA’s efficacy, we maintain 50 move-

ments at each temperature for SA and LISA, but create a new

version of SA with 10× movements, called SA-M. In Fig.13,

SA-M maps one more DFG (bicg) and achieves better II on
four DFGs compared to SA. LISA still achieves lower II

for four original DFGs and maps one more DFG (syr2k)
compared to SA-M, though SA-M has lower II on syrk. For
unrolled DFGs, SA-M does not provide any benefit; it cannot

map unrolled symm that SA maps. More movements may

create lower acceptance rate, resulting in early termination

of SA. This is the limitation of random movement compared

to LISA’s global perspective.

VII. RELATED WORK

We delve into related work from three perspectives: tradi-

tional mapping methods, machine learning and mapping, and

Graph Neural Network.

Traditional mapping methodology. Many related works

apply basic DFG structure information for spatial accelerator

mapping. One classic example is the topological order used

by many DFG mapping techniques. Park et al. [48] calculate

affinity between nodes with common consumers to check

whether to place them close or not. Similarly, Park et al.

[49] clusters low out-degree nodes to consume data as

soon as possible. However, the DFG information in these

existing works is only a part of the graph, which does

not comprehensively analyze the DFG. LISA emphasizes

global DFG analysis and the mapping impact of these DFG

characteristics. Moreover, to use the above DFG information

for different accelerators, these existing works need to set the

parameters in mapping manually. By contrast, LISA can au-

tomatically derive the impact of DFG structure on mapping,

generating high-quality mapping for diverse accelerators.

Machine Learning and Mapping: Using machine learning
to map for spatial accelerator has been explored. Park et

al. [50] use Reinforcement Learning to map on CGRA.

This method can provide more valid solutions for relatively

big DFGs. However, [50] only supports DFGs where the

number of nodes is less than or equal to the number of

PEs. Cummins et al. [51] design a tool, DeepTune, to op-

timize heuristics in the schedule. Through neural networks,

DeepTune can automatically find the proper execution model

on heterogeneous devices. We are the first to use GNN for

spatial accelerator mapping.

Graph Neural Network: GNN has been used in many

domains to analyze graphs [52] including analysis of DFGs.

To provide a transferable representation of computing graph,

Google designs an inductive graph embedding model that

encodes operation features and dependencies [53]. [54] uses

GNN to analyze the vulnerability of DFGs, while [55] uses

GNN to predict operation delay latency in HLS. Though [55]

achieves high accuracy, it only supports micro-benchmarks.

Also, the prediction task is simpler than the label prediction

task in LISA that requires a comprehensive DFG analysis.

VIII. CONCLUSION

Tremendous manual effort is needed to design a quality

compiler for a spatial accelerator. We presented a portable

compiler framework LISA that can automatically provide

quality mapping for varied accelerators. We use the abstrac-

tion of labels to represent the impact of the DFG structure on

accelerator mapping and provide a global view for mapping.

We employ GNN models to automatically derive the labels

for various accelerators. This is the first work to use GNN

for spatial accelerator mapping. Experiments show LISA

substantially outperforms ILP and Simulated Annealing basd

mapping on multiple accelerators.

IX. ACKNOWLEDGEMENT

We would like to thank the anonymous reviewers for their

insightful comments. We also thank Jun Zeng, Peng Chen,

and Kaihang Ji for discussion and feedback on earlier drafts

of this paper. This research is partially supported by the Na-

tional Research Foundation, Singapore under its Competitive

Research Programme Award NRF-CRP23-2019-0003.

REFERENCES

[1] J. L. Hennessy and D. A. Patterson, “A new golden age for
computer architecture,” Communications of the ACM, vol. 62,
no. 2, pp. 48–60, 2019.

[2] W. J. Dally, Y. Turakhia, and S. Han, “Domain-specific
hardware accelerators,” Communications of the ACM, vol. 63,
no. 7, pp. 48–57, 2020.

[3] C. E. Leiserson, N. C. Thompson, J. S. Emer, B. C. Kuszmaul,
B. W. Lampson, D. Sanchez, and T. B. Schardl, “There’s
plenty of room at the top: What will drive computer perfor-
mance after moore’s law?” Science, vol. 368, no. 6495, 2020.

[4] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An
energy-efficient reconfigurable accelerator for deep convolu-
tional neural networks,” IEEE journal of solid-state circuits,
vol. 52, no. 1, pp. 127–138, 2016.

[5] W. Lu, G. Yan, J. Li, S. Gong, Y. Han, and X. Li, “Flexflow:
A flexible dataflow accelerator architecture for convolutional
neural networks,” in 2017 IEEE International Symposium on
High Performance Computer Architecture (HPCA). IEEE,
2017, pp. 553–564.

[6] H. Kwon, A. Samajdar, and T. Krishna, “Maeri: Enabling
flexible dataflow mapping over dnn accelerators via reconfig-
urable interconnects,” ACM SIGPLAN Notices, vol. 53, no. 2,
pp. 461–475, 2018.

[7] E. Qin, A. Samajdar, H. Kwon, V. Nadella, S. Srinivasan,
D. Das, B. Kaul, and T. Krishna, “Sigma: A sparse and
irregular gemm accelerator with flexible interconnects for dnn
training,” in 2020 IEEE International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 2020,
pp. 58–70.

[8] V. Govindaraju, C.-H. Ho, T. Nowatzki, J. Chhugani,
N. Satish, K. Sankaralingam, and C. Kim, “Dyser: Unify-
ing functionality and parallelism specialization for energy-
efficient computing,” IEEE Micro, vol. 32, no. 5, pp. 38–51,
2012.

[9] M. Karunaratne, A. K. Mohite, T. Mitra, and L.-S. Peh,
“Hycube: A cgra with reconfigurable single-cycle multi-hop
interconnect,” in Proceedings of the 54th Annual Design
Automation Conference 2017, 2017, pp. 1–6.

[10] R. Prabhakar, Y. Zhang, D. Koeplinger, M. Feldman, T. Zhao,
S. Hadjis, A. Pedram, C. Kozyrakis, and K. Olukotun, “Plas-
ticine: A reconfigurable architecture for parallel patterns,” in
2017 ACM/IEEE 44th Annual International Symposium on
Computer Architecture (ISCA). IEEE, 2017, pp. 389–402.

[11] D. Wijerathne, Z. Li, M. Karunarathne, A. Pathania, and
T. Mitra, “Cascade: High throughput data streaming via
decoupled access-execute cgra,” ACM Transactions on Em-
bedded Computing Systems (TECS), vol. 18, no. 5s, pp. 1–26,
2019.

[12] Y. Zhang, A. Rucker, M. Vilim, R. Prabhakar, W. Hwang,
and K. Olukotun, “Scalable interconnects for reconfigurable
spatial architectures,” in 2019 ACM/IEEE 46th Annual In-
ternational Symposium on Computer Architecture (ISCA).
IEEE, 2019, pp. 615–628.

[13] B. Wang, M. Karunarathne, A. Kulkarni, T. Mitra, and L.-
S. Peh, “Hycube: A 0.9 v 26.4 mops/mw, 290 pj/op, power
efficient accelerator for iot applications,” in 2019 IEEE Asian
Solid-State Circuits Conference (A-SSCC). IEEE, 2019, pp.
133–136.

[14] M. Karunaratne, D. Wijerathne, T. Mitra, and L.-S. Peh, “4d-
cgra: Introducing branch dimension to spatio-temporal appli-
cation mapping on cgras,” in 2019 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD). IEEE,
2019, pp. 1–8.

[15] A. Nayak, K. Zhang, R. Setaluri, A. Carsello, M. Mann,
S. Richardson, R. Bahr, P. Hanrahan, M. Horowitz, and
P. Raina, “A framework for adding low-overhead, fine-grained
power domains to cgras,” in 2020 Design, Automation & Test
in Europe Conference & Exhibition (DATE). IEEE, 2020,
pp. 846–851.

[16] C. Torng, P. Pan, Y. Ou, C. Tan, and C. Batten, “Ultra-
elastic cgras for irregular loop specialization,” in 2021 IEEE
International Symposium on High-Performance Computer Ar-
chitecture (HPCA). IEEE, 2021, pp. 412–425.

[17] M. Pellauer, A. Parashar, M. Adler, B. Ahsan, R. Allmon,
N. Crago, K. Fleming, M. Gambhir, A. Jaleel, T. Krishna
et al., “Efficient control and communication paradigms for
coarse-grained spatial architectures,” ACM Transactions on
Computer Systems (TOCS), vol. 33, no. 3, pp. 1–32, 2015.

[18] C. Tan, N. B. Agostini, J. Zhang, M. Minutoli, V. G. Castel-
lana, C. Xie, T. Geng, A. Li, K. Barker, and A. Tumeo,
“Opencgra: Democratizing coarse-grained reconfigurable ar-
rays,” in 2021 IEEE 32nd International Conference on
Application-specific Systems, Architectures and Processors
(ASAP). IEEE, 2021, pp. 149–155.

[19] C. Tan, C. Xie, T. Geng, A. Marquez, A. Tumeo, K. Barker,
and A. Li, “Arena: Asynchronous reconfigurable accelerator
ring to enable data-centric parallel computing,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 32, no. 12,
pp. 2880–2892, 2021.

[20] R. Venkatesan, Y. S. Shao, M. Wang, J. Clemons, S. Dai,
M. Fojtik, B. Keller, A. Klinefelter, N. Pinckney, P. Raina
et al., “Magnet: A modular accelerator generator for neural
networks,” in 2019 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). IEEE, 2019, pp. 1–8.

[21] R. Bahr, C. Barrett, N. Bhagdikar, A. Carsello, R. Daly,
C. Donovick, D. Durst, K. Fatahalian, K. Feng, P. Hanrahan
et al., “Creating an agile hardware design flow,” in 2020 57th
ACM/IEEE Design Automation Conference (DAC). IEEE,
2020, pp. 1–6.

[22] J. Weng, S. Liu, V. Dadu, Z. Wang, P. Shah, and T. Nowatzki,
“Dsagen: Synthesizing programmable spatial accelerators,” in
2020 ACM/IEEE 47th Annual International Symposium on
Computer Architecture (ISCA). IEEE, 2020, pp. 268–281.

[23] T. Cheng, X. Chenhao, L. Ang, B. Kevin, and T. Antonino,
“Aurora: Automated refinement of coarse-grained reconfig-
urable accelerators,” in 2021 Design, Automation & Test in
Europe Conference & Exhibition (DATE). IEEE, 2021, pp.
1–5.

[24] K. B. Thilini, D. Wijerathne, T. Mitra, and L.-S. Peh,
“Revamp: A systematic framework for heterogeneous cgra
realization,” in Proceedings of the 27th ACM International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems, 2022.

[25] B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauw-
ereins, “Dresc: A retargetable compiler for coarse-grained
reconfigurable architectures,” in 2002 IEEE International
Conference on Field-Programmable Technology, 2002.(FPT).
Proceedings. IEEE, 2002, pp. 166–173.

[26] S. A. Chin, N. Sakamoto, A. Rui, J. Zhao, J. H. Kim, Y. Hara-
Azumi, and J. Anderson, “Cgra-me: A unified framework
for cgra modelling and exploration,” in 2017 IEEE 28th
International Conference on Application-specific Systems, Ar-
chitectures and Processors (ASAP). IEEE, 2017, pp. 184–
189.

[27] D. Liu, S. Yin, L. Liu, and S. Wei, “Polyhedral model based
mapping optimization of loop nests for cgras,” in Proceedings
of the 50th Annual Design Automation Conference, 2013, pp.
1–8.

[28] S. A. Chin and J. H. Anderson, “An architecture-agnostic
integer linear programming approach to cgra mapping,” in
Proceedings of the 55th Annual Design Automation Confer-
ence, 2018, pp. 1–6.

[29] S. Friedman, A. Carroll, B. Van Essen, B. Ylvisaker, C. Ebel-
ing, and S. Hauck, “Spr: an architecture-adaptive cgra map-
ping tool,” in Proceedings of the ACM/SIGDA international
symposium on Field programmable gate arrays, 2009, pp.
191–200.

[30] M. Hamzeh, A. Shrivastava, and S. Vrudhula, “Regimap:
Register-aware application mapping on coarse-grained recon-
figurable architectures (cgras),” in Proceedings of the 50th
Annual Design Automation Conference, 2013, pp. 1–10.

[31] L. Chen and T. Mitra, “Graph minor approach for application
mapping on cgras,” ACM Transactions on Reconfigurable
Technology and Systems (TRETS), vol. 7, no. 3, pp. 1–25,
2014.

[32] T. Nowatzki, N. Ardalani, K. Sankaralingam, and J. Weng,
“Hybrid optimization/heuristic instruction scheduling for pro-
grammable accelerator codesign,” in Proceedings of the 27th
International Conference on Parallel Architectures and Com-
pilation Techniques, 2018, pp. 1–15.

[33] D. Wijerathne, Z. Li, A. Pathania, T. Mitra, and L. Thiele,
“Himap: Fast and scalable high-quality mapping on cgra via
hierarchical abstraction,” in 2021 Design, Automation & Test
in Europe Conference & Exhibition (DATE). IEEE, 2021,
pp. 1192–1197.

[34] Z. Li, D. Wijerathne, X. Chen, A. Pathania, and T. Mitra,
“Chordmap: Automated mapping of streaming applications
onto cgra,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 2021.

[35] M. Gori, G. Monfardini, and F. Scarselli, “A new model
for learning in graph domains,” in Proceedings. 2005 IEEE
International Joint Conference on Neural Networks, 2005.,
vol. 2. IEEE, 2005, pp. 729–734.

[36] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal,
R. Bajwa, S. Bates, S. Bhatia, N. Boden, A. Borchers et al.,
“In-datacenter performance analysis of a tensor processing
unit,” in Proceedings of the 44th annual international sym-
posium on computer architecture, 2017, pp. 1–12.

[37] J. Cong and J. Wang, “Polysa: Polyhedral-based systolic
array auto-compilation,” in 2018 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD). IEEE,
2018, pp. 1–8.

[38] H. Kung, B. McDanel, and S. Q. Zhang, “Packing sparse
convolutional neural networks for efficient systolic array im-
plementations: Column combining under joint optimization,”
in Proceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages and
Operating Systems, 2019, pp. 821–834.

[39] H. Genc, A. Haj-Ali, V. Iyer, A. Amid, H. Mao, J. Wright,
C. Schmidt, J. Zhao, A. Ou, M. Banister et al., “Gem-
mini: An agile systolic array generator enabling systematic
evaluations of deep-learning architectures,” arXiv preprint
arXiv:1911.09925, 2019.

[40] J. Weng, S. Liu, Z. Wang, V. Dadu, and T. Nowatzki,
“A hybrid systolic-dataflow architecture for inductive matrix
algorithms,” in 2020 IEEE International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 2020,
pp. 703–716.

[41] S. Lawrence, C. L. Giles, A. C. Tsoi, and A. D. Back, “Face
recognition: A convolutional neural-network approach,” IEEE
transactions on neural networks, vol. 8, no. 1, pp. 98–113,
1997.

[42] B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauw-
ereins, “Exploiting loop-level parallelism on coarse-grained
reconfigurable architectures using modulo scheduling,” in
Proceedings of the 2003 Conference on Design, Automation
and Test in Europe, ser. DATE’03. IEEE, 2003, pp. 296–301.

[43] B. De Sutter, P. Coene, T. Vander Aa, and B. Mei,
“Placement-and-routing-based register allocation for coarse-
grained reconfigurable arrays,” in Proceedings of the 2008
ACM SIGPLAN-SIGBED Conference on Languages, Compil-
ers and Tools for Embedded System, ser. LCTES’08. ACM,
2008, pp. 151–160.

[44] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive repre-
sentation learning on large graphs,” in Proceedings of the 31st
International Conference on Neural Information Processing
Systems, 2017, pp. 1025–1035.

[45] S. Das, K. J. Martin, D. Rossi, P. Coussy, and L. Benini,
“An energy-efficient integrated programmable array accel-
erator and compilation flow for near-sensor ultralow power
processing,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 38, no. 6, pp. 1095–
1108, 2018.

[46] M. Fey and J. E. Lenssen, “Fast graph representation learning
with PyTorch Geometric,” in ICLR Workshop on Representa-
tion Learning on Graphs and Manifolds, 2019.

[47] J. Karimov, T. Rabl, and V. Markl, “Polybench: The first
benchmark for polystores,” in Technology Conference on
Performance Evaluation and Benchmarking. Springer, 2018,
pp. 24–41.

[48] H. Park, K. Fan, M. Kudlur, and S. Mahlke, “Modulo graph
embedding: Mapping applications onto coarse-grained recon-
figurable architectures,” in Proceedings of the 2006 interna-
tional conference on Compilers, architecture and synthesis
for embedded systems, 2006, pp. 136–146.

[49] H. Park, K. Fan, S. A. Mahlke, T. Oh, H. Kim, and H.-
s. Kim, “Edge-centric modulo scheduling for coarse-grained
reconfigurable architectures,” in Proceedings of the 17th inter-
national conference on Parallel architectures and compilation
techniques, 2008, pp. 166–176.

[50] D. Liu, S. Yin, G. Luo, J. Shang, L. Liu, S. Wei, Y. Feng,
and S. Zhou, “Data-flow graph mapping optimization for
cgra with deep reinforcement learning,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
vol. 38, no. 12, pp. 2271–2283, 2018.

[51] C. Cummins, P. Petoumenos, Z. Wang, and H. Leather, “End-
to-end deep learning of optimization heuristics,” in 2017
26th International Conference on Parallel Architectures and
Compilation Techniques (PACT). IEEE, 2017, pp. 219–232.

[52] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y.
Philip, “A comprehensive survey on graph neural networks,”
IEEE transactions on neural networks and learning systems,
vol. 32, no. 1, pp. 4–24, 2020.

[53] Y. Zhou, S. Roy, A. Abdolrashidi, D. Wong, P. Ma, Q. Xu,
H. Liu, P. M. Phothilimthana, S. Wang, A. Goldie et al.,
“Transferable graph optimizers for ml compilers,” arXiv
preprint arXiv:2010.12438, 2020.

[54] J. Jiao, D. Pal, C. Deng, and Z. Zhang, “Glaive: Graph
learning assisted instruction vulnerability estimation,” in 2021
Design, Automation & Test in Europe Conference & Exhibi-
tion (DATE). IEEE, 2021, pp. 82–87.

[55] E. Ustun, C. Deng, D. Pal, Z. Li, and Z. Zhang, “Accurate
operation delay prediction for fpga hls using graph neural net-
works,” in Proceedings of the 39th International Conference
on Computer-Aided Design, 2020, pp. 1–9.

APPENDIX

A. Abstract
Our artifact provides the source code of LISA, scripts

to run LISA and collect data, performance data samples,

and visualize data. The results reported in this paper were

obtained on a CPU server with 14 cores. We provide a

docker image including all the source code to allow the

readers to quickly set up the environment.

B. Artifact check-list (meta-information)
• Algorithm: LISA.
• Program: The benchmarks have been included.
• Run-time environment: Linux. We provide a docker
image.

• Metrics: Mapping II value, compilation time, and GNN
model accuracy.

• Output: Numerical results in text file with a script to
visualize.

• Experiments: Python and shell scripts
• How much disk space required (approximately)? 10 GB.
• How much time is needed to prepare workflow (approx-
imately)? 15 minutes.

• How much time is needed to complete experiments (ap-
proximately)? 6 hours.

• Archived (provide DOI)? doi.org/10.5281/zenodo.5788011
We are publicly releasing the source code of the GNN
model that generates the labels for the dataflow graph
(DFG). Our label-aware mapper is built on top of the
CGRA-ME framework, which does not allow redistribut-
ing the software. Hence, we created our label-aware
mapper as a patch to the original CGRA-ME code.

C. Description
1) How to access: https://github.com/ecolab-nus/lisa
2) Hardware dependencies: To run all the tasks in paral-

lel and reproduce the results, you need a CPU machine with

more than 13 cores. It is possible to use fewer cores for the

following experiments but the compilation time might be far

longer.
3) Software dependencies: Docker.
4) Data sets: We have included PolyBench in the docker

image.

D. Installation
Please follow the instructions to build the docker image

and and create a container (20 minutes).

E. Experiment workflow
Start the container

$ docker start lisa_ae
$ docker exec -it lisa_ae /bin/bash

Map PolyBench DFGs on 3×3 CGRA (one hour)
$ cd /home/lzy/lisa/cgra_me
$./cgrame_env
$ conda activate lisa
$ python3 run_exper.py gnn_lisa 1 0 13
Note: you may use nohup to run all the tasks in the

background

$ nohup python3 run_exper.py gnn_lisa 1
0 13 &
Then use top to check whether all the gnn lisa cgra tasks

are finished or not.

Map PolyBench DFGs on 4×4 CGRA (one hour)
$ nohup python3 run_exper.py gnn_lisa 0
0 13 &
Note: These tasks take around one hour to finish.

Train GNN model for all the accelerators (20 minutes)
$ cd /home/lzy/lisa/lisa_gnn/lisa_gnn_model
$ conda activate lisa
$ bash run_all_training.sh

F. Evaluation and expected results
All the mapping results are in lisa/cgra me/result. We use

a script to extract the II value and compilation time from the

result, and then visualize the results. Due to the randomness

in simulated annealing, the results might be different from

the reported ones. For most applications, the difference

between reproduced II and reported one should not be bigger

than one. For a few applications, the difference might be

much bigger. We have included the ILP and SA mapping

results in the corresponding data files. If you want to

reproduce other evaluations, please find the Experimentation
customization for more details.

$ cd /home/lzy/lisa/cgra_me/
&& python3 get_stat.py
result/cgra_me_3_3_result.txt
The above command will generate a figure 3 3.png and a

text file 3 3.txt in lisa/cgra me/figs.

To get 4×4 CGRA results, run:

$ python3 get_stat.py
result/cgra_me_4_4_result.txt

All the accuracy results can be found in

lisa/lisa gnn/lisa gnn model/accuracy log.txt. The

accuracy can have a maximum 6% difference from

the reported one.

G. Experiment customization
We provide README.md in lisa and lisa/cgra me.

Through the instructions, users can evaluate different accel-

erators. Moreover, users can generate the training data set

for a new accelerator, train the GNN model, and map DFG

on the accelerator.

H. Methodology
Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/

artifact-review-badging

• http://cTuning.org/ae/submission-20201122.html

• http://cTuning.org/ae/reviewing-20201122.html

